Flame Retardant Polymer Composite and Recent Inclusion of Magnesium Hydroxide Filler Material: A Bibliometric Analysis towards Further Study Scope
Abstract
:1. Introduction
2. Surveying Methodology
2.1. Research Articles Selection Criteria and Process
2.2. Research Data Extraction and Characteristics
3. Discussion
3.1. Topic 1-Magnesium Hydroxide Filler
3.1.1. Country-Wise Publication on Topic 1—“Magnesium Hydroxide Filler”
3.1.2. Topmost Cited Articles in “Magnesium Hydroxide Filler”
3.1.3. Keyword Co-Occurrence
3.1.4. Subject Area-Wise Document Published
3.2. Topic 2—‘Flame Retardant Polymer Composite’
3.2.1. Country-Wise Publication
3.2.2. Topmost Cited Articles Information
3.2.3. Keyword Co-Occurrence
3.2.4. Subject Area-Wise Publications
4. Recent Developments in the Key Topics
5. Current Challenges
- Efficiency: The content of magnesium hydroxide filler in polymer composite is crucial for the optimum mechanical properties. As the high content of magnesium hydroxide greatly affects the mechanical properties of the polymer composite, such as tensile strength, impact strength, and Young’s modulus, it is still a challenge to keep the content of magnesium hydroxide below 15% [2]. It would be highly desirable to lower the content of magnesium hydroxide to improve the mechanical properties.
- Preparation methods of magnesium hydroxide for controlling crystal size: Several synthesis routes of magnesium hydroxide have been developed by researchers [23,25,27]. However, for controlling the crystal size of magnesium hydroxide particles, researchers are challenged to propose more synthesis routes for magnesium hydroxide particles. The crystal size has a great impact on the mechanical and flame retardancy properties of polymer composite [2].
- Sustainability: Several biopolymers are used to prepare polymer composites for sustainable and eco-friendly composite materials instead of plastic [129]. Only a few studies were conducted on biopolymer composites containing magnesium hydroxide filler [128]. Maintaining good mechanical properties with better flame retardancy while also developing sustainable and eco-friendly composite materials will be a crucial challenge for researchers.
6. Conclusions and Further Study Scope
- It was observed that the research trend was clearly upward, especially in the last few years. Researchers have conducted numerous works in order to improve the flame retardancy of polymer composites. The use of magnesium hydroxide as filler in polymer composite has been increasing due to its potential flame retardant properties over other inorganic metal hydroxides.
- Several countries pay attention to improving the flame retardant properties of polymer composite using magnesium hydroxide. However, the research conducted in China compared to other countries is more noticeable and there are more published articles. It is noticed that several approaches have been proposed that remarkably improved the flame retardant properties of the polymer composites.
- Though magnesium hydroxide has higher thermal stability and low toxicity, there is a reduction in mechanical properties when a high content of magnesium hydroxide is used. Different approaches, such as surface modification, synthesis procedure for magnesium hydroxide fabrication, adding 26ompatibilizer, and synergy formation between magnesium hydroxide and other fillers can be used to overcome this issue.
- Different types of fibres, including biopolymer fibres, are also used with magnesium hydroxide in many composites, which greatly improved the flame retardancy and mechanical properties of polymer composites. However, the dispersion of biopolymer fibres is one of the key issues.
- Further research can be conducted on building cladding core material containing magnesium hydroxide filler, biopolymers, and fibres to investigate the overall impact and suitability in high-rise buildings.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, J.; Liang, J.; Lin, X.; Lin, H.; Yu, J.; Wang, S. The flame-retardant mechanisms and preparation of polymer composites and their potential application in construction engineering. Polymers 2022, 14, 82. [Google Scholar] [CrossRef] [PubMed]
- Mochane, M.J.; Mokhothu, T.H.; Mokhena, T.C. Synthesis, mechanical, and flammability properties of metal hydroxide reinforced polymer composites: A review. Polym. Eng. Sci. 2022, 62, 44–65. [Google Scholar] [CrossRef]
- Tan, S.; Moinuddin, K.; Joseph, P. The ignition frequency of structural fires in Australia from 2012 to 2019. Fire 2023, 6, 35. [Google Scholar] [CrossRef]
- Young, R.J.; Lovell, P.A. Introduction to Polymers; CRC Press: Boca Raton, FL, USA, 2011. [Google Scholar]
- Pruez, J.; Shoukry, S.; Williams, G.; Shoukry, M. Lightweight Composite Materials for Heavy Duty Vehicles; West Virginia Univ.: Morgantown, WV, USA, 2013. [Google Scholar]
