Fire Regimes of Utah: The Past as Prologue
Abstract
:1. Introduction
- Establish a 30-year baseline of average fire activity for Utah overall and for each principal vegetation type, considering the number, the area, and the severity of fires ≥ 40 ha.
- Identify differences in satellite-derived burn severity between medium-sized (40 ha ≤ area < 400 ha) and large (area ≥ 400 ha) fires.
2. Materials and Methods
2.1. Study Area
2.2. Classifying Vegetation
2.3. Identification of Fire Perimeters
Vegetation Category | Typical Species | Area Burned 1984–2022 (ha) | Area Burned 1984–2022 (%) | Total Area (ha) | Total Area (%) | # of Fires Burned |
---|---|---|---|---|---|---|
Alpine | Herbs and graminoids | 13,779 | 0.6 | 72,359 | 0.3 | 605 (40%) |
Agriculture | Herbs and graminoids | 31,957 | 1.3 | 927,014 | 4.2 | 793 (53%) |
Annual grassland | Bromus tectorum graminoids | 205,165 | 8.9 | 389,816 | 1.8 | 1254 (84%) |
Aspen | Populus tremuloides Abies bifolia | 63,902 | 2.8 | 777,045 | 3.5 | 475 (32%) |
Chaparral | Arctostaphylos spp. Ceanothus spp. | 17,879 | 0.8 | 47,969 | 0.2 | 577 (39%) |
Developed | - | 22,355 | 0.9 | 410,262 | 1.9 | 765 (51%) |
Douglas-fir | Pseudotsuga menziesii Acer grandidentatum | 64,029 | 2.8 | 445,029 | 2.0 | 556 (37%) |
Five-needle pine | Pinus flexilis Pinus longaeva | 20,855 | 0.9 | 143,649 | 0.6 | 353 (23%) |
Lodgepole | Pinus contorta Pseudotsuga menziesii | 9791 | 0.4 | 126,803 | 0.6 | 44 (2%) |
Mountain Mahogany | Cercocarpus ledifolius Juniperus spp. | 14,549 | 0.6 | 87,451 | 0.4 | 498 (33%) |
Pinon-Juniper | Pinus monophyla Juniperus osteosperma | 249,141 | 10.9 | 3,926,194 | 18.0 | 1234 (83%) |
Perennial grassland | Elymus elymoides Agropyron cristatum | 125,463 | 5.4 | 341,010 | 1.5 | 1325 (89%) |
Ponderosa Pine | Pinus ponderosa | 23,197 | 1.0 | 214,773 | 1.0 | 315 (21%) |
Riparian | Juncus spp. Salix spp. | 4938 | 0.2 | 95,369 | 0.4 | 498 (33%) |
Riparian-hardwood | Populus trichocarpa Salix spp. | 7102 | 0.3 | 146,511 | 0.7 | 681 (46%) |
Sagebrush | Artemisia spp. | 776,510 | 34.0 | 4,318,832 | 19.7 | 1422 (96%) |
Shrubland | Sarcobatus spp. Ericameria nauseosa | 371,556 | 16.2 | 4,535,391 | 20.7 | 1296 (87%) |
Snow | - | - | - | 68 | 0.0 | - |
Sparse | Chenopodiaceae spp. | 27,989 | 1.2 | 3,020,926 | 13.8 | 927 (62%) |
Spruce-fir | Abies bifolia Picea engelmannii | 46,055 | 2.0 | 438,129 | 1.9 | 289 (19%) |
Water | - | - | - | 635,871 | 2.9 | - |
WUI Shrub | Prunus virginiana | 22,857 | 1.0 | 224,830 | 1.0 | 857 (58%) |
WUI Woodland | Acer grandidentatum Quercus gambelii | 149,082 | 6.5 | 599,930 | 2.7 | 900 (60%) |
Total 1 | - | 2,268,151 | 100 | 21,925,231 | 100 | 1477 |
2.4. Image Acquisition and Calculation of Remotely Sensed Fire Severity
2.5. Analyses of Differences in Fire Regimes
3. Results
3.1. Wildfire Frequency, Area Burned, and Severity
Year | 40 ha ≤ Area < 400 ha | Area ≥ 400 ha | Total ≥ 40 ha | |||
---|---|---|---|---|---|---|
# of Fires | Area Burned (ha) | # of Fires | Area Burned (ha) | # of Fires | Area Burned (ha) | |
1984 | 3 | 634 | 1 | 3956 | 4 | 4590 |
1985 | 8 | 1308 | 11 | 12,013 | 19 | 13,321 |
1986 | 11 | 1588 | 21 | 47,044 | 32 | 48,632 |
1987 | 7 | 792 | 14 | 23,669 | 21 | 24,461 |
1988 | 9 | 1182 | 14 | 24,398 | 23 | 25,580 |
