Study on the Effect of Blockage Ratio on Maximum Smoke Temperature Rise in the Underground Interconnected Tunnel
Abstract
:1. Introduction
- is the maximum temperature rise (K);
- is the ambient temperature (K);
- is the heat release rate (kW);
- is the experimental constant;
- is the air density (kg/m3);
- is the specific heat at constant pressure (kJ/(kg·K));
- is the gravitational acceleration (m/s2);
- is the tunnel height (m);
- is the longitudinal ventilation velocity (m/s).
- is the total HRR (kW);
- is the fire source’s radius (m);
- is the vertical distance above the bottom of the fire source (m);
- is the dimensionless longitudinal ventilation velocity.
- is the blockage ratio (%).
2. Experimental Setup
2.1. Model-Scale Tunnel
2.2. Experimental Conditions
3. Results and Discussion
3.1. Variations in Longitudinal Ventilation Velocities in the Interconnected Tunnel
3.2. Variation in Maximum Temperature Rises with Blockage Ratios in the Interconnected Tunnel
3.3. Maximum Temperature Rise Prediction Model for Interconnected Tunnel
- is the sum of ramps C and D velocity (m/s).
- is the tunnel cross-sectional area (m2).
- is the sum of the velocity of ramps C and D when the blockage ratio is 0%.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, X.X.; Pan, X.H.; Zhang, L.J.; Wang, Z.L.; Hua, M.; Jiang, C.C. Comparative study on ventilation and smoke extraction systems of different super-long river-crossing subway tunnels under fire scenarios. Tunn. Undergr. Space Technol. 2021, 113, 103849. [Google Scholar] [CrossRef]
- Zhou, T.N.; He, Y.P.; Lin, X.; Wang, X.H.; Wang, J. Influence of constraint effect of sidewall on maximum smoke temperature distribution under a tunnel ceiling. Appl. Therm. Eng. 2017, 112, 932–941. [Google Scholar] [CrossRef]
- Kang, K. Characteristic length scale of critical ventilation velocity in tunnel smoke control. Tunn. Undergr. Space Technol. 2009, 25, 205–211. [Google Scholar] [CrossRef]
- Alper, R.L. Calculation of response time of ceiling-mounted fire detectors. Fire Technol. 1972, 8, 181–195. [Google Scholar] [CrossRef]
- Heskestad, G.; Delichatsios, M.A. The initial convective flow in fire. Symp. Int. Combust. 1979, 17, 1113–1123. [Google Scholar] [CrossRef]
- Yi, L.; Xu, Q.Q.; Xu, Z.S.; Wu, D.X. An experimental study on critical velocity in sloping tunnel with longitudinal ventilation under fire. Tunn. Undergr. Space Technol. 2014, 43, 198–203. [Google Scholar] [CrossRef]
- Zhang, X.L.; Lin, Y.J.; Shi, C.L.; Zhang, J.P. Numerical simulation on the maximum temperature and smoke back-layering length in a tilted tunnel under natural ventilation. Tunn. Undergr. Space Technol. 2021, 107, 103661. [Google Scholar] [CrossRef]
- Hu, L.H.; Chen, L.F.; Wu, L.; Li, Y.F.; Zhang, J.Y.; Meng, N. An experimental investigation and correlation on buoyant gas temperature below ceiling in a slopping tunnel fire. Appl. Therm. Eng. 2013, 51, 246–254. [Google Scholar] [CrossRef]