- Roda, E.; Galletti, F.; Truscello, A.; Gambarotti, C. Flame behaviour of magnesium and aluminium hydroxide-filled polymer composites used in power and telecom cables. Plast. Rubber Compos. 2022, 51, 185–195. [Google Scholar] [CrossRef]
- Huang, H.; Tian, M.; Yang, J.; Li, H.; Liang, W.; Zhang, L.; Li, X. Stearic acid surface modifying Mg(OH)2: Mechanism and its effect on properties of ethylene vinyl acetate/Mg(OH)2 composites. J. Appl. Polym. Sci. 2008, 107, 3325–3331. [Google Scholar] [CrossRef]
- Huang, H.; Tian, M.; Liu, L.; Liang, W.; Zhang, L. Effect of particle size on flame retardancy of Mg(OH)2-filled ethylene vinyl acetate copolymer composites. J. Appl. Polym. Sci. 2006, 100, 4461–4469. [Google Scholar] [CrossRef]
- Dogan, M.; Dogan, S.D.; Savas, L.A.; Ozcelik, G.; Tayfun, U. Flame retardant effect of boron compounds in polymeric materials. Composites Part B Eng. 2021, 222, 109088. [Google Scholar] [CrossRef]
- Tan, K.L.; Chen, X.S.; Yan, B.S.; Lu, Y.Z.; Li, C.X. Application of chlorinated waste rubber as a flame retardant of low density polyethylene. J. Appl. Polym. Sci. 2012, 123, 3495–3502. [Google Scholar] [CrossRef]
- Lu, H.; Shao, J.; Ding, M.; Zhao, D.; Tian, C. Study on Flame-Retardant LLDPE/EPDM Thermoplastic Elastomers with Magnesium Hydroxide Sulfate Hydrate Whiskers. Polym. Plast. Technol. Eng. 2012, 51, 578–582. [Google Scholar] [CrossRef]
- Suppakarn, N.; Jarukumjorn, K. Mechanical properties and flammability of sisal/PP composites: Effect of flame retardant type and content. Compos. Part B Eng. 2009, 40, 613–618. [Google Scholar] [CrossRef]
- Tai, C.; Li, R.K. Mechanical properties of flame retardant filled polypropylene composites. J. Appl. Polym. Sci. 2001, 80, 2718–2728. [Google Scholar] [CrossRef]
- Zhao, C.-S.; Huang, F.-L.; Xiong, W.-C.; Wang, Y.-Z. A novel halogen-free flame retardant for glass-fiber-reinforced poly (ethylene terephthalate). Polym. Degrad. Stab. 2008, 93, 1188–1193. [Google Scholar] [CrossRef]
- Matko, S.; Toldy, A.; Keszei, S.; Anna, P.; Bertalan, G.; Marosi, G. Flame retardancy of biodegradable polymers and biocomposites. Polym. Degrad. Stab. 2005, 88, 138–145. [Google Scholar] [CrossRef]
- Chen, X.; Jiao, C. Study on Flame Retardance of Co-microencapsulated Ammonium Polyphosphate and Pentaerythritol in Polypropylene. J. Fire Sci. 2010, 28, 509–521. [Google Scholar] [CrossRef]
- Zaghloul, M.M.Y.; Zaghloul, M.M.Y. Influence of flame retardant magnesium hydroxide on the mechanical properties of high density polyethylene composites. J. Reinf. Plast. Compos. 2017, 36, 1802–1816. [Google Scholar] [CrossRef]
- Lu, Y.; Wu, C.; Xu, S. Mechanical, thermal and flame retardant properties of magnesium hydroxide filled poly (vinyl chloride) composites: The effect of filler shape. Compos. Part A Appl. Sci. Manuf. 2018, 113, 1–11. [Google Scholar] [CrossRef]
- Tang, H.; Chen, K.; Li, X.; Ao, M.; Guo, X.; Xue, D. Environment-friendly, flame retardant thermoplastic elastomer–magnesium hydroxide composites. Funct. Mater. Lett. 2017, 10, 1750042. [Google Scholar] [CrossRef]
- Zheng X-t Wu D-m Meng Q-y Wang, K.-j.; Liu, Y.; Wan, L.; Ren, D.-y. Mechanical properties of low-density polyethylene/nano-magnesium hydroxide composites prepared by an in situ bubble stretching method. J. Polym. Res. 2008, 15, 59–65. [Google Scholar]
- Yang, H.; Liu, L.; Yang, W.; Liu, H.; Ahmad, W.; Ahmad, A.; Aslam, F.; Joyklad, P. A comprehensive overview of geopolymer composites: A bibliometric analysis and literature review. Case Stud. Constr. Mater. 2022, 16, e00830. [Google Scholar] [CrossRef]
- Deepaky, D.; Madival, A.S.; Bongale, A.M. Bibliometric Analysis of Research Trends in Rice Straw/Husk Reinforced Polymer Composites. Libr. Philos. Pract. 2021, 1–36. [Google Scholar]
- Ghule, B.; Laad, M. A bibliometric survey on polymer composites in energy storage applications. Libr. Philos. Pract. 2020, pp. 1–17. Available online: https://digitalcommons.unl.edu/libphilprac/4497/ (accessed on 18 April 2022).
- Pan, Y.; Yin, C.; Fernandez, C.; Fu, L.; Lin, C.-T. A systematic review and bibliometric analysis of flame-retardant rigid polyurethane foam from 1963 to 2021. Polymers 2022, 14, 3011. [Google Scholar] [CrossRef] [PubMed]
- Danlei, Y.; Zhenning, Z.; Chengchen, W.; Daolei, C.; Zhihua, D.; Ping, X. Research hotspots and frontier trends of health hazards of flame retardants based on bibliometric visualization analysis. J. Environ. Occup. Med. 2022, 39, 410–418. [Google Scholar]
- Lang, Z.; Liu, H.; Meng, N.; Wang, H.; Wang, H.; Kong, F. Mapping the knowledge domains of research on fire safety–an informetrics analysis. Tunn. Undergr. Space Technol. 2021, 108, 103676. [Google Scholar] [CrossRef]
- Yan, C.; Shuangqing, H.; Genxiang, S.; Hongchang, Z.; Ying, Z. Research Trend of Environmental and Health Risks of Brominated Flame Retardants Based on Bibliometric Analysis. Asian J. Ecotoxicol. 2022, 17, 380–391. [Google Scholar]
- Zhang, T.; Shen, Y.; Guo, C.; Yan, Z. (Eds.) Mapping the knowledge domains of fire-resilient underground construction materials through bibliometric analysis. IOP Conf. Ser. Earth Environ. Sci. 2021, 861, 072055. [Google Scholar] [CrossRef]