1989 | 5 | 919 | 13 | 19,805 | 18 | 20,724 |
1990 | 7 | 1148 | 6 | 8483 | 13 | 9631 |
1991 | 2 | 313 | 3 | 2168 | 5 | 2481 |
1992 | 10 | 1485 | 8 | 9450 | 18 | 10,935 |
1993 | 18 | 1415 | 7 | 7008 | 25 | 8423 |
1994 | 24 | 3504 | 34 | 84,934 | 58 | 88,438 |
1995 | 18 | 2894 | 27 | 71,860 | 45 | 74,754 |
1996 | 27 | 4221 | 38 | 193,612 | 65 | 197,833 |
1997 | 13 | 1982 | 7 | 6322 | 20 | 8304 |
1998 | 7 | 963 | 17 | 42,199 | 24 | 43,162 |
1999 | 23 | 3015 | 30 | 51,798 | 53 | 54,813 |
2000 | 27 | 4336 | 32 | 98,364 | 59 | 102,700 |
2001 | 23 | 3709 | 23 | 46,957 | 46 | 50,666 |
2002 | 19 | 2982 | 27 | 109,045 | 46 | 112,027 |
2003 | 22 | 3152 | 14 | 40,412 | 36 | 43,564 |
2004 | 19 | 2921 | 14 | 33,653 | 33 | 36,574 |
2005 | 40 | 6138 | 31 | 99,176 | 71 | 105,314 |
2006 | 62 | 8906 | 47 | 125,040 | 109 | 133,946 |
2007 | 36 | 4527 | 35 | 234,207 | 71 | 238,734 |
2008 | 31 | 5276 | 7 | 6623 | 38 | 11,899 |
2009 | 18 | 2705 | 16 | 41,185 | 34 | 43,890 |
2010 | 11 | 1582 | 6 | 21,263 | 17 | 22,845 |
2011 | 24 | 2663 | 11 | 18,179 | 35 | 20,842 |
2012 | 10 | 1412 | 37 | 163,087 | 47 | 164,499 |
2013 | 16 | 2413 | 11 | 33,598 | 27 | 36,011 |
2014 | 17 | 2334 | 8 | 8019 | 25 | 10,353 |
2015 | 15 | 1868 | 2 | 1680 | 17 | 3548 |
2016 | 27 | 3433 | 24 | 37,450 | 51 | 40,883 |
2017 | 46 | 6676 | 24 | 89,946 | 70 | 96,622 |
2018 | 36 | 4984 | 23 | 132,567 | 59 | 137,551 |
2019 | 18 | 2456 | 23 | 37,810 | 41 | 40,266 |
2020 | 39 | 5642 | 23 | 94,326 | 62 | 99,968 |
2021 | 20 | 2777 | 8 | 21,652 | 28 | 24,429 |
2022 | 7 | 638 | 5 1 | 9493 1 | 12 | 10,131 1 |
Total | 775 | 110,893 | 703 | 2,122,451 | 1477 | 2,223,344 |
3.2. Fire Severity and Area Burned by Vegetation Type
Year | Annual Grassland | Perennial Grassland | Sagebrush | Shrubland | Sparse | Riparian | Riparian Hardwood | Chaparral | WUI Shrub | WUI Woodland |
---|---|---|---|---|---|---|---|---|---|---|
1984 | 1384 | 383 | 1109 | 1593 | 6 | 0 | 1 | 1 | 3 | 5 |
1985 | 3356 | 645 | 3374 | 5143 | 29 | 25 | 48 | 25 | 38 | 74 |
1986 | 10,412 | 2226 | 16,999 | 13,263 | 826 | 44 | 67 | 25 | 173 | 933 |
1987 | 7818 | 1862 | 5938 | 6355 | 67 | 5 | 11 | 13 | 61 | 1575 |
1988 | 3216 | 1309 | 10,758 | 2632 | 105 | 35 | 301 | 5 | 529 | 3120 |
1989 | 698 | 591 | 4061 | 699 | 1554 | 33 | 44 | 26 | 507 | 1850 |
1990 | 119 | 229 | 3331 | 127 | 389 | 3 | 40 | 14 | 166 | 2327 |
1991 | 53 | 185 | 1460 | 351 | 9 | 0 | 0 | 11 | 98 | 116 |
1992 | 438 | 729 | 4997 | 1431 | 47 | 6 | 25 | 121 | 109 | 1379 |
1993 | 412 | 242 | 3716 | 2467 | 86 | 0 | 0 | 129 | 21 | 54 |
1994 | 15,143 | 7310 | 36,360 | 15,537 | 475 | 116 | 157 | 182 | 1579 | 3628 |
1995 | 9545 | 5839 | 30,624 | 21,558 | 440 | 13 | 62 | 709 | 262 | 1872 |
1996 | 16,436 | 12,630 | 10,4226 | 21,209 | 1172 | 115 | 253 | 685 | 1560 | 12,477 |
1997 | 304 | 210 | 2445 | 1175 | 119 | 10 | 266 | 112 | 61 | 1062 |
1998 | 14,979 | 876 | 10,760 | 14,096 | 139 | 50 | 72 | 641 | 112 | 80 |
1999 | 3538 | 2593 | 31,631 | 6901 | 170 | 35 | 177 | 305 | 401 | 2728 |
2000 | 8914 | 6576 | 53,564 | 13,001 | 986 | 49 | 177 | 450 | 794 | 6135 |
2001 | 4957 | 5967 | 16,557 | 6765 | 368 | 55 | 166 | 120 | 439 | 5216 |
2002 | 1575 | 3262 | 26,828 | 2979 | 3514 | 385 | 792 | 108 | 2755 | 12,462 |
