Fire Risk Assessment on Wildland–Urban Interface and Adjoined Urban Areas: Estimation Vegetation Ignitability by Artificial Neural Network
Abstract
:1. Introduction
- Statistical models use GIS-based historical summaries to estimate the correlation between fire-affecting parameters and observed fire frequency at specific locations [24];
- Fire behavior models use mathematical models that predict fire spread based on biophysical parameters that simulate a fire dynamic in particular conditions [25]
2. Materials and Methods
2.1. Case Study
2.2. Data Collection and Pre-Processing
2.3. Pattern Recognition Neural Network
2.3.1. Neural Network Design
2.3.2. PRNN Input
2.3.3. PRNN Output
2.3.4. RNN Accuracy Measures
3. Results
3.1. Data Preparation
3.2. PRNN Training
3.3. PRNN Accuracy Assessment
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sommers, W.T. The emergence of the Wildland-urban interface concept. FOREST 2008, 13–18. [Google Scholar]
- Radeloff, V.C.; Hammer, R.B.; Stewart, S.I.; Fried, J.S.; Holcomb, S.S.; McKeefry, J.F. The wildland–urban interface in the United States. Ecol. Appl. 2005, 15, 799–805. [Google Scholar] [CrossRef] [Green Version]
- Assaker, A.; Darwish, T.; Faour, G.; Noun, M. Use of remote sensing and GIS to assess the anthropogenic impact on forest fires in Nahr Ibrahim watershed, Lebanon. Leban. Sci. J. 2012, 13, 15–28. [Google Scholar]
- Rigolot, E.; Castelli, L.; Cohen, M.; Costa, M.; Duché, Y. Recommendations for fuel-break design and fuel management at the wildland urban interface: An empirical approach in south eastern France. In Proceedings of the Institute of Mediterranean Forest Ecosystems and Forest Products Warm International Workshop, Athens, Greece, 2004; pp. 131–142. Available online: http://www.fria.gr/WARM/chapters/warmCh16Rigolot.pdf (accessed on 14 August 2022).
- Neuman, M. The compact city fallacy. J. Plan. Educ. Res. 2005, 25, 11–26. [Google Scholar] [CrossRef]
- Pörtner, H.O.; Roberts, D.C.; Adams, H.; Adler, C.; Aldunce, P.; Ali, E.; Begum, R.A.; Betts, R.; Kerr, R.B.; Biesbroek, R.; et al. Climate Change 2022: Impacts, Adaptation and Vulnerability; IPCC Sixth Assessment Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022. [Google Scholar]
- Kochilakis, G.; Proussalidi, D.; Chrysoulakis, N.; Varella, V.; Kotroni, V.; Eftychidis, G.; Mimikou, M. A web based DSS for the management of floods and wildfires (FLIRE) in urban and periurban areas. Environ. Model. Softw. 2016, 86, 111–115. [Google Scholar] [CrossRef]
- Storey Michael, A.; Price Owen, F.; Sharples Jason, J.; Bradstock Ross, A. Drivers of long-distance spotting during wildfires in south-eastern Australia. Int. J. Wildland Fire 2020, 29, 459–472. [Google Scholar] [CrossRef]
- Penman Sandra, H.; Price Owen, F.; Penman Trent, D.; Bradstock Ross, A. The role of defensible space on the likelihood of house impact from wildfires in forested landscapes of south eastern Australia. Int. J. Wildland Fire 2019, 28, 4–14. [Google Scholar] [CrossRef]
- Martin, J.; Hillen, T. The spotting distribution of wildfires. Appl. Sci. 2016, 6, 177. [Google Scholar] [CrossRef]
- Manzello, S.L.; Foote, E.I. Characterizing firebrand exposure from wildland–urban interface (WUI) fires: Results from the 2007 Angora Fire. Fire Technol. 2014, 50, 105–124. [Google Scholar] [CrossRef]
- Manzello, S.L.; Suzuki, S.; Gollner, M.J.; Fernandez-Pello, A.C. Role of firebrand combustion in large outdoor fire spread. Prog. Energy Combust. Sci. 2020, 76, 100801. [Google Scholar] [CrossRef]