- Zhang, D.; Kong, L.; Li, Y.; Wang, H. Visualization Analysis of Nano-Flame Retardant Materials Based on Citespace. J. Phys. Conf. Ser. 2021, 1865, 022013. [Google Scholar] [CrossRef]
- Rothon, R.N.; Hornsby, P.R. Flame retardant effects of magnesium hydroxide. Polym. Degrad. Stab. 1996, 54, 383–385. [Google Scholar] [CrossRef]
- Hull, T.R.; Witkowski, A.; Hollingbery, L. Fire retardant action of mineral fillers. Polym. Degrad. Stab. 2011, 96, 1462–1469. [Google Scholar] [CrossRef]
- Bi, Q.; Yao, D.; Yin, G.Z.; You, J.; Liu, X.Q.; Wang, N.; Wang, D.-Y. Surface engineering of magnesium hydroxide via bioinspired iron-loaded polydopamine as green and efficient strategy to epoxy composites with improved flame retardancy and reduced smoke release. React. Funct. Polym. 2020, 155, 104690. [Google Scholar] [CrossRef]
- Cross, M.S.; Cusack, P.A.; Hornsby, P.R. Effects of Tin Additives on the Flammability and Smoke Emission Characteristics of Halogen-Free Ethylene-Vinyl Acetate Copolymer. Article. Polym. Degrad. Stab. 2003, 79, 309–318. [Google Scholar] [CrossRef]
- Hornsby, P.R.; Wang, J.; Rothon, R.; Jackson, G.; Wilkinson, G.; Cossick, K. Thermal decomposition behaviour of polyamide fire-retardant compositions containing magnesium hydroxide filler. Polym. Degrad. Stab. 1996, 51, 235–249. [Google Scholar] [CrossRef]
- Dittrich, B.; Wartig, K.A.; Mülhaupt, R.; Schartel, B. Flame-retardancy properties of intumescent ammonium poly(phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 2014, 6, 2875–2895. [Google Scholar] [CrossRef]
- Hornsby, P.R.; Watson, C.L. A study of the mechanism of flame retardance and smoke suppression in polymers filled with magnesium hydroxide. Polym. Degrad. Stab. 1990, 30, 73–87. [Google Scholar] [CrossRef]
- Wang, J.; Tung, J.F.; Ahmad Fuad, M.Y.; Hornsby, P.R. Microstructure and mechanical properties of ternary phase polypropylene/elastomer/magnesium hydroxide fire-retardant compositions. J. Appl. Polym. Sci. 1996, 60, 1425–1437. [Google Scholar] [CrossRef]
- Rothon, R.N. Mineral fillers in thermoplastics: Filler manufacture and characterisation. In Advances in Polymer Science; Springer: Berlin/Heidelberg, Germany, 1999; pp. 68–107. [Google Scholar]
- Sung, G.; Kim, J.W.; Kim, J.H. Fabrication of polyurethane composite foams with magnesium hydroxide filler for improved sound absorption. J. Ind. Eng. Chem. 2016, 44, 99–104. [Google Scholar] [CrossRef]
- Hornsby, P.R.; Watson, C.L. Mechanism of smoke suppression and fire retardancy in polymers containing magnesium hydroxide filler. Plast. Rubber Process. Appl. 1989, 11, 45–51. [Google Scholar]
- Liang, J.; Zhang, Y. A study of the flame retardant properties of polypropylene/Al(OH)3/Mg(OH)2 composites. Polym. Int. 2010, 59, 539–542. [Google Scholar] [CrossRef]
- Saba, N.; Alothman, O.Y.; Almutairi, Z.; Jawaid, M. Magnesium hydroxide reinforced kenaf fibers/epoxy hybrid composites: Mechanical and thermomechanical properties. Constr. Build. Mater. 2019, 201, 138–148. [Google Scholar] [CrossRef]
- Hornsby, P.R.; Watson, C.L. Interfacial modification of polypropylene composites filled with magnesium hydroxide. J. Mater. Sci. 1995, 30, 5347–5355. [Google Scholar] [CrossRef]
- Balakrishnan, H.; Hassan, A.; Isitman, N.A.; Kaynak, C. On the use of magnesium hydroxide towards halogen-free flame-retarded polyamide-6/polypropylene blends. Polym. Degrad. Stab. 2012, 97, 1447–1457. [Google Scholar] [CrossRef]
- Montezin, F.; Lopez Cuesta, J.M.; Crespy, A.; Georlette, P. Flame retardant and mechanical properties of a copolymer PP/PE containing brominated compounds/antimony trioxide blends and magnesium hydroxide or talc. Fire Mater. 1997, 21, 245–252. [Google Scholar] [CrossRef]
- Liauw, C.M.; Lees, G.C.; Hurst, S.J.; Rothon, R.N.; Ali, S. Effect of silane-based filler surface treatment formulation on the interfacial properties of impact modified polypropylene/magnesium hydroxide composites. Compos. Part A Appl. Sci. Manuf. 1998, 29, 1313–1318. [Google Scholar] [CrossRef]
- Xu, T.; Huang, X.; Zhao, Y. Investigation into the properties of asphalt mixtures containing magnesium hydroxide flame retardant. Fire Saf. J. 2011, 46, 330–334. [Google Scholar] [CrossRef]
- Yeh, J.; Yang, H.; Huang, S. Combustion of polyethylene filled with metallic hydroxides and crosslinkable polyethylene. Polym. Degrad. Stab. 1995, 50, 229–234. [Google Scholar] [CrossRef]
- Bonati, A.; Merusi, F.; Polacco, G.; Filippi, S.; Giuliani, F. Ignitability and thermal stability of asphalt binders and mastics for flexible pavements in highway tunnels. Constr. Build. Mater. 2012, 37, 660–668. [Google Scholar] [CrossRef]
- Witkowski, A.; Stec, A.A.; Hull, T.R. The influence of metal hydroxide fire retardants and nanoclay on the thermal decomposition of EVA. Polym. Degrad. Stab. 2012, 97, 2231–2240. [Google Scholar] [CrossRef]