2003 | 1017 | 1668 | 9500 | 9947 | 701 | 336 | 134 | 1747 | 515 | 8429 |
2004 | 1218 | 696 | 5884 | 3882 | 146 | 428 | 426 | 1789 | 310 | 9423 |
2005 | 10,744 | 2689 | 24,729 | 47,609 | 356 | 133 | 124 | 3045 | 395 | 1244 |
2006 | 9608 | 3700 | 40,593 | 39,694 | 1852 | 113 | 287 | 3749 | 1385 | 6006 |
2007 | 28,943 | 11,111 | 99,928 | 54,655 | 2942 | 167 | 695 | 457 | 2385 | 12,512 |
2008 | 168 | 355 | 2800 | 841 | 150 | 77 | 129 | 26 | 238 | 1278 |
2009 | 1713 | 1878 | 16,771 | 4790 | 198 | 22 | 90 | 151 | 508 | 4347 |
2010 | 255 | 954 | 4834 | 423 | 215 | 8 | 35 | 22 | 239 | 2321 |
2011 | 3116 | 1591 | 10,262 | 4481 | 79 | 3 | 17 | 80 | 116 | 108 |
2012 | 9646 | 10,674 | 75,095 | 20,605 | 1535 | 95 | 270 | 1653 | 2996 | 12,886 |
2013 | 1330 | 3664 | 20,267 | 1594 | 168 | 35 | 55 | 228 | 892 | 1216 |
2014 | 977 | 876 | 4640 | 1468 | 61 | 75 | 31 | 51 | 68 | 1023 |
2015 | 115 | 766 | 538 | 38 | 39 | 1 | 5 | 1 | 60 | 467 |
2016 | 5458 | 15,594 | 6644 | 2015 | 299 | 104 | 54 | 70 | 317 | 1493 |
2017 | 12,735 | 4672 | 27,014 | 15,959 | 504 | 681 | 564 | 141 | 376 | 1313 |
2018 | 2042 | 5826 | 18,784 | 3181 | 2140 | 171 | 637 | 405 | 1270 | 21,860 |
2019 | 2570 | 1513 | 16,441 | 3901 | 306 | 472 | 252 | 184 | 256 | 1938 |
2020 | 9134 | 2943 | 16,752 | 17,377 | 5223 | 575 | 482 | 515 | 321 | 2567 |
2021 | 1050 | 613 | 6067 | 1688 | 538 | 450 | 149 | 58 | 533 | 1511 |
2022 | 30 | 16 | 229 | 127 | 39 | 14 | 8 | 21 | 7 | 43 |
Total | 205,166 | 125,463 | 776,510 | 371,557 | 27,992 | 4939 | 7103 | 18,075 | 22,855 | 149,078 |
Year | Pinon-Juniper | Ponderosa | Douglas-Fir | Aspen | Mountain Mahogany | Lodgepole | Spruce-Fir | Five-Needle Pine | Alpine |
---|---|---|---|---|---|---|---|---|---|
1984 | 0 | 30 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1985 | 4 | 11 | 40 | 10 | 41 | 0 | 1 | 4 | 30 |
1986 | 38 | 101 | 39 | 9 | 175 | 1 | 2 | 38 | 39 |
1987 | 25 | 20 | 28 | 54 | 24 | 0 | 1 | 25 | 24 |
1988 | 174 | 196 | 262 | 455 | 114 | 20 | 98 | 174 | 99 |
1989 | 304 | 734 | 1450 | 802 | 126 | 224 | 896 | 304 | 180 |
1990 | 38 | 17 | 625 | 187 | 62 | 0 | 22 | 38 | 90 |
1991 | 5 | 20 | 5 | 1 | 3 | 0 | 0 | 5 | 1 |
1992 | 295 | 1 | 67 | 248 | 159 | 0 | 8 | 295 | 228 |
1993 | 36 | 73 | 139 | 224 | 16 | 0 | 126 | 36 | 25 |
1994 | 506 | 928 | 712 | 1091 | 737 | 69 | 108 | 506 | 416 |
1995 | 61 | 13 | 15 | 45 | 26 | 0 | 7 | 61 | 21 |
1996 | 358 | 705 | 923 | 1268 | 1059 | 0 | 282 | 358 | 336 |
1997 | 18 | 344 | 163 | 23 | 80 | 1 | 2 | 18 | 21 |
1998 | 0 | 1 | 0 | 0 | 7 | 0 | 0 | 0 | 76 |
1999 | 189 | 458 | 225 | 231 | 74 | 41 | 17 | 189 | 127 |
2000 | 180 | 39 | 859 | 574 | 944 | 20 | 70 | 180 | 402 |
2001 | 304 | 583 | 1084 | 945 | 401 | 28 | 104 | 304 | 104 |
2002 | 4622 | 2609 | 9030 | 5832 | 1102 | 696 | 3378 | 4622 | 2089 |
2003 | 475 | 635 | 921 | 743 | 120 | 70 | 212 | 475 | 200 |
2004 | 53 | 260 | 730 | 613 | 118 | 0 | 78 | 53 | 166 |
2005 | 253 | 317 | 299 | 601 | 131 | 626 | 301 | 253 | 71 |
2006 | 151 | 565 | 656 | 254 | 377 | 12 | 78 | 151 | 181 |
2007 | 622 | 1474 | 1332 | 2482 | 1028 | 750 | 1031 | 622 | 1153 |
2008 | 136 | 1668 | 1383 | 405 | 93 | 0 | 72 | 136 | 89 |
2009 | 317 | 2004 | 1767 | 874 | 584 | 0 | 217 | 317 | 346 |
2010 | 1712 | 647 | 3896 | 1536 | 950 | 0 | 851 | 1712 | 367 |
