Fire Characterization by Using an Original RST-Based Approach for Fire Radiative Power (FRP) Computation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.2.1. Satellite Data
2.2.2. FRP-PIXEL Product
2.2.3. GFED4.1s
2.3. Methodology
2.3.1. The RST Approach and RST-FIRES
2.3.2. Fire Radiative Power Estimate
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Matson, M.; Holben, B. Satellite detection of tropical burning in Brazil. Int. J. Remote Sens. 1987, 8, 509–516. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Tucker, C.J.; Fung, I. Remote sensing of biomass burning in the tropics. J. Geophys. Res. 1990, 95, 9927–9939. [Google Scholar] [CrossRef]
- Kaufman, Y.J.; Justice, C.O.; Flynn, L.P.; Kendall, J.D.; Prins, E.M.; Giglio, L.; Ward, D.E.; Menzel, W.P.; Setzer, A.W. Potential global fire monitoring from EOS-MODIS. J. Geophys. Res. 1998, 103, 32215–32238. [Google Scholar] [CrossRef]
- Setzer, A.W.; Pereira, M.C. Amazon biomass burnings in 1987 and an estimate of their tropospheric emissions. Ambio 1991, 20, 19–22. [Google Scholar]
- Kaiser, J.W.; Heil, A.; Andreae, M.O.; Benedetti, A.; Chubarova, N.; Jones, L.; Morcrette, J.-J.; Razinger, M.; Schultz, M.G.; Suttie, M.; et al. Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 2012, 9, 527–554. [Google Scholar] [CrossRef] [Green Version]
- Prins, E.M.; Menzel, W.P. Geostationary satellite detection of biomass burning in South America. Int. J. Remote Sens. 1992, 13, 2783–2799. [Google Scholar] [CrossRef]
- Dozier, J. A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens. Environ. 1981, 11, 221–229. [Google Scholar] [CrossRef]
- Shephard, M.W.; Kennelly, E.J. Effect of band-to-band coregistration on fire property retrievals. IEEE Trans. Geosci. Remote Sens. 2003, 41, 2648–2661. [Google Scholar] [CrossRef]
- Wooster, M.J.; Xu, W. Sentinel-3 Optical Products and Algorithm Definition SLSTR ATBD Fire Product; Version 3.2, Ref: S3-L2-Sd-03-T04-Kcl-Atbd, 10 October 2012; King’s College: London, UK, 2012. [Google Scholar]
- Giglio, L.; Kendall, J.D. Application of the Dozier retrieval to wildfire characterization. A sensitivity analysis. Remote Sens. Environ. 2001, 77, 34–49. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Perry, G.L.W.; Kaufman, Y.J. Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J. Geophys. Res. 2005, 110, D24311. [Google Scholar] [CrossRef]
- Wooster, M.J.; Zhukov, B.; Oertel, D. Fire radiative energy for quantitative study of biomass burning: Derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens. Environ. 2003, 86, 83–107. [Google Scholar] [CrossRef]
- Csiszar, I.; Schroeder, W.; Giglio, L.; Mikles, V.; Tsidulko, M. The NOAA Active Fire EDR External Users Manual, Version 1.6, Date: 6 October 2016. Available online: https://www.star.nesdis.noaa.gov/jpss/documents/UserGuides/VIIRS_ActiveFire_EUM.pdf (accessed on 15 July 2022).