- Zhang, Y.; Hu, Y.; Song, L.; Wu, J.; Fang, S. Influence of Fe-MMT on the fire retarding behavior and mechanical property of (ethylene-vinyl acetate copolymer/magnesium hydroxide) composite. Polym. Adv. Technol. 2008, 19, 960–966. [Google Scholar] [CrossRef]
- Lv, J.-P.; Liu, W.-H. Flame retardancy and mechanical properties of EVA nanocomposites based on magnesium hydroxide nanoparticles/microcapsulated red phosphorus. J. Appl. Polym. Sci. 2007, 105, 333–340. [Google Scholar] [CrossRef]
- Velasco, J.I.; Morhain, C.; Martínez, A.B.; Rodríguez-Pérez, M.A.; De Saja, J.A. The effect of filler type, morphology and coating on the anisotropy and microstructure heterogeneity of injection-moulded discs of polypropylene filled with aluminium and magnesium hydroxides. Part 2. Thermal and dynamic mechanical properties. Polymer 2002, 43, 6813–6819. [Google Scholar] [CrossRef]
- Chang, S.; Xie, T.; Yang, G. Effects of polystyrene-encapsulated magnesium hydroxide on rheological and flame-retarding properties of HIPS composites. Polym. Degrad. Stab. 2006, 91, 3266–3273. [Google Scholar] [CrossRef]
- Hollingbery, L.; Hull, T.R. The fire retardant effects of huntite in natural mixtures with hydromagnesite. Polym. Degrad. Stab. 2012, 97, 504–512. [Google Scholar] [CrossRef]
- Ulutan, S.; Gilbert, M. Mechanical properties of HDPE/magnesium hydroxide composites. J. Mater. Sci. 2000, 35, 2115–2120. [Google Scholar] [CrossRef]
- Formosa, J.; Chimenos, J.M.; Lacasta, A.M.; Haurie, L. Thermal study of low-grade magnesium hydroxide used as fire retardant and in passive fire protection. Thermochim. Acta 2011, 515, 43–50. [Google Scholar] [CrossRef]
- Sonnier, R.; Viretto, A.; Dumazert, L.; Longerey, M.; Buonomo, S.; Gallard, B.; Longuet, C.; Cavodeau, F.; Lamy, R.; Freitag, A. Fire retardant benefits of combining aluminum hydroxide and silica in ethylene-vinyl acetate copolymer (EVA). Polym. Degrad. Stab. 2016, 128, 228–236. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Y.; Ren, H.; Liu, D.; Zhao, T.; Zhao, N.; Ying, H. Economically enhanced succinic acid fermentation from cassava bagasse hydrolysate using Corynebacterium glutamicum immobilized in porous polyurethane filler. Bioresour. Technol. 2014, 174, 190–197. [Google Scholar] [CrossRef]
- Suihkonen, R.; Nevalainen, K.; Orell, O.; Honkanen, M.; Tang, L.; Zhang, H.; Zhang, Z.; Vuorinen, J. Performance of epoxy filled with nano- and micro-sized Magnesium hydroxide. J. Mater. Sci. 2012, 47, 1480–1488. [Google Scholar] [CrossRef]
- Karidakis, T.; Agatzini-Leonardou, S.; Neou-Syngouna, P. Removal of magnesium from nickel laterite leach liquors by chemical precipitation using calcium hydroxide and the potential use of the precipitate as a filler material. Hydrometallurgy 2005, 76, 105–114. [Google Scholar] [CrossRef]
- Cook, M.; Harper, J.F. The influence of magnesium hydroxide morphology on the crystallinity and properties of filled polypropylene. Adv. Polym. Technol. 1998, 17, 53–62. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Guo, S.; Luo, Z.; He, M. Effects of magnesium hydroxide and its surface modification on crystallization and rheological behaviors of polypropylene. Polym. Compos. 2009, 30, 941–947. [Google Scholar] [CrossRef]
- Lee, C.H.; Sapuan, S.M.; Hassan, M.R. Mechanical and thermal properties of kenaf fiber reinforced polypropylene/magnesium hydroxide composites. J. Eng. Fibers Fabr. 2017, 12, 50–58. [Google Scholar] [CrossRef]
- Moreira, F.K.V.; De Camargo, L.A.; Marconcini, J.M.; Mattoso, L.H.C. Nutraceutically inspired pectin-Mg(OH)2 nanocomposites for bioactive packaging applications. J. Agric. Food Chem. 2013, 61, 7110–7119. [Google Scholar] [CrossRef]
- Moreira, F.K.V.; Pedro, D.C.A.; Glenn, G.M.; Marconcini, J.M.; Mattoso, L.H.C. Brucite nanoplates reinforced starch bionanocomposites. Carbohydr. Polym. 2013, 92, 1743–1751. [Google Scholar] [CrossRef] [PubMed]
- Focke, W.W.; Molefe, D.; Labuschagne, F.J.W.; Ramjee, S. The influence of stearic acid coating on the properties of magnesium hydroxide, hydromagnesite, and hydrotalcite powders. J. Mater. Sci. 2009, 44, 6100–6109. [Google Scholar] [CrossRef]
- Wang, Z.; Shen, X.; Fan, W.; Hu, Y.; Qu, B.; Gui, Z. Effects of poly(ethylene-co-propylene) elastomer on mechanical properties and combustion behaviour of flame retarded polyethylene/magnesium hydroxide composites. Polym. Int. 2002, 51, 653–657. [Google Scholar] [CrossRef]
- Klapiszewski, Ł.; Tomaszewska, J.; Skórczewska, K.; Jesionowski, T. Preparation and characterization of eco-friendly Mg(OH)2/lignin hybrid material and its use as a functional filler for poly(vinyl chloride). Polymers 2017, 9, 258. [Google Scholar] [CrossRef]
- Jančář, J. Influence of the filler particle shape on the elastic moduli of PP/CaCO3 and PP/Mg(OH)2 composites-Part 2 Enhanced interfacial adhesion. J. Mater. Sci. 1989, 24, 4268–4274. [Google Scholar] [CrossRef]
