Bushfire Management Strategies: Current Practice, Technological Advancement and Challenges
Abstract
:1. Introduction
2. Methodology for Literature Review
3. Fire Weather Conditions and Bushfire Initiation
4. Adverse Effects of Bushfires
5. Bushfire Management
5.1. Bushfire Prediction
5.1.1. Satellite Imagery-Based Remote Sensing Techniques for Bushfire Prediction
5.1.2. Radars and Scanning-Based Techniques for Bushfire Prediction
5.2. Bushfire Detection
5.2.1. Satellite Imagery and Sensor Data-Based Bushfire Detection
5.2.2. Wireless Sensor Network Data-Based Bushfire Detection
5.2.3. Application of Unmanned Aerial Vehicles (UAV) for Bushfire Detection
5.3. Bushfire Suppression and Prevention
6. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The Human Dimension of Fire Regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef]
- Cruz, M.G.; Sullivan, A.L.; Gould, J.S.; Sims, N.C.; Bannister, A.J.; Hollis, J.J.; Hurley, R.J. Anatomy of a Catastrophic Wildfire: The Black Saturday Kilmore East Fire in Victoria, Australia. For. Ecol. Manag. 2012, 284, 269–285. [Google Scholar] [CrossRef]
- Haynes, K.; Handmer, J.; McAneney, J.; Tibbits, A.; Coates, L. Australian Bushfire Fatalities 1900–2008: Exploring Trends in Relation to the ‘Prepare, Stay and Defend or Leave Early’ Policy. Environ. Sci Policy 2010, 13, 185–194. [Google Scholar] [CrossRef]
- Teague, B.; Pascoe, S.; McLeod, R. The 2009 Victorian Bushfires Royal Commission Final Report: Summary; Analysis & Policy Observatory: Melbourne, Australia, 2010. [Google Scholar]
- Yu, P.; Xu, R.; Abramson, M.J.; Li, S.; Guo, Y. Bushfires in Australia: A Serious Health Emergency under Climate Change. Lancet Planet. Health 2020, 4, e7–e8. [Google Scholar] [CrossRef] [PubMed]
- McGee, T.K. Public Engagement in Neighbourhood Level Wildfire Mitigation and Preparedness: Case Studies from Canada, the US and Australia. J. Environ. Manag. 2011, 92, 2524–2532. [Google Scholar] [CrossRef]
- Blackwell, J.A.; Tuttle, A. California Fire Siege 2003: The Story; California Department of Forestry and Fire Protection: Sacramento, CA, USA, 2003. [Google Scholar]
- Lifu, S.; Xiaorui, T. Fire Situation in China. Int. For. Fire News 2002, 26, 9–14. [Google Scholar]
- De Ronde, C.; Goldammer, J.G. Fire Situation in South Africa. Int. For. Fire News 2001, 25, 105–110. [Google Scholar]
- Xanthopoulos, G.; Viegas, D.X.; Caballero, D. The Fatal Fire Entrapment of Artemida (Greece) 2007. Recent Forest Fire Related Accidents in Europe; Institute for Environment and Sustainability: Ispra, Italy, 2009. [Google Scholar]
- Catry, F.X.; Rego, F.C.; Bação, F.L.; Moreira, F. Modeling and Mapping Wildfire Ignition Risk in Portugal. Int. J. Wildland Fire 2009, 18, 921. [Google Scholar] [CrossRef]
- Cochrane, M.A. Tropical Fire Ecology; Springer: Berlin/Heidelberg, Germany, 2009; ISBN 978-3-540-77380-1. [Google Scholar]
- Lucas, C.; Hennessy, K.; Mills, G.; Bathols, J. Bushfire Weather in Southeast Australia: Recent Trends and Projected Climate Change Impacts; Bureau of Meteorology Research Centre: Melbourne, Australia, 2007. [Google Scholar]
- Whittaker, J.; Handmer, J.; Mercer, D. Vulnerability to Bushfires in Rural Australia: A Case Study from East Gippsland, Victoria. J. Rural. Stud. 2012, 28, 161–173. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation Fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Ullah, F.; Khan, S.I.; Munawar, H.S.; Qadir, Z.; Qayyum, S. UAV Based Spatiotemporal Analysis of the 2019–2020 New South Wales Bushfires. Sustainability 2021, 13, 10207. [Google Scholar] [CrossRef]
- Cameron, P.A.; Mitra, B.; Fitzgerald, M.; Scheinkestel, C.D.; Stripp, A.; Batey, C.; Niggemeyer, L.; Truesdale, M.; Holman, P.; Mehra, R.; et al. Black Saturday: The Immediate Impact of the February 2009 Bushfires in Victoria, Australia. Med. J. Aust. 2009, 191, 11–16. [Google Scholar] [CrossRef] [PubMed]
- Ashe, B.; McAneney, K.J.; Pitman, A.J. Total Cost of Fire in Australia. J. Risk Res. 2009, 12, 121–136. [Google Scholar] [CrossRef]
- Ruane, S. Using a Worldview Lens to Examine Complex Policy Issues: A Historical Review of Bushfire Management in the South West of Australia. Local. Environ. 2018, 23, 777–795. [Google Scholar] [CrossRef]
- Ruane, S. Applying the Principles of Adaptive Governance to Bushfire Management: A Case Study from the South West of Australia. J. Environ. Plan. Manag. 2020, 63, 1215–1240. [Google Scholar] [CrossRef]
- Partheepan, S.; Sanati, F.; Hassan, J. Autonomous Unmanned Aerial Vehicles in Bushfire Management: Challenges and Opportunities. Drones 2023, 7, 47. [Google Scholar] [CrossRef]
- Neale, T.; May, D. Fuzzy Boundaries: Simulation and Expertise in Bushfire Prediction. Soc. Stud. Sci. 2020, 50, 837–859. [Google Scholar] [CrossRef]
- Sharma, S.K.; Aryal, J.; Rajabifard, A. Remote Sensing and Meteorological Data Fusion in Predicting Bushfire Severity: A Case Study from Victoria, Australia. Remote Sens. 2022, 14, 1645. [Google Scholar] [CrossRef]
- Garg, S.; Aryal, J.; Wang, H.; Shah, T.; Kecskemeti, G.; Ranjan, R. Cloud Computing Based Bushfire Prediction for Cyber–Physical Emergency Applications. Future Gener. Comput. Syst. 2018, 79, 354–363. [Google Scholar] [CrossRef]
- Jaiswal, R.K.; Mukherjee, S.; Raju, K.D.; Saxena, R. Forest Fire Risk Zone Mapping from Satellite Imagery and GIS. Int. J. Appl. Earth Obs. Geoinf. 2002, 4, 1–10. [Google Scholar] [CrossRef]
- Xu, G.; Zhong, X. Real-Time Wildfire Detection and Tracking in Australia Using Geostationary Satellite: Himawari-8. Remote Sens. Lett. 2017, 8, 1052–1061. [Google Scholar] [CrossRef]
- Wang, P.; Wang, L.; Leung, H.; Zhang, G. Super-Resolution Mapping Based on Spatial–Spectral Correlation for Spectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2256–2268. [Google Scholar] [CrossRef]
