Increasing Fuel Loads, Fire Hazard, and Carbon Emissions from Fires in Central Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Surface and Ground Fuel-Load Sampling
2.3. Generation of the Fuel-Load Maps
2.4. Generation of the Fire-Hazard Maps
2.5. Evaluation of Carbon Emissions from Fires
3. Results
3.1. Surface and Ground Fuel-Load Maps
3.2. Fire hazards in the Angara Region
3.3. Carbon Emissions from Fires in the Angara Region
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Goldammer, J.G.; Furyaev, V.V. (Eds.) Fire in Ecosystems of Boreal Eurasia; Forestry Sciences; Springer: Dordrecht, The Netherlands, 1996; Volume 48, Available online: https://link.springer.com/book/10.1007/978-94-015-8737-2 (accessed on 10 September 2022).
- Leskinen, P.; Lindner, M.; Verkerk, P.J.; Nabuurs, G.J.; Van Brusselen, J.; Kulikova, E.; Hassegawa, M.; Lerink, B. (Eds.) Russian Forests and Climate Change. What Science Can Tell Us 11; European Forest Institute: Joensuu, Finland, 2020. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Ponomarev, E.I.; Ivanova, G.A.; Dvinskaya, M.L.; Coogan, S.C.P.; Flannigan, M.D. Wildfires in the Siberian taiga. Ambio 2021, 50, 1953–1974. [Google Scholar] [CrossRef] [PubMed]
- Masson-Delmotte, V.; Zhai, P.; Pirani, A.; Connors, S.L.; Pean, C.; Chen, Y.; Goldfarb, L.; Gomis, M.I.; Matthews, J.B.R.; Berger, S.; et al. (Eds.) IPCC 2021: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021. [Google Scholar] [CrossRef]
- Kirillina, K.; Shvetsov, E.G.; Protopopova, V.V.; Thiesmeyer, L.; Yan, W. Consideration of anthropogenic factors in boreal forest fire regime changes during rapid socio-economic development: Case study of forestry districts with increasing burnt area in the Sakha Republic, Russia. Environ. Res. Lett. 2020, 15, 035009. [Google Scholar] [CrossRef]
- Feurdean, A.; Florescu, G.; Tantau, I.; Vanniere, B.; Diaconu, A.C.; Pfeiffer, M.; Warren, D.; Hutchinson, S.M.; Gorina, N.; Galka, M.; et al. Recent fire regime in the southern boreal forests of western Siberia is unprecedented in the last five millennia. Quat. Sci. Rev. 2020, 244, 106495. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Dvinskaya, M.L.; Im, S.T.; Golyukov, A.S.; Smith, K.T. Wildfires in the Siberian Arctic. Fire 2022, 5, 106. [Google Scholar] [CrossRef]
- Talucci, A.C.; Loranty, M.M.; Alexander, H.D. Siberian taiga and tundra fire regimes from 2001–2020. Environ. Res. Lett. 2022, 17, 025001. [Google Scholar] [CrossRef]
- Kukavskaya, E.A.; Buryak, L.V.; Shvetsov, E.G.; Conard, S.G.; Kalenskaya, O.P. The impact of increasing fire frequency on forest transformations in southern Siberia. For. Ecol. Manag. 2016, 382, 225–235. [Google Scholar] [CrossRef]
- Barrett, K.; Baxter, R.; Kukavskaya, E.; Balzter, H.; Shvetsov, E.; Buryak, L. Postfire recruitment failure in Scots pine forests of southern Siberia. Remote Sens. Environ. 2020, 237, 111539. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global trends of forest loss due to fire from 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Burrell, A.L.; Sun, Q.; Baxter, R.; Kukavskaya, E.A.; Zhila, S.; Shestakova, T.; Rogers, B.M.; Kaduk, J.; Barrett, K. Climate change, fire return intervals and the growing risk of permanent forest loss in boreal Eurasia. Sci. Total Environ. 2022, 831, 154885. [Google Scholar] [CrossRef]
- Achard, F.; Mollicone, D.; Stibig, H.-J.; Aksenov, D.; Laestadius, L.; Li, Z.; Popatov, P.; Yaroshenko, A. Areas of rapid forest-cover change in boreal Eurasia. For. Ecol. Manag. 2006, 237, 322–334. [Google Scholar] [CrossRef]
- FAO. Global Forest Resources Assessment 2020: Main Report; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Rosstat. Unified Interdepartmental Information and Statistical System (EMISS). Forested Area. Available online: https://fedstat.ru/indicator/38194 (accessed on 6 October 2022). (In Russian).
