Numerical Simulation on the Effect of Fire Shutter Descending Height on Smoke Extraction Efficiency in a Large Atrium
Abstract
:1. Introduction
2. Numerical Simulation Conditions
2.1. Governing Equations
- (1)
- Equations for conservation of mass
- (2)
- Equations for conservation of momentum
- (3)
- Equations for conservation of energy
- (4)
- Equations for conservation of component
- (5)
- Boundary condition
2.2. Physical Model
2.3. Grid-Dependency Evidence
3. Results and Discussion
3.1. Smoke Spread Process
3.2. Temperature Distribution Law
3.3. Smoke Extraction Efficiency Analysis
4. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, W. Fire safety design of indoor pedestrian streets of large commercial building. Procedia Eng. 2013, 52, 652–656. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Wang, Z.; Liu, X.; Ji, C.; Yu, N.; Zhu, H.; Li, J.; Wang, P. Study on Fire Smoke Control in Super-high Building Atrium. Procedia Eng. 2018, 211, 844–852. [Google Scholar] [CrossRef]
- Wang, R.; Lan, X.; Xu, L. Smoke spread process under different heights based on numerical simulation. Case Stud. Therm. Eng. 2020, 21, 100710. [Google Scholar] [CrossRef]
- Thomas, P.H.; Webster, C.T.; Raftery, M.M. Some experiments on buoyant diffusion Flames. Combust. Flame 1961, 5, 359–367. [Google Scholar] [CrossRef]
- McCaffery, B.J. Purely Buoyant Diffusion Flames: Some Experimental Results; National Bureau of Standards: Washington, DC, USA, 1979.
- McCaffery, B.J. Momentum implications for buoyant diffusion flames. Combust. Flame 1983, 52, 149–167. [Google Scholar] [CrossRef]
- Zukoski, E.E. Development of a stratified ceiling layer in the early stage of closed room fire. Fire Mater. 1978, 2, 54–62. [Google Scholar] [CrossRef]
- Zukoski, E.E.; Kubota, T.; Cetegen, B. Entrainment in fire plumes. Fire Saf. J. 1981, 3, 107–121. [Google Scholar] [CrossRef]
- Heskestad, G. Virtual origins of fire plumes. Fire Saf. J. 1983, 5, 109–114. [Google Scholar] [CrossRef]
- Heskestad, G. Engineering relations for fire plumes. Fire Eng. J. 1984, 7, 25–32. [Google Scholar] [CrossRef]
- Tanaka, T.; Fujita, T.; Yamaguchi, J. Investigation into Rise Time of Buoyant Fire Plume Fronts. Int. J. Eng. Perform. Based Fire Codes 2000, 2, 14–25. [Google Scholar]
- Guti´errez-Montes, C.; Sanmiguel-Rojas, E.; Viedma, A.; Rein, G. Experimental data and numerical modelling of 1.3 and 2.3 MW fires in a 20 m cubic atrium. Build. Environ. 2009, 44, 1827–1839. [Google Scholar] [CrossRef] [Green Version]
- Qin, T.; Guo, Y.; Chan, C.; Lin, W. Numerical simulation of the spread of smoke in an atrium under fire scenario. Build. Environ. 2009, 44, 56–65. [Google Scholar] [CrossRef]
- Ray, S.; Gong, N.; Glicksman, L.R.; Paradiso, J. Experimental characterization of full-scale naturally ventilated atrium and validation of CFD simulations. Energy Build. 2014, 69, 285–291. [Google Scholar] [CrossRef]
- Zhang, G.; Zhou, X.; Zhu, G.; Yan, S. A new accident analysis and investigation model for the complex building fire using numerical reconstruction. Case Stud. Therm. Eng. 2019, 14, 100426. [Google Scholar] [CrossRef]