2011 | 0 | 44 | 5 | 0 | 62 | 0 | 0 | 0 | 11 |
2012 | 1344 | 802 | 3999 | 5151 | 1803 | 13 | 1210 | 1344 | 1621 |
2013 | 447 | 258 | 583 | 208 | 475 | 5 | 51 | 447 | 1753 |
2014 | 31 | 2 | 41 | 39 | 11 | 0 | 12 | 31 | 189 |
2015 | 16 | 753 | 139 | 58 | 52 | 0 | 8 | 16 | 87 |
2016 | 383 | 169 | 929 | 1999 | 172 | 242 | 1381 | 383 | 1509 |
2017 | 1773 | 2234 | 7597 | 10,211 | 797 | 1 | 4282 | 1773 | 240 |
2018 | 3064 | 1640 | 17,598 | 18,257 | 2053 | 878 | 8421 | 3064 | 762 |
2019 | 542 | 1779 | 2405 | 2081 | 205 | 96 | 1606 | 542 | 73 |
2020 | 2255 | 442 | 2458 | 4301 | 218 | 5998 | 19,889 | 2255 | 601 |
2021 | 121 | 624 | 1610 | 2090 | 148 | 0 | 1232 | 121 | 54 |
2022 | 2 | 0 | 0 | 0 | 1 | 0 | 0 | 2 | 0 |
Total | 20,854 | 23,200 | 64,014 | 63,902 | 14,548 | 9791 | 46,054 | 20,854 | 13,781 |
4. Discussion
4.1. Large Fires Have More Variable Burn Severities Than Medium-Sized Fires
4.2. Variation in Area Burned and Severity across Vegetation Types
4.3. Wildfires in the WUI
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stephens, S.L.; Martin, R.E.; Clinton, N.E. Prehistoric fire area and emissions from California’s forests, woodlands, scrublands, and grasslands. For. Ecol. Manag. 2007, 251, 205–216. [Google Scholar] [CrossRef]
- Stephens, S.L.; Burrows, N.; Buyantuyev, A.; Gray, R.W.; Keane, R.E.; Kubian, R.; Liu, S.; Seijo, F.; Tolhurst, K.G.; van Wagtendonk, J.W. Temperate and boreal forest mega-fires: Characteristics and challenges. Front. Ecol. Environ. 2014, 12, 115–122. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Larson, A.J.; Jeronimo, S.M.A.; Hessburg, P.F.; Povak, N.A.; Cansler, C.A.; Kane, V.R.; Churchill, D.J. Tamm Review: Ecological principles to guide post-fire forest landscape management in the Inland Pacific and Northern Rocky Mountain Regions. For. Ecol. Manag. 2022, 504, 119680. [Google Scholar] [CrossRef]
- Thode, A.E.; van Wagtendonk, J.W.; Miller, J.D.; Quinn, J.F. Quantifying the fire regime distributions for severity in Yosemite National Park, California, USA. Int. J. Wildland Fire 2011, 20, 223–239. [Google Scholar] [CrossRef]
- Lutz, J.A.; Key, C.H.; Kolden, C.A.; Kane, J.T.; van Wagtendonk, J.W. Fire frequency, area burned, and severity: A quantitative approach to defining a normal fire year. Fire Ecol. 2011, 7, 51–65. [Google Scholar] [CrossRef]
- van Wagtendonk, J.W.; Moore, P.E.; Yee, J.L.; Lutz, J.A. The distribution of woody species in relation to climate and fire in Yosemite National Park, California, USA. Fire Ecol. 2020, 16, 22. [Google Scholar] [CrossRef]
- Picotte, J.J.; Cansler, C.A.; Kolden, C.A.; Lutz, J.A.; Key, C.; Benson, N.C.; Robertson, K.M. Determination of burn severity models ranging from regional to continental scales for the conterminous United States. Remote Sens. Environ. 2021, 263, 112569. [Google Scholar] [CrossRef]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Smith, A.M.S.; Kolden, C.A.; Paveglio, T.B.; Cochrane, M.A.; Bowman, D.; Moritz, M.A.; Kliskey, A.D.; Alessa, L.; Hudak, A.T.; Hoffman, C.M.; et al. The science of firescapes: Achieving fire resilient communities. BioScience 2016, 66, 130–146. [Google Scholar] [CrossRef] [PubMed]