- Rosstat. Unified Interdepartmental Information and Statistical System (EMISS). Volume of Logged Wood. Available online: https://fedstat.ru/indicator/37848 (accessed on 6 October 2022). (In Russian).
- Kuzmichev, E.; Trushina, I.; Lopatin, E. Volumes of illegal forest logging in Russian Federation. For. Inf. 2018, 1, 63–77. (In Russian) [Google Scholar]
- Kotlobai, A.; Lopina, O.; Kharchenkov, Y.; Bryukhanov, A.; Shchegolev, A.; Smirnov, D. Assessment of Volumes of Timber of Dubious Origin and Analysis of the Wood Tracking Systems Implementation in Some Forest-Rich Regions of the North-West, Siberia and Far East of Russia; WWF: Moscow, Russia, 2006. (In Russian) [Google Scholar]
- Bryukhanov, A.V. Experience in combating illegal wood trafficking in the Krasnoyarsk krai. Sustain. For. 2007, 1, 33–36. (In Russian) [Google Scholar]
- Kukavskaya, E.A.; Buryak, L.V.; Ivanova, G.A.; Conard, S.G.; Kalenskaya, O.P.; Zhila, S.V.; McRae, D.J. Influence of logging on the effects of wildfire in Siberia. Environ. Res. Lett. 2013, 8, 045034. [Google Scholar] [CrossRef]
- Forest Plan of the Krasnoyarsk Krai for the Period 2019–2028. Available online: http://zakon.krskstate.ru/0/doc/54526 (accessed on 6 October 2022). (In Russian).
- Sokolov, V.A.; Farber, S.K. Organization of Forest Management in the Lower Angara Region; Siberian branch of the Russian Academy of Sciences Publishing House: Novosibirsk, Russia, 1999; p. 217. (In Russian) [Google Scholar]
- Shvetsov, E.G.; Kukavskaya, E.A.; Shestakova, T.A.; Laflammy, J.; Rogers, B.M. Increasing fire and logging disturbances in Siberian boreal forests: A case study of the Angara region. Environ. Res. Lett. 2021, 16, 115007. [Google Scholar] [CrossRef]
- Ivanov, V.A.; Ivanova, G.A.; Korchunov, N.A.; Moskalchenko, S.A.; Ponomarev, E.I. Correlation of forest fire occurrence with disturbance level of forest territories in the Lower Angara region. Forestry 2011, 1, 39–41. (In Russian) [Google Scholar]
- Ivanov, V.A.; Moskalchenko, S.A.; Ponomarev, E.I. Impact of forest disturbance on fire occurrence in the Lower Angara region. Conifer. Boreal Zone 2009, 26, 249–254. [Google Scholar]
- Butler, B.W.; Ottmar, R.D.; Rupp, T.; Jandt, R.; Miller, E.; Howard, K.; Schmoll, R.; Theisen, S.; Vihnanek, R.E.; Jimenez, D. Quantifying the effect of fuel reduction treatments on fire behavior in boreal forests. Can. J. For. Res. 2013, 43, 97–102. [Google Scholar] [CrossRef]
- Johnston, D.C.; Turetsky, M.R.; Benscoter, B.W.; Wotton, B.M. Fuel load, structure, and potential fire behaviour in black spruce bogs. Can. J. For. Res. 2015, 45, 888–899. [Google Scholar] [CrossRef]
- Keane, R.E.; Mincemoyer, S.A.; Schmidt, K.M.; Long, D.G.; Garner, J.L. Mapping Vegetation and Fuels for Fire Management on the Gila National Forest Complex, New Mexico; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Missoula, MT, USA, 2000. [Google Scholar] [CrossRef]
- Wilson, B.A.; Ow, C.F.; Heathcott, M.; Milne, D.; McCaffrey, T.M.; Ghitter, G.; Franklin, S.E. Landsat MSS Classification of Fire Fuel Types in Wood Buffalo National Park, Northern Canada. Glob. Ecol. Biogeogr. Lett. 1994, 4, 33–39. [Google Scholar] [CrossRef]
- Falkowski, M.J.; Gessler, P.E.; Morgan, P.; Hudak, A.T.; Smith, A.M.S. Characterizing and mapping forest fire fuels using ASTER imagery and gradient modeling. For. Ecol. Manag. 2005, 217, 129–146. [Google Scholar] [CrossRef] [Green Version]
- Mutlu, M.; Popescu, S.C.; Stripling, C.; Spencer, T. Mapping surface fuel models using lidar and multispectral data fusion for fire behavior. Remote Sens. Environ. 2008, 112, 274–285. [Google Scholar] [CrossRef]
- Rollins, M.G.; Keane, R.E.; Parsons, R.A. Mapping fuels and fire regimes using remote sensing, ecosystem simulation, and gradient modeling. Ecol. Appl. 2004, 14, 75–95. [Google Scholar] [CrossRef]