- Oyama, H.T.; Sekikawa, M.; Shida, S. Effect of the interface structure on the morphology and the mechanical, thermal, and flammability properties of polypropylene/poly (phenylene ether)/magnesium hydroxide composites. Polym. Degrad. Stab. 2012, 97, 755–765. [Google Scholar] [CrossRef]
- Oyama, H.T.; Sekikawa, M.; Ikezawa, Y. Influence of the Polymer/Inorganic Filler Interface on the Mechanical, Thermal, and Flame Retardant Properties of Polypropylene/Magnesium Hydroxide Composites. J. Macromol. Sci. Part B 2011, 50, 463–483. [Google Scholar] [CrossRef]
- He, Z.; Wekesa, M.; Ni, Y. A comparative study of Mg(OH)2-based and NaOH-based peroxide bleaching of TMP: Anionic trash formation and its impact on filler retention. Pulp Pap. Can. 2006, 107, 29–32. [Google Scholar]
- Hornsby, P.R.; Mthupha, A. Analysis of fire retardancy in magnesium hydroxide filled polypropylene composites. Plast. Rubber Compos. Process. Appl. 1996, 25, 347–355. [Google Scholar]
- Gwon, J.G.; Lee, S.Y.; Kim, J.H. Thermal degradation behavior of polypropylene base wood plastic composites hybridized with metal (aluminum, magnesium) hydroxides. J. Appl. Polym. Sci. 2014, 131, 40120. [Google Scholar] [CrossRef]
- Yin, J.; Zhang, Y.; Zhang, Y. Deformation mechanism of polypropylene composites filled with magnesium hydroxide. J. Appl. Polym. Sci. 2005, 97, 1922–1930. [Google Scholar] [CrossRef]
- Liauw, C.M.; Rothon, R.N.; Lees, G.C.; Iqbal, Z. Flow micro-calorimetry and FTIR studies on the adsorption of saturated and unsaturated carboxylic acids onto metal hydroxide flame-retardant fillers. J. Adhes. Sci. Technol. 2001, 15, 889–912. [Google Scholar] [CrossRef]
- Liang, J.Z. Tensile and flexural properties of polypropylene composites filled with highly effective flame retardant magnesium hydroxide. Polym. Test. 2017, 60, 110–116. [Google Scholar] [CrossRef]
- Wang, S.; Liang, S.; Wang, K.; Liu, J.; Luo, J.; Peng, S. Enhanced flame retardancy, smoke suppression, and acid resistance of polypropylene/magnesium hydroxide composite by expandable graphite and microencapsulated red phosphorus. J. Vinyl Addit. Technol. 2023, 29, 395–409. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Guo, S.; Luo, Z.; He, M. Flammability and thermal oxidative degradation kinetics of magnesium hydroxide and expandable graphite flame retarded polypropylene composites. J. Macromol. Sci. Part A Pure Appl. Chem. 2008, 45, 712–720. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, Y.; Cai, L.; Li, L. Functionalized graphene with Platelet-like magnesium hydroxide for enhancing fire safety, smoke suppression and toxicity reduction of Epoxy resin. Appl. Surf. Sci. 2022, 578, 152052. [Google Scholar] [CrossRef]
- Yu, Z.; Liu, J.; Zhang, Y.; Luo, J.; Lu, C.; Pan, B. Thermo-oxidative degradation behavior and fire performance of high impact polystyrene/magnesium hydroxide/microencapsulated red phosphorus composite with an alternating layered structure. Polym. Degrad. Stab. 2015, 115, 54–62. [Google Scholar] [CrossRef]
- Attia, N.F.; Goda, E.S.; Nour, M.A.; Sabaa, M.W.; Hassan, M.A. Novel synthesis of magnesium hydroxide nanoparticles modified with organic phosphate and their effect on the flammability of acrylonitrile-butadiene styrene nanocomposites. Mater. Chem. Phys. 2015, 168, 147–158. [Google Scholar] [CrossRef]
- Jeencham, R.; Suppakarn, N.; Jarukumjorn, K. Effect of flame retardants on flame retardant, mechanical, and thermal properties of sisal fiber/polypropylene composites. Compos. Part B Eng. 2014, 56, 249–253. [Google Scholar] [CrossRef]
- Ye, L.; Wu, Q.; Qu, B. Synergistic effects and mechanism of multiwalled carbon nanotubes with magnesium hydroxide in halogen-free flame retardant EVA/MH/MWNT nanocomposites. Polym. Degrad. Stab. 2009, 94, 751–756. [Google Scholar] [CrossRef]
- Ghanbari, D.; Salavati-Niasari, M.; Sabet, M. Preparation of flower-like magnesium hydroxide nanostructure and its influence on the thermal stability of poly vinyl acetate and poly vinyl alcohol. Compos. Part B Eng. 2013, 45, 550–555. [Google Scholar] [CrossRef]
- Kim, S.; Han, T.; Jeong, J.; Lee, H.; Ryou, M.H.; Lee, Y.M. A Flame-Retardant Composite Polymer Electrolyte for Lithium-Ion Polymer Batteries. Electrochim. Acta 2017, 241, 553–559. [Google Scholar] [CrossRef]
- Rybiński, P.; Janowska, G. Influence synergetic effect of halloysite nanotubes and halogen-free flame-retardants on properties nitrile rubber composites. Thermochim. Acta 2013, 557, 24–30. [Google Scholar] [CrossRef]
- Huang, N.H.; Chen, Z.J.; Yi, C.H.; Wang, J.Q. Synergistic flame retardant effects between sepiolite and magnesium hydroxide in ethylene-vinyl acetate (EVA) matrix. Express Polym. Lett. 2010, 4, 227–233. [Google Scholar] [CrossRef]
- Gul, R.; Islam, A.; Yasin, T.; Mir, S. Flame-retardant synergism of sepiolite and magnesium hydroxide in a linear low-density polyethylene composite. J. Appl. Polym. Sci. 2011, 121, 2772–2777. [Google Scholar] [CrossRef]