- Lang, S.; Li, G.; Liu, Y.; Lu, W.; Zhang, Q.; Chao, K. A GAN-Based Augmentation Scheme for SAR Deceptive Jamming Templates with Shadows. Remote Sens. 2023, 15, 4756. [Google Scholar] [CrossRef]
- Biddle, N.; Bryant, C.; Gray, M.; Marasinghe, D. Measuring the Economic Impact of Early Bushfire Detection; The Australian National University: Canberra, Australia, 2020. [Google Scholar]
- Nosouhi, M.R.; Sood, K.; Kumar, N.; Wevill, T.; Thapa, C. Bushfire Risk Detection Using Internet of Things: An Application Scenario. IEEE Internet Things J. 2022, 9, 5266–5274. [Google Scholar] [CrossRef]
- Zhang, Y.; Miao, J.; Huang, L.; Wu, H. Study on Australian Bushfire Detection Model Based on Drones and Unmanned Intelligent Vehicle Swarm. Int. Core J. Eng. 2021, 7, 105–124. [Google Scholar]
- Schroeder, W.; Oliva, P.; Giglio, L.; Quayle, B.; Lorenz, E.; Morelli, F. Active Fire Detection Using Landsat-8/OLI Data. Remote Sens. Environ. 2016, 185, 210–220. [Google Scholar] [CrossRef]
- Katuwal, H.; Calkin, D.E.; Hand, M.S. Production and Efficiency of Large Wildland Fire Suppression Effort: A Stochastic Frontier Analysis. J. Environ. Manag. 2016, 166, 227–236. [Google Scholar] [CrossRef]
- Podur, J.J.; Martell, D.L. A Simulation Model of the Growth and Suppression of Large Forest Fires in Ontario. Int. J. Wildland Fire 2007, 16, 285. [Google Scholar] [CrossRef]
- Gebert, K.M.; Calkin, D.E.; Yoder, J. Estimating Suppression Expenditures for Individual Large Wildland Fires. West. J. Appl. For. 2007, 22, 188–196. [Google Scholar] [CrossRef]
- Loane, I.T.; Gould, J.S. Aerial Suppression of Bushfires: Cost-Benefit Study for Victoria; National Bushfire Research Unit, CSIRO Division of Forest Research: Canberra, Australia, 1986. [Google Scholar]
- Gill, A.M.; Stephens, S.L.; Cary, G.J. The Worldwide “Wildfire” Problem. Ecol. Appl. 2013, 23, 438–454. [Google Scholar] [CrossRef]
- Kimber, R. Black Lightning: Aborigines and Fire in Central Australia and the Western Desert. Archaeol. Ocean. 1983, 18, 38–45. [Google Scholar] [CrossRef]
- McRae, R. Prediction of Areas Prone to Lightning Ignition. Int. J. Wildland Fire 1992, 2, 123. [Google Scholar] [CrossRef]
- El Saliby, I.; Okour, Y.; Shon, H.K.; Kandasamy, J.; Kim, I.S. Desalination Plants in Australia, Review and Facts. Desalination 2009, 247, 1–14. [Google Scholar] [CrossRef]
- Sharples, J.J.; Cary, G.J.; Fox-Hughes, P.; Mooney, S.; Evans, J.P.; Fletcher, M.-S.; Fromm, M.; Grierson, P.F.; McRae, R.; Baker, P. Natural Hazards in Australia: Extreme Bushfire. Clim. Chang. 2016, 139, 85–99. [Google Scholar] [CrossRef]
- Noble, I.R.; Gill, A.M.; Bary, G.A.V. McArthur’s Fire-Danger Meters Expressed as Equations. Austral Ecol. 1980, 5, 201–203. [Google Scholar] [CrossRef]
- Dowdy, A.J.; Mills, G.A.; Finkele, K.; de Groot, W. Index Sensitivity Analysis Applied to the Canadian Forest Fire Weather Index and the McArthur Forest Fire Danger Index. Meteorol. Appl. 2010, 17, 298–312. [Google Scholar] [CrossRef]
- Karoly, D.J. The Recent Bushfires and Extreme Heat Wave in Southeast Australia. Bull. Aust. Meteorol. Oceanogr. Soc. 2009, 22, 10–13. [Google Scholar]
- Van Wagner, C.E.; Forest, P. Development and Structure of the Canadian Forest Fireweather Index System; Canadian Forestry Service: Ottawa, ON, Canada, 1987. [Google Scholar]
- Deeming, J.E.; Burgan, R.E.; Cohen, J.D. The National Fire-Danger Rating System—1978; Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Washington, DC, USA, 1977; Volume 39. [Google Scholar]
- Singer, S.F.; Avery, D.T. Unstoppable Global Warming: Every 1500 Years; Rowman & Littlefield Publishers: Lanham, MD, USA, 2007. [Google Scholar]
- CSIRO (Australia). State of the Climate 2010; CSIRO: Canberra, Australia, 2010. [Google Scholar]
- Blanchi, R.; Leonard, J.E.; Leicester, R.H. Lessons Learnt from Post-Bushfire Surveys at the Urban Interface in Australia. For. Ecol. Manag. 2006, 234, S139. [Google Scholar] [CrossRef]
- Bandara, S.; Rajeev, P.; Gad, E. Power Distribution System Faults and Wildfires: Mechanisms and Prevention. Forests 2023, 14, 1146. [Google Scholar] [CrossRef]
- Fernandez-Pello, A.C.; Lautenberger, C.; Rich, D.; Zak, C.; Urban, J.; Hadden, R.; Scott, S.; Fereres, S. Spot Fire Ignition of Natural Fuel Beds by Hot Metal Particles, Embers, and Sparks. Combust. Sci. Technol. 2015, 187, 269–295. [Google Scholar] [CrossRef]
- Willis, M. Bushfires—How Can We Avoid the Unavoidable? Environ. Hazards 2005, 6, 93–99. [Google Scholar] [CrossRef]
- Cantlon, J.E.; Buell, M.F. Controlled Burning—Its Broader Ecological Aspects. Bartonia 1952, 26, 48–52. [Google Scholar]
- Bandara, S.; Rajeev, P.; Gad, E. A Review on Condition Assessment Technologies for Power Distribution Network Infrastructure. Struct. Infrastruct. Eng. 2023, 1–18. [Google Scholar] [CrossRef]
- Bandara, S.; Rajeev, P.; Gad, E. Structural Health Assessment Techniques for In-Service Timber Poles. Struct. Infrastruct. Eng. 2023, 19, 439–459. [Google Scholar] [CrossRef]
- Bandara, S.; Rajeev, P.; Gad, E.; Sriskantharajah, B.; Flatley, I. Damage Detection of in Service Timber Poles Using Hilbert-Huang Transform. NDT E Int. 2019, 107, 102141. [Google Scholar] [CrossRef]
- Rajeev, P.; Bandara, S.; Gad, E.; Shan, J. Structural Assessment Techniques for In-Service Crossarms in Power Distribution Networks. Infrastructures 2022, 7, 94. [Google Scholar] [CrossRef]
- Bryant, C. Deliberately Lit Vegetation Fires in Australia. In Trends & Issues in Crime and Criminal Justice; Australian Institute of Criminology: Canberra Australia, 2008. [Google Scholar]