- Keane, R.E.; Reeves, M. Use of Expert Knowledge to Develop Fuel Maps for Wildland Fire Management. In Expert Knowledge and Its Application in Landscape Ecology; Perera, A., Drew, C., Johnson, C., Eds.; Springer: New York, NY, USA, 2012; pp. 211–228. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Generation of a global fuel data set using the Fuel Characteristic Classification System. Biogeosciences 2016, 13, 2061–2076. [Google Scholar] [CrossRef]
- Soja, A.J.; Cofer, W.R.; Shugart, H.H.; Sukhinin, A.I.; Stackhouse, P.W.; McRae, D.J.; Conard, S.G. Estimating fire emissions and disparities in boreal Siberia (1998 through 2002). J. Geophys. Res. Atmos. 2004, 109, D14S06. [Google Scholar] [CrossRef]
- Usoltsev, V.A.; Chasovskikh, V.P.; Barakovskikh, E.V.; Nakai, N.V.; Voronov, M.P. Forest fuels mapping by combining State forest fund account and stand phytomass. Fires in Forest Ecosystems of Siberia. In Proceedings of the All-Russian Conference with Foreign Participation, Krasnoyarsk, Russia, 17–19 September 2008; pp. 81–83. (In Russian). [Google Scholar]
- Sochilova, E.N.; Erchov, D.V.; Korovin, G.N. Methods of low spatial resolution forest fuel mapping. Curr. Probl. Remote Sens. Earth Space 2009, 6, 441–449. (In Russian) [Google Scholar]
- Shvidenko, A.; Schepaschenko, D.; Sukhinin, A.; McCallum, I.; Maksyutov, S. Carbon Emissions from Forest Fires in Boreal Eurasia between 1998–2010. In Proceedings of the 5th International Wildland Fire Conference, Sun City, South Africa, 9–13 May 2011. [Google Scholar]
- Decree of the Ministry of Natural Resources and Environment of the Russian Federation No. 367 of August 18, 2014 “On Approval of the List of Forest Zones in the Russian Federation and the List of Forest Regions of the Russian Federation” Revised on February 19, 2019. Available online: https://docs.cntd.ru/document/420224339 (accessed on 10 September 2022). (In Russian).
- Abrams, M.; Crippen, R.; Fujisada, H. ASTER Global Digital Elevation Model (GDEM) and ASTER Global Water Body Dataset (ASTWBD). Remote Sens. 2020, 12, 1156. [Google Scholar] [CrossRef]
- Bartalev, S.; Egorov, V.; Zharko, V.; Loupian, E.; Plotnikov, D.; Khvostikov, S.; Shabanov, N. Land Cover Mapping over Russia using Earth Observation Data; Russian Academy of Sciences’ Space Research Institute: Moscow, Russia, 2016; ISBN 978-5-00015-006-1. Available online: http://www.iki.rssi.ru/books/2016bartalev.pdf (accessed on 10 September 2022). (In Russian)
- Ivanova, G.A.; Kukavskaya, E.A.; Ivanov, V.A.; Conard, S.G.; McRae, D.J. Fuel characteristics, loads and consumption in Scots pine forests of central Siberia. J. For. Res. 2020, 31, 2507–2524. [Google Scholar] [CrossRef]
- Kurbatsky, N.P. Investigating forest fuel loading and properties. In Forest Fire Science Problems; Kurbatsky, N.P., Ed.; V.N. Sukachev Institute of Forest: Krasnoyarsk, Russia, 1970; pp. 5–58. (In Russian) [Google Scholar]
- Van Wagner, C.E. The line intersect method in forest fuel sampling. For. Sci. 1968, 14, 20–26. [Google Scholar] [CrossRef]
- McRae, D.J.; Conard, S.G.; Ivanova, G.A.; Sukhinin, A.I.; Baker, S.P.; Samsonov, Y.N.; Blake, T.W.; Ivanov, V.A.; Ivanov, A.V.; Churkina, T.V.; et al. Variability of fire behavior, fire effects and emissions in Scotch pine forests of central Siberia. Mitig. Adapt. Strateg. Glob. Change 2006, 11, 45–74. [Google Scholar] [CrossRef]
- Sofronov, M.A.; Volokitina, A.V. Fire Zoning at Taiga Forest; Nauka Publications: Novosibirsk, Russia, 1990. (In Russian) [Google Scholar]
- Stolbovoi, V.; Savin, I. Land Resources of Russia—Maps of Soil Characteristics; Version 1 [Data Set]; National Snow and Ice Data Center: Boulder, Colorado USA. Available online: https://nsidc.org/data/ggd601/versions/1 (accessed on 10 September 2022).