- Tang, F.; Cao, Z.L.; Palacios, A.; Wang, Q. A study on the maximum temperature of ceiling jet induced by rectangular source fires in a tunnel using ceiling smoke extraction. Int. J. Therm. Sci. 2018, 127, 329–334. [Google Scholar] [CrossRef]
- Zhu, Y.T.; Tang, F.; Zhao, Z.X.; Wang, Q. Effect of lateral smoke extraction on transverse temperature distribution and smoke maximum temperature under ceiling in tunnel fires. J. Therm. Anal. Calorim. 2022, 147, 4275–4284. [Google Scholar] [CrossRef]
- Li, Y.Z.; Ingason, H. Overview of research on fire safety in underground road and railway tunnels. Tunn. Undergr. Space Technol. 2018, 81, 568–589. [Google Scholar] [CrossRef]
- Zhuang, Y.Z.; Ding, H.; Zheng, G.P.; Cui, Y.K.; Huang, Y. Study on Ventilation System Linkage Control Strategy in a Double-Hole Tunnel Fire. Adv. Mater. Sci. Eng. 2020, 2020, 5163632. [Google Scholar] [CrossRef]
- Han, J.Q.; Liu, F.; Wang, F.; Weng, M.C.; Liao, S.J. Full-scale experimental investigation on smoke spreading and thermal characteristic in a transversely ventilated urban traffic link tunnel. Int. J. Therm. Sci. 2021, 170, 107130. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, L.; Han, N.; Gao, Z.H.; Zhao, J. Investigation on the maximum ceiling temperature of the weak plume impingement flow in tunnel fires under longitudinal ventilation. Tunn. Undergr. Space Technol. 2023, 131, 104821. [Google Scholar] [CrossRef]
- Kurioka, H.; Oka, Y.; Satoh, H.; Sugawa, O. Fire properties in near field of square fire source with longitudinal ventilation in tunnels. Fire Saf. J. 2003, 38, 319–340. [Google Scholar] [CrossRef]
- Li, Y.Z.; Lei, B.; Ingason, H. The maximum temperature of buoyancy-driven smoke flow beneath the ceiling in tunnel fires. Fire Saf. J. 2011, 46, 204–210. [Google Scholar] [CrossRef]
- Li, L.M.; Cheng, X.D.; Cui, Y.; Li, S.; Zhang, H.P. Effect of blockage ratio on critical velocity in tunnel fires. J. Fire Sci. 2012, 30, 413–427. [Google Scholar] [CrossRef]
- Luo, J.L.; Xu, Z.S.; Li, F.L.; Zhao, J.M. Effect of vehicular blocking scene on smoke spread in the longitudinal ventilated tunnel fire. Case Stud. Therm. Eng. 2019, 14, 100495. [Google Scholar] [CrossRef]
- Tang, F.; Cao, Z.L.; Chen, Q.; Meng, N.; Wang, Q.; Fan, C.G. Effect of blockage-heat source distance on maximum temperature of buoyancy-induced smoke flow beneath ceiling in a longitudinal ventilated tunnel. Int. J. Heat Mass Transf. 2017, 109, 683–688. [Google Scholar] [CrossRef]
- Meng, N.; Liu, B.B.; Li, X.; Jin, X.N.; Huang, Y.J.; Wang, Q. Effect of blockage-induced near wake flow on fire properties in a longitudinally ventilated tunnel. Int. J. Therm. Sci. 2018, 134, 1–12. [Google Scholar] [CrossRef]
- Kayili, S.; Yozgatligil, A.; CahitEralp, O. An experimental study on the effects of blockage ratio and ventilation velocity on the heat release rate of tunnel fires. J. Fire Sci. 2011, 29, 555–575. [Google Scholar] [CrossRef]