- Furniss, T.J.; Kane, V.R.; Larson, A.J.; Lutz, J.A. Detecting actual tree mortality with satellite-derived spectral indices and estimating landscape-level uncertainty. Remote Sens. Environ. 2020, 237, 111497. [Google Scholar] [CrossRef]
- Furniss, T.J.; Larson, A.J.; Kane, V.R.; Lutz, J.A. Wildfire and drought moderate the spatial elements of tree mortality. Ecosphere 2020, 11, 03214. [Google Scholar] [CrossRef]
- Bradley, A.F.; Noste, N.V.; Fischer, W.C. Fire Ecology of Forests and Woodlands in Utah; General Technical Report INT-GTR-287; US Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1992.
- van Wagtendonk, J.W.; Lutz, J.A. Fire regime attributes of wildland fires in Yosemite National Park, USA. Fire Ecol. 2007, 3, 34–52. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A.; Williams, A.P.; Lutz, J.A.; Smith, A.M.S. Climatic influences on interannual variability in regional burn severity across western US forests. Int. J. Wildland Fire 2017, 26, 269–275. [Google Scholar] [CrossRef]
- Eidenshink, J.; Schwind, B.; Brewer, K.; Zhu, Z.-L.; Quayle, B.; Howard, S. A project for Monitoring Trends in Burn Severity. Fire Ecol. 2007, 3, 3–21. [Google Scholar] [CrossRef]
- Lutz, J.A.; van Wagtendonk, J.W.; Thode, A.E.; Miller, J.D.; Franklin, J.F. Climate, lightning ignitions, and fire severity in Yosemite National Park, California, USA. Int. J. Wildland Fire 2009, 18, 765–774. [Google Scholar] [CrossRef]
- Falk, D.A.; Heyerdahl, E.K.; Brown, P.M.; Farris, C.; Fulé, P.Z.; McKenzie, D.; Swetnam, T.W.; Taylor, A.H.; Van Horne, M.L. Multi-scale controls of historical forest-fire regimes: New insights from fire-scar networks. Front. Ecol. Environ. 2011, 9, 446–454. [Google Scholar] [CrossRef]
- Larson, A.J.; Belote, R.T.; Cansler, C.A.; Parks, S.A.; Dietz, M.S. Latent resilience in ponderosa pine forest: Effects of resumed frequent fire. Ecol. Appl. 2013, 23, 1243–1249. [Google Scholar] [CrossRef]
- Churchill, D.; Larson, A.J.; Dahlgreen, M.C.; Franklin, J.F.; Hessburg, P.F.; Lutz, J.A. Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring. For. Ecol. Manag. 2013, 291, 442–457. [Google Scholar] [CrossRef]
- Lutz, J.A.; Furniss, T.J.; Johnson, D.J.; Davies, S.J.; Allen, D.; Alonso, A.; Anderson-Teixeira, K.; Andrade, A.; Baltzer, J.; Becker, K.M.L.; et al. Global importance of large-diameter trees. Glob. Ecol. Biogeogr. 2018, 27, 849–864. [Google Scholar] [CrossRef]
- Birch, J.D.; Lutz, J.A.; Struckman, S.; Miesel, J.R.; Karst, J. Large-diameter trees and deadwood correspond with belowground ectomycorrhizal fungal richness. Ecol. Process. 2023, 12, 3. [Google Scholar] [CrossRef]
- Parry, W. Geology of Utah’s Mountains, Peaks, and Plateaus: Including Descriptions of Cliffs, Valleys, and Climate History, 1st ed.; Friesen Press: Victoria, BC, Canada, 2016. [Google Scholar]
- Schug, F.; Bar-Massada, A.; Carlson, A.R.; Cox, H.; Hawbaker, T.J.; Helmers, D.; Hostert, P.; Kaim, D.; Kasraee, N.K.; Martinuzzi, S.; et al. The global wildland–urban interface. Nature 2023, 621, 94–99. [Google Scholar] [CrossRef]
- LANDFIRE. Existing Vegetation Type Layer, LANDFIRE 2.0.0, U.S; Department of the Interior, Geological Survey, and U.S. Department of Agriculture: Washington, DC, USA, 2018. Available online: http://www.landfire/viewer (accessed on 28 October 2022).