- Ganteaume, A.; Guijarro, M.; Jappiot, M.; Hernando, C.; Lampin-Maillet, C.; Pérez-Gorostiaga, P.; Vega, J.A. Laboratory characterization of firebrands involved in spot fires. Ann. For. Sci. 2011, 68, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Ganteaume, A.; Jappiot, M.; Lampin, C.; Guijarro, M.; Hernando, C. Flammability of some ornamental species in wildland–urban interfaces in southeastern France: Laboratory assessment at particle level. Environ. Manag. 2013, 52, 467–480. [Google Scholar] [CrossRef]
- Molina, J.R.; Lora, A.; Prades, C.; Silva, F.R.Y. Roadside vegetation planning and conservation: New approach to prevent and mitigate wildfires based on fire ignition potential. For. Ecol. Manag. 2019, 444, 163–173. [Google Scholar] [CrossRef]
- Gray, M.E.; Dickson, B.G. Applying fire connectivity and centrality measures to mitigate the cheatgrass-fire cycle in the arid West, USA. Landsc. Ecol. 2016, 31, 1681–1696. [Google Scholar] [CrossRef]
- Kaur, I.; Pagnini, G. Fire-spotting modelling and parametrisation for wild-land fires. Int. Congr. Environ. Model. Softw. 2016, 55. [Google Scholar]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Maranghides, A.; Mell, W.; Yang, J.C. Experimental investigation of firebrands: Generation and ignition of fuel beds. Fire Saf. J. 2008, 43, 226–233. [Google Scholar] [CrossRef]
- Dahanayake, K.C.; Chow, C.L. Moisture content, ignitability, and fire risk of vegetation in vertical greenery systems. Fire Ecol. 2018, 14, 125–142. [Google Scholar] [CrossRef]
- Cawson, J.G.; Pickering, B.J.; Filkov, A.I.; Burton, J.E.; Kilinc, M.; Penman, T.D. Predicting ignitability from firebrands in mature wet eucalypt forests. For. Ecol. Manag. 2022, 519, 120315. [Google Scholar] [CrossRef]
- Rauscher, H.M.; Sands, Y.; Lee, D.C.; Beatty, J.S. Advances in Threat Assessment and Their Application to Forest and Rangeland Management—Volume 2; Gen. Tech. Rep. PNW-GTR-802; US Department of Agriculture, Forest Service, Pacific Northwest and Southern Research Stations: Portland, OR, USA, 2010; pp. 249–708. [Google Scholar]
- Cáceres, C.F. Using GIS in hotspots analysis and for forest fire risk zones mapping in the Yeguare Region, Southeastern Honduras. Pap. Resour. Anal. 2011, 13, 1–14. [Google Scholar]
- Adab, H.; Kanniah, D.; Solaimani, K. GIS-based probability assessment of fire risk in grassland and forested landscapes of Golestan Province, Iran. In Proceedings of the International Conference on Environmental and Computer Science IPCBEE, Singapore, 16–18 September 2011; Volume 19, p. 2011. [Google Scholar]
- Gerdzheva, A.A. A comparative analysis of different wildfire risk assessment models (a case study for Smolyan district, Bulgaria). Eur. J. Geogr. 2014, 5, 22–36. [Google Scholar]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest & Range Experiment Station, Forest Service, US Department of Agriculture, 1972; Volume 115. [Google Scholar]
- Rodrigues, M.; Jiménez, A.; de la Riva, J. Analysis of recent spatial–temporal evolution of human driving factors of wildfires in Spain. Nat. Hazards 2016, 84, 2049–2070. [Google Scholar] [CrossRef] [Green Version]
- Paltrinieri, N.; Comfort, L.; Reniers, G. Learning about risk: Machine learning for risk assessment. Saf. Sci. 2019, 118, 475–486. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef]
- Goldarag, Y.J.; Mohammadzadeh, A.; Ardakani, A.S. Fire risk assessment using neural network and logistic regression. J. Indian Soc. Remote Sens. 2016, 44, 885–894. [Google Scholar] [CrossRef]
- Gates, D.M. Physical and Physiological Properties of Plants. In Remote Sensing with Special Reference to Agriculture and Forestry; National Academy of Sciences: Washington, DC, USA, 1970; pp. 224–252. [Google Scholar]