- Xu, L.; Wang, Y.; Song, L. Numerical research on the smoke spread process of thin-tall atrium space under various ceiling height. Case Stud. Therm. Eng. 2021, 25, 100996. [Google Scholar] [CrossRef]
- Klote, J.H. Prediction of smoke movement in atria: Part I—Physical concepts. ASHRAE Trans. 1997, 103, 534–544. [Google Scholar]
- Klote, J.H. Prediction of smoke movement in atria: Part II—Application to smoke management. ASHRAE Trans. 1997, 103, 545–553. [Google Scholar]
- Hadjisophocleous, G.V.; Lougheed, G.D.; Cao, S. Numerical study of the effectiveness of atrium smoke exhaust systems. ASHRAE Trans. 1999, 105, 1–17. [Google Scholar]
- Lougheed, G.D. Investigation of atrium smoke exhaust effectiveness. ASHARE Trans. 1997, 103, 519–533. [Google Scholar]
- Lougheed, G.D.; Hadjisophocleous, G.V.; Mecartney, C.; Taber, B.C. Largescale physical model studies for an atrium smoke exhaust system. ASHRAE Trans. 1999, 105, 676–698. [Google Scholar]
- Rafinazari, A.; Hadjisophocleous, G.V. An investigation of the effect of make-up air velocity on smoke layer height with asymmetric openings and rotational air flow in atrium fires. J. Build. Eng. 2020, 27, 100933. [Google Scholar] [CrossRef]
- Rho, J.S.; Ryou, H.S. A numerical study of atrium fires using deterministic models. Fire Saf. J. 1999, 33, 213–229. [Google Scholar] [CrossRef]
- Chow, W.K. Smoke Movement and Design of Smoke Control In Atrium Building—Part2 Diagrams. Int. J. Hous. Sci. Its Appl. 1990, 14, 147–159. [Google Scholar]
- Chow, W.K. Simulation of The Atrium Fire Environment in Hong Kong. ASHRAE Trans. 1993, 99, 163–168. [Google Scholar]
- Chow, W.K. A Short Note on the Simulation of Atrium Smoke Filling Process Using Fire Zone Models. J. Fire Sci. 1994, 12, 516–528. [Google Scholar] [CrossRef]
- Wong, L.T. Evaluation of Safe Distance of Fire rolling shutters in Shopping Malls. Archit. Sci. Rev. 2003, 4, 403–409. [Google Scholar] [CrossRef]
- Yu, J.J.; Wei, G.Z. Distance from combustibles to fire rolling shutter of a large commercial building. Fire Sci. Technol. 2014, 1, 63–66. [Google Scholar]
- Yu, H.C. The discussion of fire rolling shutter reliability. Fire Sci. Technol. 2014, 6, 701–703. [Google Scholar]
- Long, Z.; Liu, C.; Yang, Y.; Qiu, P.; Tian, X.; Zhong, M. Full-scale experimental study on fire-induced smoke movement and control in an underground double-island subway station. Tunn. Undergr. Space Technol. 2020, 103, 103508. [Google Scholar] [CrossRef]
- Huang, Y.; Wang, E.; Bie, Y. Simulation investigation on the smoke spread process in the large-space building with various height. Case Stud. Therm. Eng. 2020, 18, 100594. [Google Scholar] [CrossRef]
- Zhang, H.; Wang, J.; Du, C. Experimental study on the effect of segmented smoke exhaust on smoke exhaust of ultra-thin and tall atrium. Case Stud. Therm. Eng. 2021, 28, 101560. [Google Scholar] [CrossRef]
- Li, S.; Li, X. FDS Fire Numerical Simulation; Chemical Industry Press: Beijing, China, 2019. [Google Scholar]
- GA/T 999-2012; Test Method for Verifying, Field Performance of Smoke Management System—Hot Smoke Test. The Ministry of Public Security of the People’s Republic of China, Standards Press of China: Beijing, China, 2012.