- LANDFIRE. LANDFIRE Remap Vegetation Type Agreement Assessment Summary. Dataset; 2019. Available online: https://landfire.gov (accessed on 16 March 2023).
- National Agriculture Imager Program (NAIP). NAIP Imagery 0.6 × 0.6 m Resolution of Utah; United States Department of Agriculture: Washington, DC, USA, 2023.
- Flora of North America Editorial Committee. Flora of North America Editorial Committee, eds. 1993+. Flora of North America North of Mexico [Online]. 22+ vols. New York and Oxford. Vol. 1, 1993; vol. 2, 1993; vol. 3, 1997; vol. 4, 2003; vol. 5, 2005; vol. 7, 2010; vol. 8, 2009; vol. 19, 2006; vol. 20, 2006; vol. 21, 2006; vol. 22, 2000; vol. 23, 2002; vol. 24, 2007; vol. 25, 2003; vol. 26, 2002; vol. 27, 2007; vol 28, 2014; vol. 9, 2014; vol. 6, 2015; vol. 12, 2016; vol. 17, 2019; vol. 10, 2021. Available online: http://beta.floranorthamerica.org (accessed on 12 January 2022).
- Brown, P.M.; Heyerdahl, E.K.; Kitchen, S.G.; Weber, M.H. Climate effects on historical fires (1630–1900) in Utah. Int. J. Wildland Fire 2008, 17, 28–39. [Google Scholar] [CrossRef]
- Kitchen, S.G. Historic Fire Regimes of Eastern Great Basin (USA) Mountains Reconstructed from Tree Rings. Ph.D. Thesis, Brigham Young University, Provo, UT, USA, 2010; 166 p. [Google Scholar]
- Wadleigh, L.; Jenkins, M.J. Fire frequency and the vegetative mosaic of a spruce-fir forest in northern Utah. Great Basin Nat. 1996, 6, 28–37. [Google Scholar]
- Heyerdahl, E.K.; Brown, P.M.; Kitchen, S.G.; Weber, M.H. Multicentury Fire and Forest Histories at 19 Sites in Utah and Eastern Nevada; General Technical Report RMRS-GTR-261WWW; USDA Forest Service: Fort Collins, CO, USA, 2011.
- Lutz, J.A.; Struckman, S.; Furniss, T.J.; Birch, J.D.; Yocom, L.L.; McAvoy, D.J. Large-diameter trees, snags, and deadwood in southern Utah, USA. Ecol. Process. 2021, 10, 9. [Google Scholar] [CrossRef]
- Comer, P.J.; Hak, J.C.; Dockter, D.; Smith, J. Integration of vegetation classification with land cover mapping: Lessons from regional mapping efforts in the Americas. Veg. Classif. Surv. 2022, 3, 29–43. [Google Scholar] [CrossRef]
- WFIGS. Wildland Fire Interagency Geospatial Services (WFIGS) Interagency Fire Perimeters; National Interagency Fire Center: Boise, ID, USA, 2022.
- Key, C.H.; Benson, N.C. Landscape Assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; General Technical Report RMRS-GTR-164-CD; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; p. LA-1-55. [Google Scholar]
- Key, C.H. Ecological and sampling constraints on defining landscape fire severity. Fire Ecol. 2006, 2, 34–59. [Google Scholar] [CrossRef]
- Birch, J.D.; Dickinson, M.B.; Knapp, E.; Lutz, J.A.; Miesel, J.R. Heading and backing fire behavior mediates the influence of fuels on wildfire energy. Int. J. Wildland Fire. 2023, 32, 1244–1261. [Google Scholar] [CrossRef]
- Kolden, C.A.; Lutz, J.A.; Key, C.H.; Kane, J.T.; van Wagtendonk, J.W. Mapped versus actual burned area within wildfire perimeters: Characterizing the unburned. For. Ecol. Manag. 2012, 286, 38–47. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; Version 4.2.1; R Foundation for Statistical Computing: Vienna, Austria, 2023. Available online: https://www.r-project.org/ (accessed on 21 September 2022).
- R Studio Team. R Studio: Integrated Deveplment for R. Version 2022.02.3. 2022. Available online: https://posit.co/downloads/RCoreTeam (accessed on 3 February 2022).
- Wickham, H. ggplot2: Elegant Graphics for Data Analysis; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kassambara, A. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0. The Comprehensive R Archive Network (CRAN). 2020. Available online: https://CRAN.R-project.org/package=ggpubr (accessed on 10 February 2023).