- Giglio, L.; Schroeder, W.; Justice, C.O. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xu, W.; Wooster, M.J.; Roberts, G.; Freeborn, P. New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sens. Environ. 2010, 114, 1876–1895. [Google Scholar] [CrossRef]
- Wooster, M.J.; Roberts, G.; Freeborn, P.H.; Xu, W.; Govaerts, Y.; Beeby, R.; He, J.; Lattanzio, A.; Fisher, D.; Mullen, R. LSA SAF Meteosat FRP products–Part 1: Algorithms, product contents, and analysis. Atmos. Chem. Phys. 2015, 15, 13217–13239. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wooster, M.J.; Kaneko, T.; He, J.; Zhang, T.; Fisher, D. Major advances in geostationary fire radiative power (FRP) retrieval over Asia and Australia stemming from use of Himarawi-8 AHI. Remote Sens. Environ. 2017, 193, 138–149. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Wooster, M.J.; He, J.; Zhang, T. Improvements in high-temporal resolution active fire detection and FRP retrieval over the Americas using GOES-16 ABI with the geostationary Fire Thermal Anomaly (FTA) algorithm. Sci. Remote Sens. 2021, 3, 100016. [Google Scholar] [CrossRef]
- Engel, C.B.; Jones, S.D.; Reinke, K.J. Fire Radiative Power (FRP) Values for Biogeographical Region and Individual Geostionary HHMMSS Threshold (BRIGHT) Hotspots Derived from the Advanced Himawari Imager (AHI). Remote Sens. 2022, 14, 2540. [Google Scholar] [CrossRef]
- EUMETSAT—LSASAF. Product User Manual—Fire Radiative Power (FRP) (LSA-502 and LSA-503)–FRP Climate Data Records (LSA-550 and LSA-551). 2019. Available online: https://nextcloud.lsasvcs.ipma.pt/s/pnDEepeq8zqRyrq (accessed on 22 December 2022).
- Schroeder, W.; Csiszar, I.; Giglio, L.; Schmidt, C.C. On the use of fire radiative power, area, and temperature estimates to characterize biomass burning via moderate to coarse spatial resolution remote sensing data in the Brazilian Amazon. J. Geophys. Res. 2010, 115, D21121. [Google Scholar] [CrossRef] [Green Version]
- Roberts, G.; Wooster, M.J.; Xu, W.; Freeborn, P.H.; Morcrette, J.-J.; Jones, L.; Benedetti, A.; Jiangping, H.; Fisher, D.; Kaiser, J.W. LSA SAF Meteosat FRP products–Part 2: Evaluation and demonstration for use in the Copernicus Atmosphere Monitoring Service (CAMS). Atmos. Chem. Phys. 2015, 15, 13241–13267. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Descloitres, J.; Justice, C.O.; Kaufman, Y.J. An enhanced contextual fire detection algorithm for MODIS. Remote Sens. Environ. 2003, 87, 273–282. [Google Scholar] [CrossRef]
- Govaerts, Y.; Wooster, M.; Roberts, G.; Freeborn, P.; Xu, W.; He, J.; Lattanzio, A. Algorithm Theoretical Basis Document for MSG SEVIRI FIRE RADIATIVE POWER (FRP) Characterisation; FRP: LSA-502 (FRP-PIXEL), LSA-503 (FRP-GRID), LSA-550(FRP-PIXEL-R), LSA-551 (FRP-GRID-R); EUM/MET/SPE/06/0398; EUMESTAT: Darmstadt, Germany, 2015. [Google Scholar]
- Pereira, G.; Longo, K.M.; Freitas, S.R.; Mataveli, G.; Oliveira, V.J.; Santos, P.R.; Rodrigues, L.F.; Cardozo, F.S. Improving the south America wildfires smoke estimates: Integration of polar-orbiting and geostationary satellite fire products in the Brazilian biomass burning emission model (3BEM). Atmos. Environ. 2022, 273, 118954. [Google Scholar] [CrossRef]
- Wright, R.; Pilger, E. Radiant flux from Earth’s subaerially erupting volcanoes. Int. J. Remote Sens. 2008, 29, 6443–6466. [Google Scholar] [CrossRef]
- Tramutoli, V. Robust AVHRR Techniques (RAT) for Environmental Monitoring: Theory and Applications. In Proceedings of the SPIE 3496, Earth Surface Remote Sensing II, Barcelona, Spain, 11 December 1998; pp. 101–113. [Google Scholar]
- Tramutoli, V. Robust Satellite Techniques (RST) for Natural and Environmental Hazards Monitoring and Mitigation: Theory and Applications. In Proceedings of the 2007 International Workshop on the Analysis of Multi-Temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007. [Google Scholar]
- Filizzola, C.; Corrado, R.; Marchese, F.; Mazzeo, G.; Paciello, R.; Pergola, N.; Tramutoli, V. RST-FIRES, an exportable algorithm for early-fire detection and monitoring: Description, implementation, and field validation in the case of the MSG-SEVIRI sensor. Remote Sens. Environ. 2017, 192, e2–e25. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Venafra, S.; Poutier, L.; Göttsche, F.-M. SEVIRI Hyper-Fast Forward Model with Application to Emissivity Retrieval. Sensors 2019, 19, 1532. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- EFFIS Estimates for European Union. Available online: https://effis.jrc.ec.europa.eu/apps/effis.statistics/estimates/EU/2022/2006/2021 (accessed on 7 November 2022).