- Willis, M.; Sarah, C. Bushfire Arson: A Review of the Literature.; Australian Institute of Criminology: Canberra, Australia, 2004. [Google Scholar]
- Handmer, J.; Van der Merwe, M.; O’Neill, S. The Risk of Dying in Bushfires: A Comparative Analysis of Fatalities and Survivors. Progress. Disaster Sci. 2019, 1, 100015. [Google Scholar] [CrossRef]
- Weber, D.; Moskwa, E.; Robinson, G.M.; Bardsley, D.K.; Arnold, J.; Davenport, M.A. Are We Ready for Bushfire? Perceptions of Residents, Landowners and Fire Authorities on Lower Eyre Peninsula, South Australia. Geoforum 2019, 107, 99–112. [Google Scholar] [CrossRef]
- Johnston, F.; Hanigan, I.; Henderson, S.; Morgan, G.; Bowman, D. Extreme Air Pollution Events from Bushfires and Dust Storms and Their Association with Mortality in Sydney, Australia 1994–2007. Environ. Res. 2011, 111, 811–816. [Google Scholar] [CrossRef]
- Vardoulakis, S.; Jalaludin, B.B.; Morgan, G.G.; Hanigan, I.C.; Johnston, F.H. Bushfire Smoke: Urgent Need for a National Health Protection Strategy. Med. J. Aust. 2020, 212, 349. [Google Scholar] [CrossRef]
- Martin, K.L.; Hanigan, I.C.; Morgan, G.G.; Henderson, S.B.; Johnston, F.H. Air Pollution from Bushfires and Their Association with Hospital Admissions in Sydney, Newcastle and Wollongong, Australia 1994–2007. Aust. N. Z. J. Public Health 2013, 37, 238–243. [Google Scholar] [CrossRef] [PubMed]
- van Oldenborgh, G.J.; Krikken, F.; Lewis, S.; Leach, N.J.; Lehner, F.; Saunders, K.R.; van Weele, M.; Haustein, K.; Li, S.; Wallom, D.; et al. Attribution of the Australian Bushfire Risk to Anthropogenic Climate Change. Nat. Hazards Earth Syst. Sci. 2021, 21, 941–960. [Google Scholar] [CrossRef]
- Yusiharni, E.; Gilkes, R.J. Changes in the Mineralogy and Chemistry of a Lateritic Soil Due to a Bushfire at Wundowie, Darling Range, Western Australia. Geoderma 2012, 191, 140–150. [Google Scholar] [CrossRef]
- Kirchhoff, C.; Callaghan, C.T.; Keith, D.A.; Indiarto, D.; Taseski, G.; Ooi, M.K.J.; Le Breton, T.D.; Mesaglio, T.; Kingsford, R.T.; Cornwell, W.K. Rapidly Mapping Fire Effects on Biodiversity at a Large-Scale Using Citizen Science. Sci. Total Environ. 2021, 755, 142348. [Google Scholar] [CrossRef] [PubMed]
- Celermajer, D.; Lyster, R.; Wardle, G.M.; Walmsley, R.; Couzens, E. The Australian Bushfire Disaster: How to Avoid Repeating This Catastrophe for Biodiversity. WIREs Clim. Chang. 2021, 12, e704. [Google Scholar] [CrossRef]
- Norman, B.; Newman, P.; Steffen, W. Apocalypse Now: Australian Bushfires and the Future of Urban Settlements. NPJ Urban. Sustain. 2021, 1, 2. [Google Scholar] [CrossRef]
- He, W.; Shirowzhan, S.; Pettit, C.J. GIS and Machine Learning for Analysing Influencing Factors of Bushfires Using 40-Year Spatio-Temporal Bushfire Data. ISPRS Int. J. Geoinf. 2022, 11, 336. [Google Scholar] [CrossRef]
- Visner, M.; Shirowzhan, S.; Pettit, C. Spatial Analysis, Interactive Visualisation and GIS-Based Dashboard for Monitoring Spatio-Temporal Changes of Hotspots of Bushfires over 100 Years in New South Wales, Australia. Buildings 2021, 11, 37. [Google Scholar] [CrossRef]
- Gill, A.M. Landscape Fires as Social Disasters: An Overview of ‘the Bushfire Problem’. Environ. Hazards 2005, 6, 65–80. [Google Scholar] [CrossRef]
- Handmer, J.; Tibbits, A. Is Staying at Home the Safest Option during Bushfires? Historical Evidence for an Australian Approach. Environ. Hazards 2005, 6, 81–91. [Google Scholar] [CrossRef]
- Lee, B.S.; Alexander, M.E.; Hawkes, B.C.; Lynham, T.J.; Stocks, B.J.; Englefield, P. Information Systems in Support of Wildland Fire Management Decision Making in Canada. Comput. Electron. Agric. 2002, 37, 185–198. [Google Scholar] [CrossRef]
- Lall, S.; Mathibela, B. The Application of Artificial Neural Networks for Wildfire Risk Prediction. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation for Humanitarian Applications (RAHA), Kollam, India, 18–20 December 2016; pp. 1–6. [Google Scholar]
- Hamadeh, N.; Daya, B.; Hilal, A.; Chauvet, P. An Analytical Review on the Most Widely Used Meteorological Models in Forest Fire Prediction. In Proceedings of the 2015 IEEE Third International Conference on Technological Advances in Electrical, Electronics and Computer Engineering (TAEECE), Beirut, Lebanon, 29 April–1 May 2015; pp. 239–244. [Google Scholar]
- Goldammer, J.G.; Furyaev, V.V. (Eds.) Fire in Ecosystems of Boreal Eurasia; Springer Netherlands: Dordrecht, The Netherlands, 1996; Volume 48, ISBN 978-90-481-4725-0. [Google Scholar]
- Snyder, R.L.; Spano, D.; Duce, P.; Baldocchi, D.; Xu, L. A Fuel Dryness Index for Grassland Fire-Danger Assessment. Agric. For. Meteorol. 2006, 139, 1–11. [Google Scholar] [CrossRef]
- Zhang, H.; Han, X.; Dai, S. Fire Occurrence Probability Mapping of Northeast China with Binary Logistic Regression Model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 121–127. [Google Scholar] [CrossRef]
- Riaño, D. Modeling Airborne Laser Scanning Data for the Spatial Generation of Critical Forest Parameters in Fire Behavior Modeling. Remote Sens. Environ. 2003, 86, 177–186. [Google Scholar] [CrossRef]
- Chuvieco, E.; Congalton, R.G. Application of Remote Sensing and Geographic Information Systems to Forest Fire Hazard Mapping. Remote Sens. Environ. 1989, 29, 147–159. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Healey, S.P.; Cohen, W.B.; Cocero, D.; Manzanera, J.A. Using Object-Oriented Classification and High-Resolution Imagery to Map Fuel Types in a Mediterranean Region. J. Geophys. Res. Biogeosci 2006, 111, G04S04. [Google Scholar] [CrossRef]
- Lasaponara, R.; Lanorte, A. On the Capability of Satellite VHR QuickBird Data for Fuel Type Characterization in Fragmented Landscape. Ecol. Modell. 2007, 204, 79–84. [Google Scholar] [CrossRef]