- Giglio, L.; Schroeder, W.; Justice, C. The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens. Environ. 2016, 178, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.V.; Goetz, J.S.; Loveland, T.R.; et al. High-Resolution Global Maps of 21st-Century Forest Cover Change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef]
- Krylov, A.; McCarty, J.L.; Potapov, P.; Loboda, T.; Tyukavina, A.; Turubanova, S.; Hansen, M.C. Remote sensing estimates of stand-replacement fires in Russia, 2002–2011. Environ. Res. Lett. 2014, 9, 105007. [Google Scholar] [CrossRef]
- Vermote, E. MOD09A1 MODIS/Terra Surface Reflectance 8-Day L3 Global 500m SIN Grid V006 [Data set]. NASA EOSDIS Land Processes DAAC. Available online: https://ladsweb.modaps.eosdis.nasa.gov/missions-and-measurements/products/MOD09A1 (accessed on 10 September 2020).
- Melekhov, I.S. Forest Nature and Forest Fires; OGIZ: Arkhangelsk, Russia, 1947. (In Russian) [Google Scholar]
- Order of Rosleskhoz No. 287 of July 5, 2011 “On Approval of Classification of Natural Fire Danger in Forests and Classification of Fire Danger in Forests Depending on Weather Conditions”. Available online: http://docs.cntd.ru/document/902289183 (accessed on 10 September 2022). (In Russian).
- Buryak, L.V.; Kukavskaya, E.A.; Ivanov, V.A.; Malykh, O.F.; Kotelnikov, R.V. Assessment of Fire Hazard and Its Dynamics in Forest Areas of Siberia. Contemp. Probl. Ecol. 2021, 14, 803–814. [Google Scholar] [CrossRef]
- Alexeyev, V.A.; Birdsey, R.A. (Eds.) Carbon Storage in Forests and Peatlands of Russia; Gen. Tech. Rep. NE-244; U.S. Department of Agriculture, Forest Service, Northeastern Research Station: Radnor, PA, USA, 1998. [Google Scholar] [CrossRef]
- van Leeuwen, T.T.; van der Werf, G.R.; Hoffmann, A.A.; Detmers, R.G.; Rucker, G.; French, N.H.F.; Archibald, S.; Carvalho, J.A.; Cook, G.D.; de Groot, W.J.; et al. Biomass burning fuel consumption rates: A field measurement database. Biogeosciences 2014, 11, 7305–7329. [Google Scholar] [CrossRef]
- van Wees, D.; van der Werf, G.R.; Randerson, J.T.; Rogers, B.M.; Chen, Y.; Veraverbeke, S.; Giglio, L.; Morton, D.C. Global biomass burning fuel consumption and emissions at 500 m spatial resolution based on the Global Fire Emissions Database (GFED). Geosci. Model Dev. 2022, 15, 8411–8437. [Google Scholar] [CrossRef]
- Ivanov, V.A.; Ivanova, G.A.; Baksheeva, E.O.; Morozov, A.S. Estimating of greenhouse gas emissions from fires in light coniferous forests of the Lower Angara region. Sib. Lesn. Zurnal 2021, 6, 3–17. (In Russian) [Google Scholar] [CrossRef]
- Loudermilk, E.L.; Hiers, J.K.; O’Brien, J.J. The role of fuels for understanding fire behavior and fire effects. In Ecological Restoration and Management of Longleaf Pine Forests; Kirkman, L.K., Jack, S.B., Eds.; CRC Press, Taylor & Francis Group: Boca Raton, FL, USA, 2018; pp. 107–122. [Google Scholar]
- French, N.H.; Goovaerts, F.P.; Kasischke, E.S. Uncertainty in estimating carbon emissions from boreal forest fires. J. Geophys. Res. 2004, 109, D14S08. [Google Scholar] [CrossRef]
- Ponomarev, E.; Yakimov, N.; Ponomareva, T.; Yakubailik, O.; Conard, S.G. Current Trend of Carbon Emissions from Wildfires in Siberia. Atmosphere 2021, 12, 559. [Google Scholar] [CrossRef]