- Report Incendi, Italia in Fumo. Available online: https://www.legambiente.it/rapporti/report-incendi-italia-in-fumo/ (accessed on 7 November 2022).
- GWIS Country Profile. Available online: https://gwis.jrc.ec.europa.eu/apps/country.profile/chartsba (accessed on 7 November 2022).
- Fire Radiative Power Pixel (FRP-PIXEL). Available online: https://landsaf.ipma.pt/en/products/fire-products/frppixel/ (accessed on 23 November 2022).
- Global Fire Emissions Database (GFED). Available online: http://www.globalfiredata.org/ (accessed on 19 September 2022).
- Pan, X.; Ichoku, C.; Chin, M.; Bian, H.; Darmenov, A.; Colarco, P.; Ellison, L.; Kucsera, T.; da Silva, A.; Wang, J.; et al. Six global biomass burning emission datasets: Intercomparison and application in one global aerosol model. Atmos. Chem. Phys. 2020, 20, 969–994. [Google Scholar] [CrossRef] [Green Version]
- Van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Randerson, J.T.; van der werf, G.R. Analysis of daily, monthly, and annual burned area using the fourth-generation global fire emissions database (GFED4). J. Geophys. Res. Biogeosci. 2013, 118, 317–328. [Google Scholar] [CrossRef] [Green Version]
- Randerson, J.T.; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C. Global burned area and biomass burning emissions from small fires. J. Geophys. Res. Biogeosci. 2012, 117, G04012. [Google Scholar] [CrossRef] [Green Version]
- Mu, M.; Randerson, J.T.; van der Werf, G.R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G.J.; Defries, R.S.; Hyer, E.J.; Prins, E.M.; et al. Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide. J. Geophys. Res. Biogeosci. 2011, 116, D24303. [Google Scholar] [CrossRef]
- GFED Emission Factors. Available online: https://www.geo.vu.nl/~gwerf/GFED/GFED4/ancill/GFED4_Emission_Factors.txt (accessed on 26 October 2022).
- GFED Data. Available online: https://www.geo.vu.nl/~gwerf/GFED/GFED4/ (accessed on 26 October 2022).
- Koeppen, W.C.; Pilger, E.; Wright, R. Time series analysis of infrared satellite data for detecting thermal anomalies: A hybrid approach. Bull. Volcanol. 2011, 73, 577–593. [Google Scholar] [CrossRef]
- Filizzola, C.; Corrado, A.; Genzano, N.; Lisi, M.; Pergola, N.; Colonna, R.; Tramutoli, V. RST Analysis of Anomalous TIR Sequences in Relation with Earthquakes Occurred in Turkey in the Period 2004–2015. Remote Sens. 2022, 14, 381. [Google Scholar] [CrossRef]
- Marchese, F.; Lacava, T.; Pergola, N.; Katsumi, H.; Miraglia, E.; Tramutoli, V. Inferring phases of thermal unrest at Mt. Asama (Japan) from infrared satellite observations. J. Volcanol. Geotherm. Res. 2012, 237–238, 10–18. [Google Scholar] [CrossRef]
- Lacava, T.; Filizzola, C.; Pergola, N.; Sannazzaro, F.; Tramutoli, V. Improving flood monitoring by the Robust AVHRR technique (RAT) approach: The case of the April 2000 Hungary flood. Int. J. Remote Sens. 2010, 31, 2043–2062. [Google Scholar] [CrossRef]
- Cuomo, V.; Filizzola, C.; Pergola, N.; Pietrapertosa, C.; Tramutoli, V. A self-sufficient approach for cloudy radiances detection. Atmos. Res. 2004, 72, 39–56. [Google Scholar] [CrossRef]
- Marchese, F.; Sannazzaro, F.; Falconieri, A.; Filizzola, C.; Pergola, N.; Tramutoli, V. An Enhanced Satellite-Based Algorithm for Detecting and Tracking Dust Outbreaks by Means of SEVIRI Data. Remote Sens. 2017, 9, 537. [Google Scholar] [CrossRef] [Green Version]