- Chuvieco, E.; Cocero, D.; Riaño, D.; Martin, P.; Martínez-Vega, J.; de la Riva, J.; Pérez, F. Combining NDVI and Surface Temperature for the Estimation of Live Fuel Moisture Content in Forest Fire Danger Rating. Remote Sens. Environ. 2004, 92, 322–331. [Google Scholar] [CrossRef]
- Chaparro, D.; Vall-llossera, M.; Piles, M.; Camps, A.; Rudiger, C.; Riera-Tatche, R. Predicting the Extent of Wildfires Using Remotely Sensed Soil Moisture and Temperature Trends. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2818–2829. [Google Scholar] [CrossRef]
- Lozano, F.J.; Suárez-Seoane, S.; de Luis, E. Assessment of Several Spectral Indices Derived from Multi-Temporal Landsat Data for Fire Occurrence Probability Modelling. Remote Sens. Environ. 2007, 107, 533–544. [Google Scholar] [CrossRef]
- Akther, M.S.; Hassan, Q.K. Remote Sensing-Based Assessment of Fire Danger Conditions Over Boreal Forest. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2011, 4, 992–999. [Google Scholar] [CrossRef]
- Chowdhury, E.H.; Hassan, Q.K. Use of Remote Sensing-Derived Variables in Developing a Forest Fire Danger Forecasting System. Nat. Hazards 2013, 67, 321–334. [Google Scholar] [CrossRef]
- Mallinis, G.; Mitsopoulos, I.D.; Dimitrakopoulos, A.P.; Gitas, I.Z.; Karteris, M. Local-Scale Fuel-Type Mapping and Fire Behavior Prediction by Employing High-Resolution Satellite Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 230–239. [Google Scholar] [CrossRef]
- Tien Bui, D.; Le, K.-T.; Nguyen, V.; Le, H.; Revhaug, I. Tropical Forest Fire Susceptibility Mapping at the Cat Ba National Park Area, Hai Phong City, Vietnam, Using GIS-Based Kernel Logistic Regression. Remote Sens. 2016, 8, 347. [Google Scholar] [CrossRef]
- Jordan, M.I.; Mitchell, T.M. Machine Learning: Trends, Perspectives, and Prospects. Science 2015, 349, 255–260. [Google Scholar] [CrossRef]
- Maeda, E.E.; Formaggio, A.R.; Shimabukuro, Y.E.; Arcoverde, G.F.B.; Hansen, M.C. Predicting Forest Fire in the Brazilian Amazon Using MODIS Imagery and Artificial Neural Networks. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 265–272. [Google Scholar] [CrossRef]
- Bisquert, M.; Caselles, E.; Sánchez, J.M.; Caselles, V. Application of Artificial Neural Networks and Logistic Regression to the Prediction of Forest Fire Danger in Galicia Using MODIS Data. Int. J. Wildland Fire 2012, 21, 1025. [Google Scholar] [CrossRef]
- Storer, J.; Green, R. PSO Trained Neural Networks for Predicting Forest Fire Size: A Comparison of Implementation and Performance. In Proceedings of the 2016 IEEE International Joint Conference on Neural Networks (IJCNN), Vancouver, BC, Canada, 24–29 July 2016; pp. 676–683. [Google Scholar]
- Yu, B.; Chen, F.; Li, B.; Wang, L.; Wu, M. Fire Risk Prediction Using Remote Sensed Products: A Case of Cambodia. Photogramm. Eng. Remote Sens. 2017, 83, 19–25. [Google Scholar] [CrossRef]
- Halgamuge, M.N.; Daminda, E.; Nirmalathas, A. Best Optimizer Selection for Predicting Bushfire Occurrences Using Deep Learning. Nat. Hazards 2020, 103, 845–860. [Google Scholar] [CrossRef]
- Lee, H.C. Aerial Photography, a Method for Fuel Type Mapping. J. For. 1941, 39, 531–533. [Google Scholar]
- Hyyppä, J.; Hyyppä, H.; Inkinen, M.; Engdahl, M.; Linko, S.; Zhu, Y.-H. Accuracy Comparison of Various Remote Sensing Data Sources in the Retrieval of Forest Stand Attributes. For. Ecol. Manag. 2000, 128, 109–120. [Google Scholar] [CrossRef]
- Mutlu, M.; Popescu, S.; Stripling, C.; Spencer, T. Mapping Surface Fuel Models Using Lidar and Multispectral Data Fusion for Fire Behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Saatchi, S.; Halligan, K.; Despain, D.G.; Crabtree, R.L. Estimation of Forest Fuel Load From Radar Remote Sensing. IEEE Trans. Geosci. Remote Sens. 2007, 45, 1726–1740. [Google Scholar] [CrossRef]
- Slavkovikj, V.; Verstockt, S.; Van Hoecke, S.; Van de Walle, R. Review of Wildfire Detection Using Social Media. Fire Saf. J. 2014, 68, 109–118. [Google Scholar] [CrossRef]
- Günay, O.; Taşdemir, K.; Uğur Töreyin, B.; Enis Çetin, A. Video Based Wildfire Detection at Night. Fire Saf. J. 2009, 44, 860–868. [Google Scholar] [CrossRef]
- Martinez-de Dios, J.R.; Arrue, B.C.; Ollero, A.; Merino, L.; Gómez-Rodríguez, F. Computer Vision Techniques for Forest Fire Perception. Image Vis. Comput. 2008, 26, 550–562. [Google Scholar] [CrossRef]
- Doolin, D.M.; Sitar, N. Wireless Sensors for Wildfire Monitoring. In Smart Structures and Materials 2005: Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems; Tomizuka, M., Ed.; SPIE: National Harbor, MA, USA, 2005; p. 477. [Google Scholar]
- Bar-Massada, A.; Hawbaker, T.J.; Stewart, S.I.; Radeloff, V.C. Combining Satellite-Based Fire Observations and Ground-Based Lightning Detections to Identify Lightning Fires Across the Conterminous USA. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2012, 5, 1438–1447. [Google Scholar] [CrossRef]
- Calle, A.; Casanova, J.L.; Romo, A. Fire Detection and Monitoring Using MSG Spinning Enhanced Visible and Infrared Imager (SEVIRI) Data. J. Geophys. Res. Biogeosci. 2006, 111, G04S06. [Google Scholar] [CrossRef]
- Sifakis, N.I.; Iossifidis, C.; Kontoes, C.; Keramitsoglou, I. Wildfire Detection and Tracking over Greece Using MSG-SEVIRI Satellite Data. Remote Sens. 2011, 3, 524–538. [Google Scholar] [CrossRef]
- Zhang, X.; Kondragunta, S. Temporal and Spatial Variability in Biomass Burned Areas across the USA Derived from the GOES Fire Product. Remote Sens. Environ. 2008, 112, 2886–2897. [Google Scholar] [CrossRef]
- Hyer, E.J.; Reid, J.S.; Prins, E.M.; Hoffman, J.P.; Schmidt, C.C.; Miettinen, J.I.; Giglio, L. Patterns of Fire Activity over Indonesia and Malaysia from Polar and Geostationary Satellite Observations. Atmos. Res. 2013, 122, 504–519. [Google Scholar] [CrossRef]