- Gale, M.G.; Cary, G.J.; Van Dijk, A.I.; Yebra, M. Forest fire fuel through the lens of remote sensing: Review of approaches, challenges and future directions in the remote sensing of biotic determinants of fire behaviour. Remote Sens. Environ. 2021, 255, 112–282. [Google Scholar] [CrossRef]
- Hasanah, A.; Indrawan, M. Assessment of tropical forest degradation on a small island using the enhanced vegetation index. IOP Conf. Ser. Earth Environ. Sci. 2020, 481, 012061. [Google Scholar] [CrossRef]
- Rhyma, P.P.; Norizah, K.; Hamdan, O.; Faridah-Hanum, I.; Zulfa, A.W. Integration of normalised different vegetation index and soil-adjusted vegetation index for mangrove vegetation delineation. Remote Sens. Appl. Soc. Environ. 2020, 17, 100280. [Google Scholar] [CrossRef]
- Stefanidou, A.; Gitas, I.Z.; Katagis, T. A national fuel type mapping method improvement using sentinel-2 satellite data. Geocarto Int. 2022, 37, 1022–1042. [Google Scholar] [CrossRef]
- Bajocco, S.; Dragoz, E.; Gitas, I.; Smiraglia, D.; Salvati, L.; Ricotta, C. Mapping forest fuels through vegetation phenology: The role of coarse-resolution satellite time-series. PLoS ONE 2015, 10, e0119811. [Google Scholar]
- Michael, Y.; Helman, D.; Glickman, O.; Gabay, D.; Brenner, S.; Lensky, I.M. Forecasting fire risk with machine learning and dynamic information derived from satellite vegetation index time-series. Sci. Total Environ. 2021, 764, 142844. [Google Scholar] [CrossRef]
- Kopel, D.; Malkinson, D.; Wittenberg, L. Characterization of vegetation community dynamics in areas affected by construction waste along the urban fringe. Urban Ecosyst. 2015, 18, 133–150. [Google Scholar] [CrossRef]
- Kolodney, Z.; Kallus, R. The Politics of Landscape (Re) Production Haifa Between Colonialism and Nation Building. Landsc. J. 2008, 27, 173–189. [Google Scholar] [CrossRef]
- Wittenberg, L.; Malkinson, D. Spatio-temporal perspectives of forest fires regimes in a maturing Mediterranean mixed pine landscape. Eur. J. For. Res. 2009, 128, 297. [Google Scholar] [CrossRef]
- Carmel, Y.; Paz, S.; Jahashan, F.; Shoshany, M. Assessing fire risk using Monte Carlo simulations of fire spread. For. Ecol. Manag. 2009, 257, 370–377. [Google Scholar] [CrossRef]
- Tessler, N.; Sapir, Y.; Wittenberg, L.; Greenbaum, N. Recovery of Mediterranean vegetation after recurrent forest fires: Insight from the 2010 forest fire on Mount Carmel, Israel. Land Degrad. Dev. 2016, 27, 1424–1431. [Google Scholar] [CrossRef]
- Toger, M.; Malkinson, D.; Benenson, I.; Czamanski, D. The connectivity of Haifa urban open space network. Environ. Plan. B Plan. Des. 2016, 43, 848–870. [Google Scholar] [CrossRef]
- Naveh, Z. The evolutionary significance of fire in the Mediterranean region. Vegetatio 1975, 29, 199–208. [Google Scholar] [CrossRef]
- Winstanley, D. Sharav. Weather 1972, 27, 146–160. [Google Scholar] [CrossRef]
- Paz, S.; Carmel, Y.; Jahshan, F.; Shoshany, M. Post-fire analysis of pre-fire mapping of fire-risk: A recent case study from Mt. Carmel (Israel). For. Ecol. Manag. 2011, 262, 1184–1188. [Google Scholar] [CrossRef]
- Polinova, M.; Wittenberg, L.; Kutiel, H.; Brook, A. A novel urban vegetation mapping approach for fire risk assessment: A Mediterranean case study. J. Urban Ecol. 2022, in press. [Google Scholar]
- Tessler, N.; Borger, H.; Rave, E.; Argaman, E.; Kopel, D.; Brook, A.; Wittenberg, L. Haifa fire restoration project–urban forest management: A case study. Int. J. Wildland Fire 2019, 28, 485–494. [Google Scholar] [CrossRef]
- Wikipedia. November 2016 Israel fires. Wikimedia Foundation. Available online: https://en.wikipedia.org/wiki/November_2016_Israel_fires (accessed on 14 August 2022).