- Chen, H.; Wang, T.; Wen, Y.; Wen, X.; Gao, D.; Yu, R.; Chen, X.; Mijowska, E.; Tang, T. Expanded graphite assistant construction of gradient-structured char layer in PBS/Mg(OH)2 composites for improving flame retardancy, thermal stability and mechanical properties. Compos. Part B Eng. 2019, 177, 107402. [Google Scholar] [CrossRef]
- Shen, L.; Chen, Y.; Li, P. Synergistic catalysis effects of lanthanum oxide in polypropylene/magnesium hydroxide flame retarded system. Compos. Part A Appl. Sci. Manuf. 2012, 43, 1177–1186. [Google Scholar] [CrossRef]
- Liu, J.; Zhang, Y. Effect of ethylene-acrylic acid copolymer on flame retardancy and properties of LLDPE/EAA/MH composites. Polym. Degrad. Stab. 2011, 96, 2215–2220. [Google Scholar] [CrossRef]
- Ferry, L.; Lopez Cuesta, J.M.; Chivas, C.; Mac Way Hoy, G.; Dvir, H. Incorporation of a grafted brominated monomer in glass fiber reinforced polypropylene to improve the fire resistance. Polym. Degrad. Stab. 2001, 74, 449–456. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, Y.; Wan, C.; Zhang, Y.; Li, R.; Liu, G. Thermal stability, flame retardancy and rheological behavior of ABS filled with magnesium hydroxide sulfate hydrate whisker. Polym. Bull. 2007, 58, 747–755. [Google Scholar] [CrossRef]
- Eibl, S. Potential for the formation of respirable fibers in carbon fiber reinforced plastic materials after combustion. Fire Mater. 2017, 41, 808–816. [Google Scholar] [CrossRef]
- Suriani, M.J.; Zainudin, H.A.; Ilyas, R.A.; Petrů, M.; Sapuan, S.M.; Ruzaidi, C.M.; Mustapha, R. Kenaf fiber/pet yarn reinforced epoxy hybrid polymer composites: Morphological, tensile, and flammability properties. Polymers 2021, 13, 1532. [Google Scholar] [CrossRef]
- Schofield, W.C.E.; Hurst, S.J.; Lees, G.C.; Liauw, C.M.; Rothon, R.N. Influence of surface modification of magnesium hydroxide on the processing and mechanical properties of composites of magnesium hydroxide and an ethylene vinyl acetate copolymer? Compos. Interfaces 1998, 5, 515–528. [Google Scholar] [CrossRef]
- Suriani, M.J.; Sapuan, S.M.; Ruzaidi, C.M.; Nair, D.S.; Ilyas, R.A. Flammability, morphological and mechanical properties of sugar palm fiber/polyester yarn-reinforced epoxy hybrid biocomposites with magnesium hydroxide flame retardant filler. Text. Res. J. 2021, 91, 2600–2611. [Google Scholar] [CrossRef]
- Shen, L.; Shao, C.; Li, R.; Xu, Y.; Li, J.; Lin, H. Preparation and characterization of ethylene–vinyl acetate copolymer (EVA)–magnesium hydroxide (MH)–hexaphenoxycyclotriphosphazene (HPCTP) composite flame-retardant materials. Polym. Bull. 2019, 76, 2399–2410. [Google Scholar] [CrossRef]
- Sun, L.; Wu, Q.; Xie, Y.; Wang, F.; Wang, Q. Thermal degradation and flammability properties of multilayer structured wood fiber and polypropylene composites with fire retardants. RSC Adv. 2016, 6, 13890–13897. [Google Scholar] [CrossRef]
- Ayrilmis, N. Effect of fire retardants on surface roughness and wettability of wood plastic composite panels. BioResources 2011, 6, 3178–3187. [Google Scholar]
- Liang, J.Z.; Yang, J.; Tang, C.Y. Die-swell behavior of PP/Al(OH)3/Mg(OH)2 flame retardant composite melts. Polym. Test. 2010, 29, 624–628. [Google Scholar] [CrossRef]
- Liu, P.; Guo, J. Organo-modified magnesium hydroxide nano-needle and its polystyrene nanocomposite. J. Nanoparticle Res. 2007, 9, 669–673. [Google Scholar] [CrossRef]
- Liang, J.Z.; Yang, J.; Tang, C.Y. Melt shear viscosity of PP/Al(OH)3/Mg(OH)2 flame retardant composites at high extrusion rates. J. Appl. Polym. Sci. 2011, 119, 1835–1841. [Google Scholar] [CrossRef]
- Li, Z.; Liang, W.; Shan, Y.; Wang, X.; Yang, K.; Cui, Y. Study of flame-retarded silicone rubber with ceramifiable property. Fire Mater. 2020, 44, 487–496. [Google Scholar] [CrossRef]
- Rybiński, P.; Janowska, G.; Dobrzyńska, R.; Kucharska, A. Effect of halogenless flame retardants on the thermal properties, flammability, and fire hazard of cross-linked EVM/NBR rubber blends. J. Therm. Anal. Calorim. 2014, 115, 771–782. [Google Scholar] [CrossRef]
- He, J.; Zeng, W.; Shi, M.; Lv, X.; Fan, H.; Lei, Z. Influence of expandable graphite on flame retardancy and thermal stability property of unsaturated polyester resins/organic magnesium hydroxide composites. J. Appl. Polym. Sci. 2020, 137. [Google Scholar] [CrossRef]
- Weng, P.; Yin, X.; Yang, S.; Han, L.; Tan, Y.; Chen, N.; Chen, D.; Zhou, Y.; Wang, L.; Wang, H. Functionalized magnesium hydroxide fluids/acrylate-coated hybrid cotton fabric with enhanced mechanical, flame retardant and shape-memory properties. Cellulose 2018, 25, 1425–1436. [Google Scholar] [CrossRef]
- Chen, D.; Zheng, Q.; Liu, F.; Xu, K.; Chen, M. Flame-retardant polypropylene composites based on magnesium hydroxide modified by phosphorous-containing polymers. J. Thermoplast. Compos. Mater. 2010, 23, 175–192. [Google Scholar] [CrossRef]
- Chen, X.; Yu, J.; Luo, Z.; Hu, S.; Zhou, Z.; Guo, S.; Lu, S. Kinetics of thermo-oxidative degradation of zinc borate/microcapsulated red phosphorus with magnesium hydroxide in flame retarded polypropylene composites. J. Polym. Res. 2009, 16, 745–753. [Google Scholar] [CrossRef]