- Kim, G.; Kim, D.-S.; Park, K.-W.; Cho, J.; Han, K.-S.; Lee, Y.-W. Detecting Wildfires with the Korean Geostationary Meteorological Satellite. Remote Sens. Lett. 2014, 5, 19–26. [Google Scholar] [CrossRef]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An Enhanced Contextual Fire Detection Algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Stroppiana, D.; Pinnock, S.; Gregoire, J.-M. The Global Fire Product: Daily Fire Occurrence from April 1992 to December 1993 Derived from NOAA AVHRR Data. Int. J. Remote Sens. 2000, 21, 1279–1288. [Google Scholar] [CrossRef]
- Fukuhara, T.; Kouyama, T.; Kato, S.; Nakamura, R.; Takahashi, Y.; Akiyama, H. Detection of Small Wildfire by Thermal Infrared Camera with the Uncooled Microbolometer Array for 50-Kg Class Satellite. IEEE Trans. Geosci. Remote Sens. 2017, 55, 4314–4324. [Google Scholar] [CrossRef]
- Giglio, L.; Schroeder, W.; Justice, C.O. The Collection 6 MODIS Active Fire Detection Algorithm and Fire Products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef]
- Csiszar, I.A.; Morisette, J.T.; Giglio, L. Validation of Active Fire Detection from Moderate-Resolution Satellite Sensors: The MODIS Example in Northern Eurasia. IEEE Trans. Geosci. Remote Sens. 2006, 44, 1757–1764. [Google Scholar] [CrossRef]
- FLASSE, S.P.; CECCATO, P. A Contextual Algorithm for AVHRR Fire Detection. Int. J. Remote Sens. 1996, 17, 419–424. [Google Scholar] [CrossRef]
- Schroeder, W.; Oliva, P.; Giglio, L.; Csiszar, I.A. The New VIIRS 375 m Active Fire Detection Data Product: Algorithm Description and Initial Assessment. Remote Sens. Environ. 2014, 143, 85–96. [Google Scholar] [CrossRef]
- Polivka, T.N.; Wang, J.; Ellison, L.T.; Hyer, E.J.; Ichoku, C.M. Improving Nocturnal Fire Detection with the VIIRS Day–Night Band. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5503–5519. [Google Scholar] [CrossRef]
- Xu, W.; Wooster, M.J.; Roberts, G.; Freeborn, P. New GOES Imager Algorithms for Cloud and Active Fire Detection and Fire Radiative Power Assessment across North, South and Central America. Remote Sens. Environ. 2010, 114, 1876–1895. [Google Scholar] [CrossRef]
- Hally, B.; Wallace, L.; Reinke, K.; Jones, S.; Skidmore, A. Advances in Active Fire Detection Using a Multi-Temporal Method for next-Generation Geostationary Satellite Data. Int. J. Digit. Earth 2019, 12, 1030–1045. [Google Scholar] [CrossRef]
- Vani, K. Deep Learning Based Forest Fire Classification and Detection in Satellite Images. In Proceedings of the 2019 IEEE 11th International Conference on Advanced Computing (ICoAC), Chennai, India, 18–20 December 2019; pp. 61–65. [Google Scholar]
- Kumar, N.; Kumar, A. Australian Bushfire Detection Using Machine Learning and Neural Networks. In Proceedings of the 2020 IEEE 7th International Conference on Smart Structures and Systems (ICSSS), Chennai, India, 23–24 July 2020; pp. 1–7. [Google Scholar]
- Phan, T.C.; Nguyen, T.T.; Hoang, T.D.; Nguyen, Q.V.H.; Jo, J. Multi-Scale Bushfire Detection from Multi-Modal Streams of Remote Sensing Data. IEEE Access 2020, 8, 228496–228513. [Google Scholar] [CrossRef]
- Chen, S.; Bao, H.; Zeng, X.; Yang, Y. A Fire Detecting Method Based on Multi-Sensor Data Fusion. In Proceedings of the SMC’03 Conference Proceedings. 2003 IEEE International Conference on Systems, Man and Cybernetics. Conference Theme—System Security and Assurance (Cat. No.03CH37483), Washington, DC, USA, 5–8 October 2003; pp. 3775–3780. [Google Scholar]
- Hefeeda, M.; Bagheri, M. Forest Fire Modeling and Early Detection Using Wireless Sensor Networks. Ad Hoc Sens. Wirel. Netw. 2009, 7, 169–224. [Google Scholar]
- Zervas, E.; Mpimpoudis, A.; Anagnostopoulos, C.; Sekkas, O.; Hadjiefthymiades, S. Multisensor Data Fusion for Fire Detection. Inf. Fusion. 2011, 12, 150–159. [Google Scholar] [CrossRef]
- Díaz-Ramírez, A.; Tafoya, L.A.; Atempa, J.A.; Mejía-Alvarez, P. Wireless Sensor Networks and Fusion Information Methods for Forest Fire Detection. Procedia Technol. 2012, 3, 69–79. [Google Scholar] [CrossRef]
- Arrue, B.C.; Ollero, A.; Matinez de Dios, J.R. An Intelligent System for False Alarm Reduction in Infrared Forest-Fire Detection. IEEE Intell. Syst. 2000, 15, 64–73. [Google Scholar] [CrossRef]
- Yu, L.; Wang, N.; Meng, X. Real-Time Forest Fire Detection with Wireless Sensor Networks. In Proceedings of the 2005 IEEE International Conference on Wireless Communications, Networking and Mobile Computing, Wuhan, China, 23–26 September 2005; pp. 1214–1217. [Google Scholar]
- Yuan, C.; Zhang, Y.; Liu, Z. A Survey on Technologies for Automatic Forest Fire Monitoring, Detection, and Fighting Using Unmanned Aerial Vehicles and Remote Sensing Techniques. Can. J. For. Res. 2015, 45, 783–792. [Google Scholar] [CrossRef]
- Sieberth, T.; Wackrow, R.; Chandler, J.H. UAV Image Blur—Its influence and ways to correct it. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-1/W4, 33–39. [Google Scholar] [CrossRef]
- Goyal, S.; Shagill, M.; Dhillon, A.; Vohra, H.; Singh, A. A YOLO Based Technique for Early Forest Fire Detection. Int. J. Innov. Technol. Explor. Eng. 2020, 9, 1357–1362. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, Y.; Xin, J.; Mu, L.; Yi, Y.; Liu, H.; Liu, D. A Deep Learning Based Forest Fire Detection Approach Using UAV and YOLOv3. In Proceedings of the 2019 IEEE 1st International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 23–27 July 2019; pp. 1–5. [Google Scholar]
- Yuan, C.; Ghamry, K.A.; Liu, Z.; Zhang, Y. Unmanned Aerial Vehicle Based Forest Fire Monitoring and Detection Using Image Processing Technique. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation and Control Conference (CGNCC), Nanjing, China, 12–14 August 2016; pp. 1870–1875. [Google Scholar]