- Perkins, T.; Adler-Golden, S.M.; Matthew, M.W.; Berk, A.; Bernstein, L.S.; Lee, J.; Fox, M. Speed and accuracy improvements in FLAASH atmospheric correction of hyperspectral imagery. Opt. Eng. 2012, 51, 111707. [Google Scholar] [CrossRef]
- Laben, C.A.; Brower, B.V. Process for Enhancing the Spatial Resolution of Multispectral Imagery Using Pan-Sharpening. US6011875A, 29 April 1998. [Google Scholar]
- Polinova, M.; Wittenberg, L.; Kutiel, H.; Brook, A. Reconstructing pre-fire vegetation condition in the wildland urban interface (WUI) using artificial neural network. J. Environ. Manag. 2019, 238, 224–234. [Google Scholar] [CrossRef] [PubMed]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.P.; Gao, X.; Ferreira, L.G. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Nepita-Villanueva, M.R.; Berlanga-Robles, C.A.; Ruiz-Luna, A.; Barcenas, J.H.M. Spatio-temporal mangrove canopy variation (2001–2016) assessed using the MODIS enhanced vegetation index (EVI). J. Coast. Conserv. 2019, 23, 589–597. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. NASA Spec. Publ. 1974, 351, 309. [Google Scholar]
- Wang, J.; Rich, P.M.; Price, K.P.; Kettle, W.D. Relations between NDVI and tree productivity in the central Great Plains. Int. J. Remote Sens. 2004, 25, 3127–3138. [Google Scholar] [CrossRef]
- Wang, Q.; Adiku, S.; Tenhunen, J.; Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 2005, 94, 244–255. [Google Scholar] [CrossRef]
- Chen, J.M. Evaluation of vegetation indices and a modified simple ratio for boreal applications. Can. J. Remote Sens. 1996, 22, 229–242. [Google Scholar] [CrossRef]
- Das, S.; Singh, T.P. Correlation analysis between biomass and spectral vegetation indices of forest ecosystem. Int. J. Eng. Res. Technol 2012, 1, 1–13. [Google Scholar]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Herbei, M.V.; Herbei, R.; Smuleac, L.; Salagean, T. Using Remote Sensing Techniques in Environmental Management. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Agric. 2016, 73, 230–237. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Asalhi, H.; Teillet, P.M. Transformed difference vegetation index (TDVI) for vegetation cover mapping. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; IEEE: Piscataway, NJ, USA, 2002; Volume 5, pp. 3053–3055. [Google Scholar]
- Wang, L.; Qu, J.J. NMDI: A normalized multi-band drought index for monitoring soil and vegetation moisture with satellite remote sensing. Geophys. Res. Lett. 2007, 34, L20405. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal component analysis. Chemom. Intell. Lab. Syst. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Abdi, H.; Williams, L.J. Principal component analysis. Wiley Interdiscip. Rev. Comput. Stat. 2010, 2, 433–459. [Google Scholar] [CrossRef]
- Congalton, R.G. Accuracy assessment and validation of remotely sensed and other spatial information. Int. J. Wildland Fire 2001, 10, 321–328. [Google Scholar] [CrossRef] [Green Version]
- Guerra, F.; Puig, H.; Chaume, R. The forest-savanna dynamics from multi-date Landsat-TM data in Sierra Parima, Venezuela. Int. J. Remote Sens. 1998, 19, 2061–2075. [Google Scholar] [CrossRef]
- Jurdao, S.; Chuvieco, E.; Arevalillo, J.M. Modelling fire ignition probability from satellite estimates of live fuel moisture content. Fire Ecol. 2012, 8, 77–97. [Google Scholar] [CrossRef]