- Walker, X.J.; Baltzer, J.L.; Cumming, S.G.; Day, N.J.; Ebert, C.; Goetz, S.; Johnstone, J.F.; Potter, S.; Rogers, B.M.; Schuur, E.A.G.; et al. Increasing wildfires threaten historic carbon sink of boreal forest soils. Nature 2019, 572, 520–523. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Delcourt, C.J.F.; Kukavskaya, E.; Mack, M.; Walker, X.; Hessilt, T.; Rogers, B.; Scholten, R.C. Direct and longer-term carbon emissions from arctic-boreal fires: A short review of recent advances. Curr. Opin. Environ. Sci. Health 2021, 23, 100277. [Google Scholar] [CrossRef]
- Kukavskaya, E.A.; Soja, A.J.; Petkov, A.P.; Ponomarev, E.I.; Ivanova, G.A.; Conard, S.G. Fire emissions estimates in Siberia: Evaluation of uncertainties in area burned, land cover, and fuel consumption. Can. J. For. Res. 2013, 43, 493–506. [Google Scholar] [CrossRef]
- Kukavskaya, E.A.; Buryak, L.V.; Kalenskaya, O.P.; Zarubin, D.S. Transformation of the ground cover after surface fires and estimation of pyrogenic carbon emissions in the dark-coniferous forests of Central Siberia. Contemp. Probl. Ecol. 2017, 10, 62–70. [Google Scholar] [CrossRef]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Groisman, P.; Shugart, H.; Kicklighter, D.; Henebry, G.; Tchebakova, N.; Maksyutov, S.; Monier, E.; Gutman, G.; Gulev, S.; Qi, J.; et al. Northern Eurasia Future Initiative (NEFI): Facing the challenges and pathways of global change in the twenty-first century. Prog. Earth Planet. Sci. 2017, 4, 41. [Google Scholar] [CrossRef]
- Bowman, D.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Young, A.M.; Higuera, P.E.; Duffy, P.A.; Hu, F.S. Climatic thresholds shape northern high-latitude fire regimes and imply vulnerability to future climate change. Ecography 2017, 40, 606–617. [Google Scholar] [CrossRef]
- Shvidenko, A.Z.; Nilsson, S. Fire and the carbon budget of Russian forests. In Fire, Climate Change, and Carbon Cycling in the Boreal Forest; Kasischke, E.S., Stocks, B.J., Eds.; Springer: New York, NY, USA, 2000; pp. 289–311. [Google Scholar]
- Valendik, E.N.; Goldammer, J.G.; Kisilyakhov, Y.K.; Ivanova, G.A.; Verkhovets, S.V.; Bryukhanov, A.V.; Kosov, I.V.; Byambasuren, O.; the FIRESCAN Science Team. Prescribed Burning in Russia and Neighboring Temperate-Boreal Eurasia; Goldammer, J.G., Ed.; Kessel Publishing House: Remagen-Oberwinter, Germany, 2013; ISBN 9783941300712. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kukavskaya, E.A.; Shvetsov, E.G.; Buryak, L.V.; Tretyakov, P.D.; Groisman, P.Y. Increasing Fuel Loads, Fire Hazard, and Carbon Emissions from Fires in Central Siberia. Fire 2023, 6, 63. https://doi.org/10.3390/fire6020063
Kukavskaya EA, Shvetsov EG, Buryak LV, Tretyakov PD, Groisman PY. Increasing Fuel Loads, Fire Hazard, and Carbon Emissions from Fires in Central Siberia. Fire. 2023; 6(2):63. https://doi.org/10.3390/fire6020063
Chicago/Turabian StyleKukavskaya, Elena A., Evgeny G. Shvetsov, Ludmila V. Buryak, Pavel D. Tretyakov, and Pavel Ya. Groisman. 2023. "Increasing Fuel Loads, Fire Hazard, and Carbon Emissions from Fires in Central Siberia" Fire 6, no. 2: 63. https://doi.org/10.3390/fire6020063
APA StyleKukavskaya, E. A., Shvetsov, E. G., Buryak, L. V., Tretyakov, P. D., & Groisman, P. Y. (2023). Increasing Fuel Loads, Fire Hazard, and Carbon Emissions from Fires in Central Siberia. Fire, 6(2), 63. https://doi.org/10.3390/fire6020063