- Sun, H.; Song, G.; Wei, Z.; Zhang, Y.; Liu, S. Bilateral Teleoperation of an Unmanned Aerial Vehicle for Forest Fire Detection. In Proceedings of the 2017 IEEE International Conference on Information and Automation (ICIA), Macau, China, 18–20 July 2017; pp. 586–591. [Google Scholar]
- Merino, L.; Caballero, F.; Martínez-de-Dios, J.R.; Maza, I.; Ollero, A. An Unmanned Aircraft System for Automatic Forest Fire Monitoring and Measurement. J. Intell. Robot. Syst. 2012, 65, 533–548. [Google Scholar] [CrossRef]
- Krüll, W.; Tobera, R.; Willms, I.; Essen, H.; von Wahl, N. Early Forest Fire Detection and Verification Using Optical Smoke, Gas and Microwave Sensors. Procedia Eng. 2012, 45, 584–594. [Google Scholar] [CrossRef]
- Casbeer, D.W.; Li, S.-M.; Beard, R.W.; Mehra, R.K.; McLain, T.W. Forest Fire Monitoring with Multiple Small UAVs. In Proceedings of the 2005 IEEE American Control Conference, Portland, Oregon, 8–10 June 2005; pp. 3530–3535. [Google Scholar]
- Merino, L.; Caballero, F.; de Dios, J.R.M.; Maza, I.; Ollero, A. Automatic Forest Fire Monitoring and Measurement Using Unmanned Aerial Vehicles. In Proceedings of the 6th International Congress on Forest Fire Research, Luso, Portugal, 16–20 November 2010. [Google Scholar]
- Pan, H.; Badawi, D.; Cetin, A.E. Computationally Efficient Wildfire Detection Method Using a Deep Convolutional Network Pruned via Fourier Analysis. Sensors 2020, 20, 2891. [Google Scholar] [CrossRef]
- Yadav, R. Deep Learning Based Fire Recognition for Wildfire Drone Automation. Can. Sci. Fair J. 2020, 3, 1–8. [Google Scholar]
- Pastor, E.; Lopez, J.; Royo, P. UAV Payload and Mission Control Hardware/Software Architecture. IEEE Aerosp. Electron. Syst. Mag. 2007, 22, 3–8. [Google Scholar] [CrossRef]
- Collins, K.M.; Price, O.F.; Penman, T.D. Suppression Resource Decisions Are the Dominant Influence on Containment of Australian Forest and Grass Fires. J. Environ. Manag. 2018, 228, 373–382. [Google Scholar] [CrossRef]
- Cheney, P.; Sullivan, A. Grassfires; CSIRO Publishing: Canberra, Australia, 2008; ISBN 9780643096493. [Google Scholar]
- Plucinski, M.P. Factors Affecting Containment Area and Time of Australian Forest Fires Featuring Aerial Suppression. For. Sci. 2012, 58, 390–398. [Google Scholar] [CrossRef]
- Plucinski, M.P.; McCarthy, G.J.; Hollis, J.J.; Gould, J.S. The Effect of Aerial Suppression on the Containment Time of Australian Wildfires Estimated by Fire Management Personnel. Int. J. Wildland Fire 2012, 21, 219. [Google Scholar] [CrossRef]
- Reisen, F.; Brown, S.K. Australian Firefighters’ Exposure to Air Toxics during Bushfire Burns of Autumn 2005 and 2006. Environ. Int. 2009, 35, 342–352. [Google Scholar] [CrossRef]
- Adams, R.; Simmons, D. Ecological Effects of Fire Fighting Foams and Retardants: A Summary. Aust. For. 1999, 62, 307–314. [Google Scholar] [CrossRef]
- Cumming, S.G. Effective Fire Suppression in Boreal Forests. Can. J. For. Res. 2005, 35, 772–786. [Google Scholar] [CrossRef]
- Mees, R.; Strauss, D.; Chase, R. Minimizing the Cost of Wildland Fire Suppression: A Model with Uncertainty in Predicted Flame Length and Fire-Line Width Produced. Can. J. For. Res. 1994, 24, 1253–1259. [Google Scholar] [CrossRef]
- Holmes, T.P.; Calkin, D.E. Econometric Analysis of Fire Suppression Production Functions for Large Wildland Fires. Int. J. Wildland Fire 2013, 22, 246. [Google Scholar] [CrossRef]
- Bandara, S.; Rajeev, P.; Gad, E.; Sriskantharajah, B.; Flatley, I. Structural Health Assessment of Timber Utility Poles Using Stress Wave Propagation and Artificial Neural Network Techniques. J. Nondestr. Eval. 2021, 40, 87. [Google Scholar] [CrossRef]
- Handmer, J.; Haynes, K. (Eds.) Community Bushfire Safety; CSIRO Publishing: Canberra, Australia, 2008; ISBN 9780643095618. [Google Scholar]
Study | Category | Content, Methods and Analysis Techniques |
---|---|---|
[79] | Mapping fire occurrence probability | Developed a fire occurrence probability spatial distribution model for Northeast China using binary logistic regression |
[11] | Modelling and mapping bushfire risk | Estimated the likelihood of fire occurrence in Portugal via logistic regression models |
[25] | Mapping bushfire risk zones | Identification of bushfire risk zones integrating GIS and remote sensing satellite data. Study region in Madya Pradesh, India |
[81] | Mapping bushfire hazard | Produced bushfire hazard maps for the Mediterranean environment by incorporating data from GIS and digitally processed Thematic Mapper |
[82] | Mapping fuel types | Developed fuel maps for Madrid, Spain, using high-spatial-resolution QuickBird satellite imagery by employing object-oriented classification |
[83] | Characterising fuel types | Classified fuel types for a study area in South Italy using high-spatial- and -spectral-resolution satellite imagery |
[84] | Determining fuel moisture content | Developed an empirical methodology to determine fuel moisture content by employing statistical fitting of the satellite remote sensing data and field-measured moisture content for Mediterranean grasslands and shrub species |
[85] | Predicting bushfire extent | Developed a regression model to predict the extent of bushfires using remotely sensed soil moisture and surface temperature. Study area in the Iberian Peninsula in northwestern Spain |
[86] | Modelling bushfire occurrence probability | Investigated the effect of prefire spectral indices on the prediction capability of fire occurrence by conducting a logistic regression analysis using multitemporal Landsat data |