- Li, L.M.; Cheng, X.D.; Cui, Y.; Dong, W.H. Effect of blockage ratio on the maximum temperature under the ceiling in tunnel fires. J. Fire Sci. 2013, 31, 245–257. [Google Scholar] [CrossRef]
- Huang, Y.B.; Li, Y.F.; Li, J.F.; Li, J.X.; Wu, K.; Zhu, K.; Li, H.H. Experimental investigation on maximum gas temperature beneath the ceiling in a branched tunnel fire. Int. J. Therm. Sci. 2019, 145, 105997. [Google Scholar] [CrossRef]
- Chen, L.F.; Mao, P.F.; Zhang, Y.C.; Xing, S.S.; Li, T. Experimental study on smoke characteristics of bifurcated tunnel fire. Tunn. Undergr. Space Technol. 2020, 98, 103295. [Google Scholar] [CrossRef]
Ramp | Number | Curvature Radius R (m) | Length (m) |
---|---|---|---|
C | 1 | ∞ | 3.00 |
C | 2 | 4.35 | 3.41 |
D | 3(bifurcated point) | - | - |
D | 4 | ∞ | 3.00 |
C | 5 | 2.50 | 3.93 |
C | 6 | 2.50 | 4.88 |
C | 7 | ∞ | 1.50 |
C | 8 | 4.50 | 3.22 |
Test NO. | Velocity Scheme | HRR (kW) | Blockage Ratio (%) | Ramp C Velocity (m/s) | Ramp D Velocity (m/s) |
---|---|---|---|---|---|
VC | VD | ||||
1–20 | Scheme 1 | 1.01, 1.83, 2.43, 3.24, 4.05 | 0, 10, 20, 30 | 0.42 | 0.38 |
21–40 | Scheme 2 | 0.41 | 0.45 | ||
41–60 | Scheme 3 | 0.40 | 0.61 | ||
61–80 | Scheme 4 | 0.44 | 0.55 | ||
81–100 | Scheme 5 | 0.46 | 0.85 | ||
101–120 | Scheme 6 | 0.65 | 0.96 |
Test NO. | Longitudinal Ventilation Velocities (m/s) | ||||||||
---|---|---|---|---|---|---|---|---|---|
0% | 10% | 20% | 30% | ||||||
Ramp | C | D | C | D | C | D | C | D | |
1–20 | 0.42 | 0.38 | 0.40 | 0.32 | 0.41 | 0.25 | 0.42 | 0.16 | |
21–40 | 0.41 | 0.45 | 0.28 | 0.47 | 0.37 | 0.44 | 0.30 | 0.40 | |
41–60 | 0.40 | 0.61 | 0.35 | 0.65 | 0.34 | 0.62 | 0.33 | 0.55 | |
61–80 | 0.44 | 0.55 | 0.40 | 0.60 | 0.46 | 0.46 | 0.47 | 0.41 | |
81–100 | 0.46 | 0.85 | 0.38 | 0.87 | 0.43 | 0.73 | 0.43 | 0.68 | |
101–120 | 0.65 | 0.96 | 0.75 | 0.91 | 0.65 | 0.83 | 0.72 | 0.78 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Zhen, Y.; Xie, B.; Sakepa Tagne, S.M.; Zhao, J.; Ying, H. Study on the Effect of Blockage Ratio on Maximum Smoke Temperature Rise in the Underground Interconnected Tunnel. Fire 2023, 6, 50. https://doi.org/10.3390/fire6020050
Xu Z, Zhen Y, Xie B, Sakepa Tagne SM, Zhao J, Ying H. Study on the Effect of Blockage Ratio on Maximum Smoke Temperature Rise in the Underground Interconnected Tunnel. Fire. 2023; 6(2):50. https://doi.org/10.3390/fire6020050
Chicago/Turabian StyleXu, Zhisheng, Yaxing Zhen, Baochao Xie, Sylvain Marcial Sakepa Tagne, Jiaming Zhao, and Houlin Ying. 2023. "Study on the Effect of Blockage Ratio on Maximum Smoke Temperature Rise in the Underground Interconnected Tunnel" Fire 6, no. 2: 50. https://doi.org/10.3390/fire6020050
APA StyleXu, Z., Zhen, Y., Xie, B., Sakepa Tagne, S. M., Zhao, J., & Ying, H. (2023). Study on the Effect of Blockage Ratio on Maximum Smoke Temperature Rise in the Underground Interconnected Tunnel. Fire, 6(2), 50. https://doi.org/10.3390/fire6020050