- Xiao, W.D.; Kibble, K.A. Comparison of aluminium hydroxide and magnesium hydroxide as flame retardants in SEBS-based composites. Polym. Polym. Compos. 2008, 16, 415–422. [Google Scholar] [CrossRef]
- Liu, T.; Wang, F.; Li, G.; Liu, P.; Gao, C.; Ding, Y.; Zhang, S.; Kong, X.; Yang, M. Magnesium hydroxide nanoparticles grafted by DOPO and its flame retardancy in ethylene-vinyl acetate copolymers. J. Appl. Polym. Sci. 2020, 138, 49607. [Google Scholar] [CrossRef]
- Milis, S.L.; Lees, G.C.; Liauw, C.M.; Lynch, S. An improved method for the dispersion assessment of flame retardant filler/polymer systems based on the multifractal analysis of SEM images. Macromol. Mater. Eng. 2004, 289, 864–871. [Google Scholar] [CrossRef]
- Liany, Y.; Tabei, A.; Farsi, M.; Madanipour, M. Effect of nanoclay and magnesium hydroxide on some properties of HDPE/wheat straw composites. Fibers Polym. 2013, 14, 304–310. [Google Scholar] [CrossRef]
- Lee, C.; Sapuan, S.; Lee, J.; Hassan, M. Mechanical properties of kenaf fibre reinforced floreon biocomposites with magnesium hydroxide filler. J. Mech. Eng. Sci. 2016, 10, 2234–2248. [Google Scholar] [CrossRef]
- Zhu, X.; Pang, H.; Zheng, N.; Tian, P.; Ning, G. High effects of smoke suppression and char formation of Ni— Mo/Mg (OH)2 for polypropylene. Polym. Adv. Technol. 2020, 31, 1688–1698. [Google Scholar] [CrossRef]
- Casetta, M.; Michaux, G.; Ohl, B.; Duquesne, S.; Bourbigot, S. Key role of magnesium hydroxide surface treatment in the flame retardancy of glass fiber reinforced polyamide 6. Polym. Degrad. Stab. 2018, 148, 95–103. [Google Scholar] [CrossRef]
- Chen, H.; Wen, X.; Guan, Y.; Min, J.; Wen, Y.; Yang, H.; Chen, X.; Li, Y.; Yang, X.; Tang, T. Effect of particle size on the flame retardancy of poly (butylene succinate)/Mg(OH)2 composites. Fire Mater. 2016, 40, 1090–1096. [Google Scholar] [CrossRef]
- Meng, W.; Wu, H.; Wu, R.; Wang, T.; Wang, A.; Ma, J.; Xu, J. and Qu, H. Fabrication of surface-modified magnesium hydroxide using Ni2+ chelation method and layer-by-layer assembly strategy: Improving the flame retardancy and smoke suppression properties of ethylene-vinyl acetate. Colloids Surf. A Physicochem. Eng. Asp. 2021, 610, 125712. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Shan, Z.; Wang, S.; Xiao, Y. Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber. Appl. Surf. Sci. 2019, 465, 740–746. [Google Scholar] [CrossRef]
- Liu, M.; Wang, Q.; Liu, Y. Flame-retardant polypropylene composites with magnesium hydroxide encapsulated by polypropylene grafted with maleic anhydride. Polym. Plast. Technol. Eng. 2010, 49, 367–372. [Google Scholar] [CrossRef]
- Fernández, A.; Haurie, L.; Formosa, J.; Chimenos, J.; Antunes, M.; Velasco, J. Characterization of poly (ethylene-co-vinyl acetate)(EVA) filled with low grade magnesium hydroxide. Polym. Degrad. Stab. 2009, 94, 57–60. [Google Scholar] [CrossRef]
- Sierra-Fernández, A.; Gomez-Villalba, L.S.; Milosevic, O.; Fort, R.; Rabanal, M.E. Synthesis and morpho-structural characterization of nanostructured magnesium hydroxide obtained by a hydrothermal method. Ceram. Int. 2014, 40, 12285–12292. [Google Scholar] [CrossRef]
- Tai, C.Y.; Tai, C.-T.; Chang, M.-H.; Liu, H.-S. Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor. Ind. Eng. Chem. Res. 2007, 46, 5536–5541. [Google Scholar] [CrossRef]
- Sirota, V.; Selemenev, V.; Kovaleva, M.; Pavlenko, I.; Mamunin, K.; Dokalov, V.; Yapryntsev, M. Preparation of crystalline Mg(OH)2 nanopowder from serpentinite mineral. Int. J. Min. Sci. Technol. 2018, 28, 499–503. [Google Scholar] [CrossRef]
- Yang, Y.; Niu, M.; Li, J.; Xue, B.; Dai, J. Preparation of carbon microspheres coated magnesium hydroxide and its application in polyethylene terephthalate as flame retardant. Polym. Degrad. Stab. 2016, 134, 1–9. [Google Scholar] [CrossRef]
- Baek, S.W.; Song, D.H.; Lee, H.I.; Kim, D.S.; Heo, Y.; Kim, J.H.; Park, C.G.; Han, D.K. Poly(L-Lactic Acid) Composite with Surface-Modified Magnesium Hydroxide Nanoparticles by Biodegradable Oligomer for Augmented Mechanical and Biological Properties. Materials 2021, 14, 5869. [Google Scholar] [CrossRef] [PubMed]
- Aaliya, B.; Sunooj, K.V.; Lackner, M. Biopolymer composites: A review. Int. J. Biobased Plast. 2021, 3, 40–84. [Google Scholar] [CrossRef]
Flame Retardant Chemical Nature | Example of Flame Retardants | Working Mechanism | Ref. |
---|---|---|---|
Metal oxides and hydroxide | Aluminium hydroxide, Alumina trihydrate, Magnesium hydroxide, Calcium carbonate | Heat sink | [2] |
Boron based | Boric acid, Zinc borate, borax, boron phosphate | By forming insulating layer | [12] |
Halogen based | TCPA, TBPA, Polybrominated diphenyl ethers, Polybrominated diphenyl | Gas phase | [13] |
Phosphorus based | THPC | Condense phase | [14] |
Synergistic | Halogen/Antimony trioxide, P/halogen | Flame retardancy of the primary compound enhanced by the presence of another | [15] |