- Hijmans, R. Raster: Geographic Data Analysis and Modeling. R Package Version 3.6-3. 2022. Available online: https://CRAN.R-project.org/package=raster (accessed on 10 October 2023).
- Bivand, R.; Keitt, T.; Rowlingson, B. Rgdal: Bindings for the ‘Geospatial’ Data Abstraction Library. R Package Version 1.6-2. 2022. Available online: https://CRAN.R-project.org/package=rgdal (accessed on 10 October 2023).
- Bivand, R.; Rundel, C. Rgeos: Interface to Geometry Engine—Open Source (‘GEOS’). R Package Version 0.5-9. 2021. Available online: https://CRAN.R-project.org/package=rgeos (accessed on 10 October 2023).
- Oksanen, J.; Simpson, G.; Blanchet, F.; Kindt, R.; Legendre, P.; Minchin, P.; O’Hara, R.; Solymos, P.; Stevens, M.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6-4. 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 10 October 2023).
- Signorell, A. DescTools: Tools for Descriptive Statistics. R Package Version 0.99.48. 2023. Available online: https://CRAN.R-project.org/package=DescTools (accessed on 6 September 2023).
- Wood, S.N. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. B 2011, 73, 3–36. [Google Scholar] [CrossRef]
- Blomdahl, E.M.; Kolden, C.A.; Meddens, A.J.H.; Lutz, J.A. The importance of small fire refugia in the central Sierra Nevada, California, USA. For. Ecol. Manag. 2019, 432, 1041–1052. [Google Scholar] [CrossRef]
- Kolden, C.A.; Abatzoglou, J.T.; Lutz, J.A.; Cansler, C.A.; Kane, J.T.; van Wagtendonk, J.W.; Key, C.H. Climate contributors to forest mosaics: Ecological persistence following wildfire. Northwest Sci. 2015, 89, 219–238. [Google Scholar] [CrossRef]
- Reiner, A.L.; Baker, C.; Wahlberg, M.; Rau, B.M.; Birch, J.D. Region-specific remote-sensing models for predicting burn severity, basal area change, and canopy cover change following fire in the southwestern United States. Fire 2022, 5, 137. [Google Scholar] [CrossRef]
- Szpakowski, D.M.; Jensen, J.L. A review of the applications of remote sensing in fire ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef]
- Lutz, J.A.; Larson, A.J.; Swanson, M.E. Advancing fire science with large forest plots and a long-term multidisciplinary approach. Fire 2018, 1, 5. [Google Scholar] [CrossRef]
- Stambaugh, M.C.; Hammer, L.D.; Godfrey, R. Performance of burn-severity metrics and classification in oak woodlands and grasslands. Remote Sens. 2015, 7, 10501–10522. [Google Scholar] [CrossRef]
- Picotte, J.J.; Dockter, D.; Long, J.; Tolk, B.; Davidson, A.; Peterson, B. LANDFIRE remap prototype mapping effort: Developing a new framework for mapping vegetation classification, change, and structure. Fire 2019, 2, 35. [Google Scholar] [CrossRef]
- Fremgen-Tarantino, M.R.; Olsoy, P.J.; Frye, G.G.; Connelly, J.W.; Krakauer, A.H.; Patricelli, G.L.; Forbey, J.S. Assessing accuracy of GAP and LANDFIRE land cover datasets in winter habitats used by greater sage-grouse in Idaho and Wyoming, USA. J. Environ. Manag. 2021, 280, 111720. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A.; Abatzoglou, J.T.; Hudak, A.T. Spatiotemporal patterns of unburned areas within fire perimeters in the northwestern United States from 1984 to 2014. Ecosphere 2018, 9, e02029. [Google Scholar] [CrossRef]
- Meddens, A.J.H.; Kolden, C.A.; Lutz, J.A. Detecting unburned islands within fire perimeters using Landsat and ancillary data across the northwestern United States. Remote Sens. Environ. 2016, 186, 275–285. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; D’Antonio, C.M.; Gómez-Dans, J. Introduced annual grass increases regional fire activity across the arid western USA (1980–2009). Glob. Chang. Biol. 2013, 19, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Kerns, B.K.; Tortorelli, C.; Day, M.A.; Nietupski, T.; Barros, A.M.; Kim, J.B.; Krawchuk, M.A. Invasive grasses: A new perfect storm for forested ecosystems? For. Ecol. Manag. 2020, 463, 117985. [Google Scholar] [CrossRef]
- Keane, R.E.; Agee, J.K.; Fule, P.; Keeley, J.E.; Key, C.; Kitchen, S.G.; Miller, R.; Schulte, L.A. Ecological effects of large fires on US landscapes: Benefit or catastrophe? Int. J. Wildland Fire 2008, 17, 696–712. [Google Scholar] [CrossRef]