[87] | Assessing bushfire danger conditions | Assessed the effect of satellite-based indices in forecasting the fire danger in Boreal Forest regions of Alberta, Canada |
[88] | Predicting bushfire danger conditions | Developed a forest fire danger forecast system for Alberta, Canada, using MODIS-derived data. A gap-filling technique was implemented in this study to eliminate the gaps in input variables |
[89] | Fuel-type mapping and fire behaviour simulation | High-resolution satellite imagery was used in performing fuel-type mapping, and a site-specific fuel model was developed for the Mediterranean area. CART statistical modelling was employed to categorise the images |
[90] | Mapping bushfire susceptibility | A GIS-based kernel logistic regression model was developed to predict bushfire susceptibility of the Cat Ba National Park area in Vietnam |
[92] | Forecasting bushfire spatial distribution | Developed ANN models to forecast the spatial distribution of bushfire risk in the Brazilian Amazon using MODIS imagery |
[93] | Modelling bushfire danger | Developed ANN and logistic regression models to obtain a fire danger model for the Galicia region of Northwest Spain using MODIS data |
[94] | Predicting bushfire size | Trained ANN models by employing particle swarm optimisation instead of backpropagation to predict the bushfire size in Montesinho Natural Park in Portugal |
[95] | Predicting bushfire risk | Developed random forest models to predict the bushfire risk using remotely sensed data for a study area in Cambodia |
[96] | Predicting bushfire occurrences | Explored the possibility of using deep learning techniques for predicting bushfire occurrences using actual weather data for a considered location |
[23] | Predicting bushfire severity | Investigated the use of remote sensing and meteorological data fusion in predicting bushfire severity for a study area in Australia. Random forest, fuzzy forest, extreme gradient boosting and boosted regressing tree machine learning models were employed. |
[80] | Improving fire behaviour models | Developed a model using airborne LIDAR data to automatically extract critical forest information to improve the fire behaviour models. A cluster analysis was employed to differentiate crown base height and to determine trees and understory canopy heights |
[99] | Generating and assessing fuel maps | Assessed fuel models using LIDAR and multispectral remote sensing. Principal component analysis and minimum noise fraction techniques were explored for the data fusion of LIDAR and QuickBird imagery |
[100] | Estimating forest biomass and canopy fuel loads | Developed semi-empirical algorithms to predict forest biomass and canopy fuel loads using SAR remote sensing data. Study region in Yellowstone National Park in the United States |
Study | Satellite, Sensors and Data | Content, Analysis Techniques and Remarks |
---|---|---|
[114] | TERRA and AQUA satellites, MODIS | Proposed improvements to the MODIS fire detection algorithms by integrating a radiance-based approach |
[115] | MODIS, ASTER | Investigated the validation of MODIS active fire products in Siberia. Spatial patterns of flaming were characterised at the pixel level using ASTER imagery, and a cluster-based analysis was proposed. |
[111] | MODIS, ASTER | Presented an enhanced a contextual fire detection algorithm for MODIS, and the improved algorithm was found to be more sensitive to smaller, cooler fires while significantly reducing false alarms |
[105] | MODIS, ground-based lightning detections | Detected lightning-caused bushfires in the USA by combining satellite-based fire observations (MODIS data) and ground-based lightning detections |
[32] | Landsat, operational land imager | Developed an active fire detection algorithm based on Landsat operational land imager data. The introduction of multitemporal analysis tests resulted in a substantial reduction in commission errors. |
[116] | NOAA-AVHRR | Developed a contextual algorithm for AVHRR data-based automatic fire detection. Commission errors were present because of clouds and cooler backgrounds that were not uniformly distributed around a hot area. |
[117] | VIIRS, MODIS fire product | Developed an active fire detection algorithm utilising thermal infrared imagery data to identify daytime and nighttime burnings as well as other thermal anomalies |
[118] | VIIRS, ASTER | Explored the use of VIIRS data to develop a fire detection algorithm that detects gas flares and biomass burning at night |
[26] | Himawari-8 geostationary satellite, infrared imagery | Investigated the utilisation of infrared imagery acquired from the Himawari-8 satellite for the development of a real-time bushfire detection algorithm. The developed technique was sensitive to small bushfires and remained robust in the presence of smoke and thin clouds. |
[119] | GOES, SEVIRI | Employed GOES imagery to detect active fires and assess fire radiative power for the study region of North, South and Central America |
[120] | Himawari satellite | Proposed a multitemporal technique for diurnal temperature fitting from Himawari imagery. Established a method for determining both the timing and likelihood of thermal anomalies. |
[121] | TERRA and AQUA satellites, MODIS | Investigated the use of convolution neural network-based transfer learning to classify satellite imagery into fire and nonfire classes |
[122] | LANCE FIRMS | Explored K-nearest neighbour and artificial neural network (ANN) algorithms to classify active bushfires in Australia |
[123] | GOES, weather data | Developed a multiscale deep neural network model to detect and locate bushfires from satellite imagery integrated with weather data |