- Argañaraz, J.P.; Landi, M.A.; Bravo, S.J.; Gavier-Pizarro, G.I.; Scavuzzo, C.M.; Bellis, L.M. Estimation of live fuel moisture content from MODIS images for fire danger assessment in Southern Gran Chaco. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 5339–5349. [Google Scholar] [CrossRef]
- Xie, L.; Zhang, R.; Zhan, J.; Li, S.; Shama, A.; Zhan, R.; Wu, R. Wildfire Risk Assessment in Liangshan Prefecture, China Based on An Integration Machine Learning Algorithm. Remote Sens. 2022, 14, 4592. [Google Scholar] [CrossRef]
- Vega-Nieva, D.J.; Nava-Miranda, M.G.; Calleros-Flores, E.; López-Serrano, P.M.; Briseño-Reyes, J.; Corral-Rivas, J.J.; Alvarado-Celestino, E. Temporal patterns of fire density by vegetation type and region in Mexico and its temporal relationships with a monthly satellite fuel greenness index. Fire Ecol. 2019, 15, 28. [Google Scholar] [CrossRef]
- Guo, Z.; Fang, W.; Tan, J.; Shi, X. A time-dependent stochastic grassland fire ignition probability model for Hulun Buir Grassland of China. Chin. Geogr. Sci. 2013, 23, 445–459. [Google Scholar] [CrossRef] [Green Version]
- D’Este, M.; Ganga, A.; Elia, M.; Lovreglio, R.; Giannico, V.; Spano, G.; Sanesi, G. Modeling fire ignition probability and frequency using Hurdle models: A cross-regional study in Southern Europe. Ecol. Process. 2020, 9, 1–14. [Google Scholar] [CrossRef]
- Smith, J.T.; Allred, B.W.; Boyd, C.S.; Davies, K.W.; Jones, M.O.; Kleinhesselink, A.R.; Maestas, J.D.; Naugle, D.E. Where there’s smoke, there’s fuel: Dynamic vegetation data improve predictions of wildfire hazard in the Great Basin. bioRxiv 2022, arXiv:2021.06.25.449963. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Pu, Z.; Xu, C. Comparing prediction performance for crash injury severity among various machine learning and statistical methods. IEEE Access 2018, 6, 60079–60087. [Google Scholar] [CrossRef]
- Devi, S.S.; Radhika, Y. A survey on machine learning and statistical techniques in bankruptcy prediction. Int. J. Mach. Learn. Comput. 2018, 8, 133–139. [Google Scholar] [CrossRef] [Green Version]
- Fernandes, L.C.; Cintra, R.S.; Nero, M.A.; da Costa Temba, P. Fire Risk Modeling Using Artificial Neural Networks. In International Conference on Engineering Optimizationi; Springer: Cham, Switzerland, 2018; pp. 938–948. [Google Scholar]
- Vasilakos, C.; Kalabokidis, K.; Hatzopoulos, J.; Matsinos, I. Identifying wildland fire ignition factors through sensitivity analysis of a neural network. Nat. Hazards 2009, 50, 125–143. [Google Scholar] [CrossRef]
- Satir, O.; Berberoglu, S.; Donmez, C. Mapping regional forest fire probability using artificial neural network model in a Mediterranean forest ecosystem. Geomat. Nat. Hazards Risk 2016, 7, 1645–1658. [Google Scholar] [CrossRef] [Green Version]
- Joshi, J.; Sukumar, R. Improving prediction and assessment of global fires using multilayer neural networks. Sci. Rep. 2021, 11, 1–14. [Google Scholar]
- Meng, M.; Huang, N.; Wu, M.; Pei, J.; Wang, J.; Niu, Z. Vegetation change in response to climate factors and human activities on the Mongolian Plateau. PeerJ 2019, 7, e7735. [Google Scholar] [CrossRef] [PubMed]