- Kreider, M.R.; Yocom, L.L. Low-density aspen seedling establishment is widespread following recent wildfires in the western United States. Ecology 2021, 102, e03436. [Google Scholar] [CrossRef]
- Donato, D.C.; Fontaine, J.B.; Campbell, J.L.; Robinson, W.D.; Kauffman, J.B.; Law, B.E. Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath–Siskiyou Mountains. Can. J. For. Res. 2009, 39, 823–838. [Google Scholar] [CrossRef]
- Abella, S.R.; Gentilcore, D.M.; Chiquoine, L.P. Resilience and alternative stable states after desert wildfires. Ecol. Monogr. 2021, 91, e01432. [Google Scholar] [CrossRef]
- Furniss, T.J.; Das, A.J.; van Mantgem, P.J.; Stephenson, N.L.; Lutz, J.A. Crowding, climate, and the case for social distancing among trees. Ecol. Appl. 2022, 32, e2507. [Google Scholar] [CrossRef]
- Keyser, A.; Westerling, A.L. Climate drives inter-annual variability in probability of high severity fire occurrence in the western United States. Environ. Res. Lett. 2017, 12, 065003. [Google Scholar] [CrossRef]
- Johnson, E.A. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest; Cambridge University Press: Cambridge, UK, 1996. [Google Scholar]
- Littell, J.S.; Peterson, D.L.; Riley, K.L.; Liu, Y.; Luce, C.H. A review of the relationships between drought and forest fire in the United States. Glob. Chang. Biol. 2016, 22, 2353–2369. [Google Scholar] [CrossRef] [PubMed]
- Stephens, S.L.; Ruth, L.W. Federal forest-fire policy in the United States. Ecol. Appl. 2005, 15, 532–542. [Google Scholar] [CrossRef]
- Steel, Z.L.; Safford, H.D.; Viers, J.H. The fire frequency-severity relationship and the legacy of fire suppression in California forests. Ecosphere 2015, 6, 1–23. [Google Scholar] [CrossRef]
- Pilliod, D.S.; Welty, J.L.; Arkle, R.S. Refining the cheatgrass–fire cycle in the Great Basin: Precipitation timing and fine fuel composition predict wildfire trends. Ecol. Evol. 2017, 7, 8126–8151. [Google Scholar] [CrossRef] [PubMed]
- Burgan, R.E. Estimating Live Fuel Moisture for the 1978 National Fire Danger Rating System; Intermountain Forest and Range Experiment Station, Forest Service, US Department of Agriculture: Ogden, UT, USA, 1979; Volume 226.
- Westerling, A.L.; Hidalgo, H.G.; Cayan, D.R.; Swetnam, T.W. Warming and earlier spring increase western US forest wildfire activity. Science 2006, 313, 940–943. [Google Scholar] [CrossRef]
- Cansler, C.A.; Kane, V.R.; Hessburg, P.F.; Kane, J.T.; Jeronimo, S.M.A.; Lutz, J.A.; Povak, N.A.; Churchill, D.J.; Larson, A.J. Previous wildfires and management treatments moderate subsequent fire severity. For. Ecol. Manag. 2022, 504, 119764. [Google Scholar] [CrossRef]
- Churchill, D.J.; Jeronimo, S.M.A.; Hessburg, P.F.; Cansler, C.A.; Povak, N.A.; Kane, V.R.; Lutz, J.A.; Larson, A.J. Post-fire landscape evaluations in eastern Washington, USA: Assessing the work of contemporary wildfires. For. Ecol. Manag. 2022, 504, 119796. [Google Scholar] [CrossRef]
- Radeloff, V.C.; Helmers, D.P.; Kramer, H.A.; Mockrin, M.H.; Alexandre, P.M.; Bar-Massada, A.; Butsic, V.; Hawbaker, T.J.; Martinuzzi, S.; Syphard, A.D.; et al. Rapid growth of the US wildland-urban interface raises wildfire risk. Proc. Natl. Acad. Sci. USA 2018, 115, 3314–3319. [Google Scholar] [CrossRef]
- Mietkiewicz, N.; Balch, J.K.; Schoennagel, T.; Leyk, S.; St Denis, L.A.; Bradley, B.A. In the line of fire: Consequences of human-ignited wildfires to homes in the US (1992–2015). Fire 2020, 3, 50. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Birch, J.D.; Lutz, J.A. Fire Regimes of Utah: The Past as Prologue. Fire 2023, 6, 423. https://doi.org/10.3390/fire6110423
Birch JD, Lutz JA. Fire Regimes of Utah: The Past as Prologue. Fire. 2023; 6(11):423. https://doi.org/10.3390/fire6110423
Chicago/Turabian StyleBirch, Joseph D., and James A. Lutz. 2023. "Fire Regimes of Utah: The Past as Prologue" Fire 6, no. 11: 423. https://doi.org/10.3390/fire6110423
APA StyleBirch, J. D., & Lutz, J. A. (2023). Fire Regimes of Utah: The Past as Prologue. Fire, 6(11), 423. https://doi.org/10.3390/fire6110423