- Faruolo, M.; Coviello, I.; Filizzola, C.; Lacava, T.; Pergola, N.; Tramutoli, V. A satellite-based analysis of the Val d’Agri Oil Center (southern Italy) gas flaring emissions. Nat. Hazards Earth Syst. Sci. 2014, 14, 2783–2793. [Google Scholar] [CrossRef] [Green Version]
- Lacava, T.; Ciancia, E.; Coviello, I.; Di Polito, C.; Grimaldi, C.S.L.; Pergola, N.; Satriano, V.; Temimi, M.; Zhao, J.; Tramutoli, V. A MODIS-based robust satellite technique (RST) for timely detection of oil spilled areas. Remote Sens. 2017, 9, 128. [Google Scholar] [CrossRef] [Green Version]
- Filizzola, C.; Carlucci, M.A.; Genzano, N.; Ciancia, E.; Lisi, M.; Pergola, N.; Ripullone, F.; Tramutoli, V. Robust Satellite-Based Identification and Monitoring of Forests Having Undergone Climate-Change-Related Stress. Land 2022, 11, 825. [Google Scholar] [CrossRef]
- Mazzeo, G.; Marchese, F.; Filizzola, C.; Pergola, N.; Tramutoli, V. A Multi-Temporal Robust Satellite Technique (RST) for Forest Fire Detection. In Proceedings of the 2007 International Workshop on the Analysis of Multi-temporal Remote Sensing Images, Leuven, Belgium, 18–20 July 2007; IEEE: New York, NY, USA, 2007. [Google Scholar] [CrossRef]
- Marchese, F.; Mazzeo, G.; Filizzola, C.; Coviello, I.; Falconieri, A.; Lacava, T.; Paciello, R.; Pergola, N.; Tramutoli, V. Issues and Possible Improvements in Winter Fires Detection by Satellite Radiances Analysis: Lesson Learned in Two Regions of Northern Italy. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2017, 10, 3297–3313. [Google Scholar] [CrossRef]
- Baldassarre, G.; Benigno, G.; Corrado, R.; Coviello, I.; Filizzola, C.; Lacava, T.; Marchese, F.; Mazzeo, G.; Paciello, R.; Pergola, N.; et al. Assessment of the Robust Satellite Technique (RST) in Real Time Detection of Summer Fires. In Proceedings of the Fifth International Workshop on the Analysis of Multitemporal Remote Sensing Images, Groton, CT, USA, 28–30 July 2009; Civco, D.L., Ed.; pp. 216–223. [Google Scholar]
- Mazzeo, G.; Baldassarre, G.; Corrado, R.; Filizzola, C.; Genzano, N.; Marchese, F.; Paciello, R.; Pergola, N.; Tramutoli, V. Assessment of a Robust Satellite Technique for Forest Fire Detection and Monitoring by Using a Total Validation Approach. In Proceedings of the 33rd International Symposium on Remote Sensing of Environment (ISRSE33), Stresa, Italy, 4–8 May 2009; pp. 607–610. [Google Scholar]
- Filizzola, C.; Baldassarre, G.; Benigno, G.; Corrado, R.; Coviello, I.; Lacava, T.; Marchese, F.; Mazzeo, G.; Paciello, R.; Pergola, N.; et al. Automatic RST-Based System for a Rapid Detection of Fires. In Proceedings of the VI International Conference on Forest Fire Research (ICFFR), Coimbra, Portugal, 15–18 November 2010. [Google Scholar]
- Marchese, F.; Corrado, R.; Filizzola, C.; Mazzeo, G.; Paciello, R.; Pergola, N.; Tramutoli, V. On the Potential of Robust Satellite Techniques (RST-FIRES) for Forest Fire Detection and Monitoring. In Proceedings of the VI International Conference on Forest Fire Research (ICFFR), Coimbra, Portugal, 15–18 November 2010. [Google Scholar]
- Mazzeo, G.; De Santis, F.; Falconieri, A.; Filizzola, C.; Lacava, T.; Lanorte, A.; Marchese, F.; Nolè, G.; Pergola, N.; Pietrapertosa, C.; et al. Integrated Satellite System for Fire Detection and Prioritization. Remote Sens. 2022, 14, 335. [Google Scholar] [CrossRef]