- Jiao, A.; Lin, W.; Cai, B.; Wang, H.; Chen, J.; Zhang, M.; Xiao, J.; Liu, Q.; Wang, F.; Fan, C. Full-scale experimental study on thermal smoke movement characteristics in an indoor pedestrian street. Case Stud. Therm. Eng. 2022, 34, 102029. [Google Scholar] [CrossRef]
- Zhong, M.; Li, P.; Liu, T. Experimental study on fire smoke movement in a multi-floor and multi-room building. Sci. China Ser. E Eng. Mater. Sci. 2005, 48, 292–304. [Google Scholar] [CrossRef]
- Hall, J.R. U.S. high-rise fires: The big picture. NFPA J. 1994, 88, 47–53. [Google Scholar]
- Pan, Y.; Zhao, H.; Wu, D.; Li, W. Study on smoke exhaust efficiency under central exhaust mode in tunnel fires. J. Saf. Environ. 2012, 12, 191–196. [Google Scholar]
- Hurley, M.J.; Gottuk, D.; Hall, J.R.; Harada, K.; Kuligowski, E.D.; Puchovsky, M.; Torero, J.L.; Watts, J.M.; Wieczorek, C.J. SFPE Handbook of Fire Protection Engineering, 5th ed.; Hurley, M.J., Ed.; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Dordrecht, The Netherlands; London, UK, 2019. [Google Scholar]
Equation | |||||||
---|---|---|---|---|---|---|---|
h* | 0 | 0.25 | 0.4 | 0.5 | 0.6 | 0.75 | 1 |
Intercept | 40.8 | 43.5 | 45.3 | 46.9 | 46.6 | 46.3 | 45.9 |
Slope | 18.3 | 20.6 | 21.4 | 22.4 | 21.6 | 20.6 | 18.5 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 | 0.99 |
Equation | ||||
---|---|---|---|---|
v* | 0.25 | 0.5 | 0.75 | 1 |
Intercept | 45.2 | 49.9 | 54.4 | 58.9 |
Slope | 14.2 | 15.9 | 17.9 | 20.2 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 |
Equation | ||||
---|---|---|---|---|
v* | 0.25 | 0.5 | 0.75 | 1 |
Intercept | 54.4 | 60.8 | 67.5 | 70.1 |
Slope | −3.9 | −5.7 | −7.8 | −9.7 |
R2 | 0.99 | 0.99 | 0.99 | 0.99 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Q.; Xiao, J.; Cai, B.; Guo, X.; Wang, H.; Chen, J.; Zhang, M.; Qiu, H.; Zheng, C.; Zhou, Y. Numerical Simulation on the Effect of Fire Shutter Descending Height on Smoke Extraction Efficiency in a Large Atrium. Fire 2022, 5, 101. https://doi.org/10.3390/fire5040101
Liu Q, Xiao J, Cai B, Guo X, Wang H, Chen J, Zhang M, Qiu H, Zheng C, Zhou Y. Numerical Simulation on the Effect of Fire Shutter Descending Height on Smoke Extraction Efficiency in a Large Atrium. Fire. 2022; 5(4):101. https://doi.org/10.3390/fire5040101
Chicago/Turabian StyleLiu, Qiyu, Jianren Xiao, Bihe Cai, Xiaoying Guo, Hui Wang, Jian Chen, Meihong Zhang, Huasheng Qiu, Chunlin Zheng, and Yang Zhou. 2022. "Numerical Simulation on the Effect of Fire Shutter Descending Height on Smoke Extraction Efficiency in a Large Atrium" Fire 5, no. 4: 101. https://doi.org/10.3390/fire5040101
APA StyleLiu, Q., Xiao, J., Cai, B., Guo, X., Wang, H., Chen, J., Zhang, M., Qiu, H., Zheng, C., & Zhou, Y. (2022). Numerical Simulation on the Effect of Fire Shutter Descending Height on Smoke Extraction Efficiency in a Large Atrium. Fire, 5(4), 101. https://doi.org/10.3390/fire5040101