- Bashir, B.; Cao, C.; Naeem, S.; Zamani Joharestani, M.; Bo, X.; Afzal, H.; Mumtaz, F. Spatio-temporal vegetation dynamic and persistence under climatic and anthropogenic factors. Remote Sens. 2020, 12, 2612. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt Jr, E.R.; Jurdao, S. A global review of remote sensing of live fuel moisture content for fire danger assessment: Moving towards operational products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Marino, E.; Yebra, M.; Guillén-Climent, M.; Algeet, N.; Tomé, J.L.; Madrigal, J.; Hernando, C. Investigating live fuel moisture content estimation in fire-prone shrubland from remote sensing using empirical modelling and RTM simulations. Remote Sens. 2020, 12, 2251. [Google Scholar] [CrossRef]
- Alvarado, S.T.; Fornazari, T.; Cóstola, A.; Morellato, L.P.C.; Silva, T.S.F. Drivers of fire occurrence in a mountainous Brazilian cerrado savanna: Tracking long-term fire regimes using remote sensing. Ecol. Indic. 2017, 78, 270–281. [Google Scholar] [CrossRef] [Green Version]
- Yebra, M.; Quan, X.; Riaño, D.; Larraondo, P.R.; van Dijk, A.I.; Cary, G.J. A fuel moisture content and flammability monitoring methodology for continental Australia based on optical remote sensing. Remote Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- Fares, S.; Bajocco, S.; Salvati, L.; Camarretta, N.; Dupuy, J.L.; Xanthopoulos, G.; Corona, P. Characterizing potential wildland fire fuel in live vegetation in the Mediterranean region. Ann. For. Sci. 2017, 74, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Brosinsky, A.; Lausch, A.; Doktor, D.; Salbach, C.; Merbach, I.; Gwillym-Margianto, S.; Pause, M. Analysis of spectral vegetation signal characteristics as a function of soil moisture conditions using hyperspectral remote sensing. J. Indian Soc. Remote Sens. 2014, 42, 311–324. [Google Scholar] [CrossRef]
- Yebra, M.; Scortechini, G.; Badi, A.; Beget, M.E.; Boer, M.M.; Bradstock, R.; Ustin, S. Globe-LFMC, a global plant water status database for vegetation ecophysiology and wildfire applications. Sci. Data 2019, 6, 1–8. [Google Scholar]
- Landi, M.A.; Di Bella, C.M.; Bravo, S.J.; Bellis, L.M. Structural resistance and functional resilience of the Chaco forest to wildland fires: An approach with MODIS time series. Austral Ecol. 2021, 46, 277–289. [Google Scholar] [CrossRef]
- Molina, J.R.; Martín, T.; Silva, F.R.Y.; Herrera, M.Á. The ignition index based on flammability of vegetation improves planning in the wildland-urban interface: A case study in Southern Spain. Landsc. Urban Plan. 2017, 158, 129–138. [Google Scholar] [CrossRef]
- Cho, S.H.; Lee, G.S.; Hwang, J.W. Drone-based vegetation index analysis considering vegetation vitality. J. Korean Assoc. Geogr. Inf. Stud. 2020, 23, 21–35. [Google Scholar]
- Younes, N.; Joyce, K.E.; Northfield, T.D.; Maier, S.W. The effects of water depth on estimating Fractional Vegetation Cover in mangrove forests. Int. J. Appl. Earth Obs. Geoinf. 2019, 83, 101924. [Google Scholar] [CrossRef]
- da Silva, V.S.; Salami, G.; da Silva, M.I.O.; Silva, E.A.; Monteiro Junior, J.J.; Alba, E. Methodological evaluation of vegetation indexes in land use and land cover (LULC) classification. Geol. Ecol. Landsc. 2020, 4, 159–169. [Google Scholar] [CrossRef]