- Schroeder, W.; Giglio, L.; Csiszar, I.; Tsidulko, M. Algorithm Theoretical Basis Document for NOAA NDE VIIRS I-band (375m) Active Fire; National Oceanic and Atmospheric Administration: Washington, DC, USA, 2020. [Google Scholar]
- Hilton, F.; Armante, R.; August, T.; Barnet, C.; Bouchard, A.; Camy-Peyret, C.; Capelle, V.; Clarisse, L.; Clerbaux, C.; Coheur, P.-F.; et al. Hyperspectral Earth Observation from IASI: Five Years of Accomplishments. Bull. Amer. Meteor. 2012, 93, 347–370. [Google Scholar] [CrossRef]
- Amato, U.; Masiello, G.; Serio, C.; Viggiano, M. The σ-IASI Code for the Calculation of Infrared Atmospheric Radiance and Its Derivatives. Environ. Model. Softw. 2002, 17, 651–667. [Google Scholar] [CrossRef]
- Liuzzi, G.; Masiello, G.; Serio, C.; Meloni, D.; Di Biagio, C.; Formenti, P. Consistency of Dimensional Distributions and Refractive Indices of Desert Dust Measured over Lampedusa with IASI Radiances. Atmos. Meas. Tech. 2017, 10, 599–615. [Google Scholar] [CrossRef] [Green Version]
- Martinazzo, M.; Magurno, D.; Cossich, W.; Serio, C.; Masiello, G.; Maestri, T. Assessment of the Accuracy of Scaling Methods for Radiance Simulations at Far and Mid Infrared Wavelengths. J. Quant. Spectrosc. Radiat. Transf. 2021, 271, 107739. [Google Scholar] [CrossRef]
- Masiello, G.; Serio, C.; Carissimo, A.; Grieco, G.; Matricardi, M. Application of φ-IASI to IASI: Retrieval Products Evaluation and Radiative Transfer Consistency. Atmos. Chem. Phys. 2009, 9, 8771–8783. [Google Scholar] [CrossRef] [Green Version]
- Masiello, G.; Matricardi, M.; Serio, C. The Use of IASI Data to Identify Systematic Errors in the ECMWF Forecasts of Temperature in the Upper Stratosphere. Atmos. Chem. Phys. 2011, 11, 1009–1021. [Google Scholar] [CrossRef] [Green Version]
- Masiello, G.; Serio, C.; Esposito, F.; Palchetti, L. Validation of Line and Continuum Spectroscopic Parameters with Measurements of Atmospheric Emitted Spectral Radiance from Far to Mid Infrared Wave Number Range. J. Quant. Spectrosc. Radiat. Transf. 2012, 113, 1286–1299. [Google Scholar] [CrossRef]
- Liuzzi, G.; Masiello, G.; Serio, C.; Palchetti, L.; Bianchini, G. Validation of H2O Continuum Absorption Models in the Wave Number Range 180–600 cm−1 with Atmospheric Emitted Spectral Radiance Measured at the Antarctica Dome-C Site. Opt. Express 2014, 22, 16784. [Google Scholar] [CrossRef]
- Aumann, H.H.; Chen, X.; Fishbein, E.; Geer, A.; Havemann, S.; Huang, X.; Liu, X.; Liuzzi, G.; DeSouza-Machado, S.; Manning, E.M.; et al. Evaluation of Radiative Transfer Models With Clouds. J. Geophys. Res. Atmos. 2018, 123, 6142–6157. [Google Scholar] [CrossRef] [Green Version]
- Serio, C.; Masiello, G.; Camy-Peyret, C.; Liuzzi, G. CO2 Spectroscopy and Forward/Inverse Radiative Transfer Modelling in the Thermal Band Using IASI Spectra. J. Quant. Spectrosc. Radiat. Transf. 2019, 222–223, 65–83. [Google Scholar] [CrossRef]
- Liuzzi, G.; Masiello, G.; Serio, C.; Blasi, M.G.; Venafra, S. Hyper Fast Radiative Transfer for the Physical Retrieval of Surface Parameters from SEVIRI Observations. J. Phys. Conf. Ser. 2015, 633, 012059. [Google Scholar] [CrossRef] [Green Version]
- EUMETSAT–MSG Meteorological Products Extraction Facility Algorithm Specification Document; v7B e-signed. EUM/MSG/SPE/022; EUMESTAT: Darmstadt, Germany, 2015.