Study | Sensors Collected Data | Content, Analysis Techniques and Remarks |
---|---|---|
[124] | Surrounding temperature, smoke density and carbon monoxide (CO) density | Designed a fire detection system based on multisensor data fusion. Data-fitting characteristics and fire-experience characteristics were extracted and fused via the fuzzy inference system to obtain the final fire probability. |
[125] | Fine fuel moisture code and Fire Weather Index | Formulated the bushfire detection problem as a node k-coverage problem within wireless sensor networks. |
[126] | Infield sensors (collected temperature and humidity measurements), outfield sensors (vision sensors) | Proposed a fire detection methodology based on multisensor data fusion. Information from nearby sensor nodes was analysed by comparing it to identify changes in the underlying data distribution to identify fires and generate fire alarms. |
[127] | Light, humidity and temperature sensors | Developed bushfire detection algorithms that relied on information fusion techniques, leveraging data collected from wireless sensor networks. Adopted Dempster–Shafer theory and threshold-based approaches. |
[104] | Environmental sensors (recorded relative humidity, temperature and barometric pressure), GPS locations | Designed a bushfire detection system integrating wireless sensor data and field-testing results to detect flame front before it could escalate into a widespread fire |
[128] | Visual infrared images, meteorological and geographic data | Developed a bushfire detection algorithm that reduced false alarm rates by employing ANN models to perform the analysis, aiming to derive a probability score indicating the likelihood of a bushfire triggering an alarm |
[129] | Field sensors (collected relative humidity, wind speed, smoke and temperature data) | Employed ANN models to process the data gathered from wireless sensor networks for bushfire detection. The developed model operated on a large volume of raw data, effectively extracting valuable information for decision-making. |
[30] | Temperature and humidity data | Developed a machine learning-based approach to detect bushfires using sensor measurements of environmental parameters. Utilised classification and regression trees (CARTs), random forest (RF) and support vectormachine algorithms. |
Study | Sensors | Content, Analysis Techniques, Remarks |
---|---|---|
[134] | Visual camera | Developed a bushfire detection and monitoring technique by leveraging visual sensors mounted on UAVs. This approach capitalised on both colour and motion features to augment the algorithm’s performance and reduce false alarms. |
[135] | Optical flow sensors | Developed a bilateral aerial teleoperation system for detecting and monitoring bushfires. Velocity synchronisation was proposed to achieve motion tracking of the master and slave UAVs, while a modified wave variable method was employed to address time-varying delays. |
[136] | Visual and infrared cameras | Proposed an automatic fire detection methodology integrating the information from a fleet of UAVs. The improved endurance of UAVs and their enhanced resilience to smoke effects bolstered the detection capabilities of that technique |
[137] | Smoke detector, microwave radiometer and gas sensors | Developed an early bushfire detection system employing UAVs equipped with smoke detectors, gas sensors and thermal cameras to detect hotspots |
[138] | Infrared camera | Introduced an efficient UAV path-planning algorithm that leveraged real-time infrared image data collected onboard multiple small UAVs for the purpose of monitoring forest fires. Challenges of refuelling and accommodating irregular and growing fire shapes need to be addressed. |
[139] | Visual and infrared cameras | Developed a perception system for bushfire monitoring which involved a fleet of UAVs. That system integrated information to estimate the real-time evolution of bushfires. |
[140] | Surveillance camera | Introduced a block-based bushfire detection method using deep neural network models, which utilised transfer learning to enhance the detection rates |
[132] | Humidity sensor, barometer, global positioning sensor and compass | Developed an automated early-warning system for bushfires by harnessing multiple sensor data collected from UAVs and employing deep learning and YOLO algorithms |
[133] | Visible or infrared camera | Developed a deep learning-based bushfire detection approach using UAV imagery. Leveraging the existing computational resources onboard, a convolutional neural network was implemented using YOLOv3. |
[141] | Infrared camera, GPS | Developed a video-based fire detection system by utilising deep learning approaches. The developed model demonstrated a high average precision and fast inference speed, enabling real-time fire detection. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bandara, S.; Navaratnam, S.; Rajeev, P. Bushfire Management Strategies: Current Practice, Technological Advancement and Challenges. Fire 2023, 6, 421. https://doi.org/10.3390/fire6110421
Bandara S, Navaratnam S, Rajeev P. Bushfire Management Strategies: Current Practice, Technological Advancement and Challenges. Fire. 2023; 6(11):421. https://doi.org/10.3390/fire6110421
Chicago/Turabian StyleBandara, Sahan, Satheeskumar Navaratnam, and Pathmanathan Rajeev. 2023. "Bushfire Management Strategies: Current Practice, Technological Advancement and Challenges" Fire 6, no. 11: 421. https://doi.org/10.3390/fire6110421
APA StyleBandara, S., Navaratnam, S., & Rajeev, P. (2023). Bushfire Management Strategies: Current Practice, Technological Advancement and Challenges. Fire, 6(11), 421. https://doi.org/10.3390/fire6110421