- Hardy, C.C.; Burgan, R.E. Evaluation of NDVI for monitoring live moisture in three vegetation types of the western US. Photogramm. Eng. Remote Sens. 1999, 65, 603–610. [Google Scholar]
- Blackhall, M.; Raffaele, E. Flammability of Patagonian invaders and natives: When exotic plant species affect live fine fuel ignitability in wildland-urban interfaces. Landsc. Urban Plan. 2019, 189, 1–10. [Google Scholar] [CrossRef]
- Farahmand, A.; Reager, J.T.; Behrangi, A.; Stavros, E.N.; Randerson, J.T. Using NASA satellite observations to map wildfire risk in the United States for allocation of fire management resources. In AGU Fall Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2017; p. NH21E-02. [Google Scholar]
- Galiana-Martin, L.; Herrero, G.; Solana, J. A wildland–urban interface typology for forest fire risk management in Mediterranean areas. Landsc. Res. 2011, 36, 151–171. [Google Scholar] [CrossRef]
VIs | Equation | Related Vegetation Characteristics | Reference |
---|---|---|---|
EVI | Biomass, canopy cover | [54,55] | |
NDVI | Biomass, tree productivity, leaf area index | [56,57,58] | |
MSR | Leaf area index, fraction of photosynthetically active radiation, biomass | [59,60] | |
MSAVI | Biomass, canopy cover | [60,61,62] | |
TDVI | Canopy cover | [63] | |
NMDI | Vegetation moisture | [64] |
Dataset | Correspondence of Predicted and Actual Targets (%) | ||||
---|---|---|---|---|---|
Training | Validation | Test | Total (Training, Validation, and Test) | ||
EVI | Ignited | 96.8 | 100 | 90 | 96.3 |
Not ignited | 82.4 | 93.8 | 100 | 87 | |
NDVI | Ignited | 90.6 | 100 | 86.7 | 91.3 |
Not ignited | 80.6 | 86.7 | 92.3 | 83 | |
MSR | Ignited | 96.3 | 90 | 93.8 | 95 |
Not ignited | 89 | 76.9 | 78.6 | 86 | |
MSAVI | Ignited | 96.9 | 90 | 100 | 96.4 |
Not ignited | 92.5 | 87.5 | 84.6 | 90.6 | |
TDVI | Ignited | 90.3 | 84.6 | 100 | 90.9 |
Not ignited | 91.5 | 77.8 | 93.3 | 89.1 | |
NMDI | Ignited | 84.5 | 88.9 | 91.7 | 85.9 |
Not ignited | 88.1 | 85.7 | 86.7 | 87.5 | |
All indices | Ignited | 94.1 | 90 | 85.7 | 92.9 |
Not ignited | 87.3 | 87.5 | 93.8 | 88.4 | |
PCA dataset | Ignited | 95.1 | 100 | 100 | 96.3 |
Not ignited | 84.5 | 100 | 92.9 | 87.9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahamed, M.; Wittenberg, L.; Kutiel, H.; Brook, A. Fire Risk Assessment on Wildland–Urban Interface and Adjoined Urban Areas: Estimation Vegetation Ignitability by Artificial Neural Network. Fire 2022, 5, 184. https://doi.org/10.3390/fire5060184
Mahamed M, Wittenberg L, Kutiel H, Brook A. Fire Risk Assessment on Wildland–Urban Interface and Adjoined Urban Areas: Estimation Vegetation Ignitability by Artificial Neural Network. Fire. 2022; 5(6):184. https://doi.org/10.3390/fire5060184
Chicago/Turabian StyleMahamed (Polinova), Maria, Lea Wittenberg, Haim Kutiel, and Anna Brook. 2022. "Fire Risk Assessment on Wildland–Urban Interface and Adjoined Urban Areas: Estimation Vegetation Ignitability by Artificial Neural Network" Fire 5, no. 6: 184. https://doi.org/10.3390/fire5060184
APA StyleMahamed, M., Wittenberg, L., Kutiel, H., & Brook, A. (2022). Fire Risk Assessment on Wildland–Urban Interface and Adjoined Urban Areas: Estimation Vegetation Ignitability by Artificial Neural Network. Fire, 5(6), 184. https://doi.org/10.3390/fire5060184