- Li, F.; Zhang, X.; Roy, D.P.; Kondragunta, S. Estimation of biomass-burning emissions by fusing the fire radiative power retrievals from polar-orbiting and geostationary satellites across the conterminous United States. Atmos. Environ. 2019, 211, 274–287. [Google Scholar] [CrossRef]
- SAF for Land Surface Analysis (LSA SAF)–Validation Report Fire Radiative Power (LSA-502 and LSA-503); SAF/LAND/IM/VR_FRP/V_10; EUMETSAT: Darmstadt, Germany, 2015.
- MeteoFrance. Algorithm Theoretical Basis Document for Cloud Products; Technical Report SAF/NWC/CDOP/MFL/SCI/ATBD/01; MeteoFrance: Lannion., France, 2007. [Google Scholar]
- Darmenov, A.; da Silva, A. The Quick Fire Emissions Dataset (QFED)–Documentation of Versions 2.1, 2.2 and 2.4. NASA//TM-2015-104606; NASA Global Modeling and Assimilation Office: Greenbelt, MD 20771, USA, 2015; Volume 38. [Google Scholar]
Fire Detection Algorithm | RST-FIRES | RST-FIRES | FTA | ||
---|---|---|---|---|---|
Background Computation Approach | BREMA | FRP-PIXEL-like | FRP-PIXEL | ||
∑FRP [MW] [A] | ∑FRP [MW] [B] | ∑FRP [MW] | Percentage Increase [C = (A − B)/B] | ||
Date | 27 June 2012 | 2814.26 | 1354.42 | 1594.60 | 108% |
30 July 2012 | 3003.19 | 2048.99 | 5571.20 | 47% | |
10 July 2017 | 12,577.95 | 8299.10 | 13,317.30 | 52% | |
13 July 2017 | 10,118.78 | 7720.12 | 19,990.00 | 31% | |
16 August 2017 | 10,476.02 | 8450.02 | 11,173.50 | 24% | |
14 September 2019 | 1383.10 | 1079.17 | 393.40 | 28% | |
15 September 2019 | 2851.21 | 2462.25 | 611.20 | 16% | |
1 August 2020 | 771.06 | 528.67 | 199.70 | 46% | |
13 September 2020 | 5162.53 | 2077.72 | 555.10 | 148% | |
All days | 49,158.10 | 34,020.47 | 53,406.00 | 44% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Filizzola, C.; Falconieri, A.; Lacava, T.; Marchese, F.; Masiello, G.; Mazzeo, G.; Pergola, N.; Pietrapertosa, C.; Serio, C.; Tramutoli, V. Fire Characterization by Using an Original RST-Based Approach for Fire Radiative Power (FRP) Computation. Fire 2023, 6, 48. https://doi.org/10.3390/fire6020048
Filizzola C, Falconieri A, Lacava T, Marchese F, Masiello G, Mazzeo G, Pergola N, Pietrapertosa C, Serio C, Tramutoli V. Fire Characterization by Using an Original RST-Based Approach for Fire Radiative Power (FRP) Computation. Fire. 2023; 6(2):48. https://doi.org/10.3390/fire6020048
Chicago/Turabian StyleFilizzola, Carolina, Alfredo Falconieri, Teodosio Lacava, Francesco Marchese, Guido Masiello, Giuseppe Mazzeo, Nicola Pergola, Carla Pietrapertosa, Carmine Serio, and Valerio Tramutoli. 2023. "Fire Characterization by Using an Original RST-Based Approach for Fire Radiative Power (FRP) Computation" Fire 6, no. 2: 48. https://doi.org/10.3390/fire6020048
APA StyleFilizzola, C., Falconieri, A., Lacava, T., Marchese, F., Masiello, G., Mazzeo, G., Pergola, N., Pietrapertosa, C., Serio, C., & Tramutoli, V. (2023). Fire Characterization by Using an Original RST-Based Approach for Fire Radiative Power (FRP) Computation. Fire, 6(2), 48. https://doi.org/10.3390/fire6020048