Intumescent | Acid donor (ex-ammonium polyphosphate), carbonising agent (ex-pentaerythritol), bowling agent (ex-urea, melamine) | Both in gas and condense phase | [16] |
Rank | Name | No of Articles | h-Index | No of Total Citations | Country |
---|---|---|---|---|---|
1 | Christopher Mark Liauw | 13 | 27 | 2715 | United Kingdom |
2 | Peter R. Hornsby | 11 | 35 | 4337 | United Kingdom |
4 | Roger Norman Rothon | 11 | 17 | 1101 | United Kingdom |
3 | Graham Clayton Lees | 10 | 14 | 697 | United Kingdom |
5 | Jizhao Liang | 5 | 36 | 5243 | China |
6 | S.M. Sapuan | 4 | 83 | 26,259 | Malaysia |
7 | Azman Hassan | 4 | 50 | 8663 | Malaysia |
8 | José Ignacio Velasco | 4 | 36 | 4316 | Spain |
9 | Cédlic Morhain | 4 | 6 | 155 | Spain |
10 | Suqin Chang | 3 | 10 | 241 | China |
Rank | Authors | Year | Cited by | Source Title | Ref. |
---|---|---|---|---|---|
1 | Rothon R.N., Hornsby P.R. | 1996 | 296 | Polymer Degradation and Stability | [30] |
2 | Hull T.R., Witkowski A. et al. | 2011 | 248 | Polymer Degradation and Stability | [31] |
3 | Fu M., Qu B. | 2004 | 182 | Polymer Degradation and Stability | [32] |
4 | Cross M.S., Cusack P.A. et al. | 2003 | 145 | Polymer Degradation and Stability | [33] |
5 | Hornsby P.R., Wang J. et al. | 1996 | 128 | Polymer Degradation and Stability | [34] |
6 | Dittrich B., Wartig K.-A. et al. | 2014 | 123 | Polymers | [35] |
7 | Hornsby P.R., Watson C.L. | 1990 | 114 | Polymer Degradation and Stability | [36] |
8 | Wang J., Tung J.F. et al. | 1996 | 101 | Journal of Applied Polymer Science | [37] |
9 | Rothon R.N. | 1999 | 98 | Advances in Polymer Science | [38] |
10 | Sung G., Kim J.W. et al. | 2016 | 96 | Journal of Industrial and Engineering Chemistry | [39] |
11 | Hornsby P.R., Watson C.L. | 1989 | 84 | Plastics and Rubber Processing and Applications | [40] |
12 | Liang J., Zhang Y. | 2010 | 70 | Polymer International | [41] |
13 | Saba N., Alothman O.Y. et al. | 2019 | 68 | Construction and Building Materials | [42] |
14 | Hornsby P.R., Watson C.L. | 1995 | 68 | Journal of Materials Science | [43] |
15 | Balakrishnan H., Hassan A. et al. | 2012 | 66 | Polymer Degradation and Stability | [44] |
16 | Zaghloul M.M.Y., Zaghloul M.M.Y. | 2017 | 63 | Journal of Reinforced Plastics and Composites | [17] |
17 | Montezin F., Lopez Cuesta J.-M. et al. | 1997 | 63 | Fire and Materials | [45] |
18 | Lu Y., Wu C., Xu S. | 2018 | 61 | Composites Part A: Applied Science and Manufacturing | [18] |
19 | Liauw C.M., Lees G.C. et al. | 1998 | 61 | Composites Part A: Applied Science and Manufacturing | [46] |
20 | Xu T., Huang X., Zhao Y. | 2011 | 59 | Fire Safety Journal | [47] |
21 | Yeh J.T., Yang H.M. et al. | 1995 | 59 | Polymer Degradation and Stability | [48] |
22 | Bonati A., Merusi F. et al. | 2012 | 52 | Construction and Building Materials | [49] |
23 | Witkowski A., Stec A.A. et al. | 2012 | 51 | Polymer Degradation and Stability | [50] |
24 | Zhang Y., Hu Y et al. | 2008 | 50 | Polymers for Advanced Technologies | [51] |
25 | Lv J.-P., Liu W.-H. | 2007 | 47 | Journal of Applied Polymer Science | [52] |
26 | Velasco J.I., Morhain C. et al. | 2002 | 46 | Polymer | [53] |
27 | Chang S., Xie T. et al. | 2006 | 44 | Polymer Degradation and Stability | [54] |
28 | Hollingbery L.A., Hull T.R. | 2012 | 43 | Polymer Degradation and Stability | [55] |
29 | Ulutan S., Gilbert M. | 2000 | 43 | Journal of Materials Science | [56] |
30 | Formosa J., Chimenos J.M. et al. | 2011 | 40 | Thermochimica Acta | [57] |
31 | Sonnier R., Viretto A. et al. | 2016 | 39 | Polymer Degradation and Stability | [58] |
32 | Shi X., Chen Y. et al. | 2014 | 39 | Bioresource Technology | [59] |
33 | Suihkonen R., Nevalainen K. et al. | 2012 | 39 | Journal of Materials Science | [60] |
34 | Karidakis T., Agatzini-Leonardou S. et al. | 2005 | 38 | Hydrometallurgy | [61] |
35 | Cook M., Harper J.F. | 1998 | 38 | Advances in Polymer Technology | [62] |
36 | Chen X., Yu J. et al. | 2009 | 36 | Polymer Composites | [63] |
37 | Lee C.H., Sapuan S.M. et al. | 2017 | 35 | Journal of Engineered Fibers and Fabrics | [64] |
38 | Moreira F.K.V., De Camargo L.A. et al. | 2013 | 34 | Journal of Agricultural and Food Chemistry | [65] |
39 | Moreira F.K.V., Pedro D.C.A. et al. | 2013 | 32 | Carbohydrate Polymers | [66] |
40 | Focke W.W., Molefe D. et al. | 2009 | 32 | Journal of Materials Science | [67] |
41 | Wang Z., Shen X. et al. | 2002 | 31 | Polymer International | [68] |
42 | Klapiszewski Ł., Tomaszewska J. et al. | 2017 | 30 | Polymers | [69] |
43 | Jančář J. | 1989 | 29 | Journal of Materials Science | [70] |
44 | Oyama H.T., Sekikawa M. et al. | 2012 | 28 | Polymer Degradation and Stability | [71] |
45 | Oyama H.T., Sekikawa M. et al. | 2011 | 28 | Journal of Macromolecular Science, Part B: Physics | [72] |
46 | He Z., Wekesa M. et al. | 2006 | 28 | Pulp and Paper Canada | [73] |
47 | Hornsby P.R., Mthupha A. | 1996 | 28 | Plastics, Rubber and Composites Processing and Applications | [74] |
48 | Gwon J.G., Lee S.Y. et al. | 2014 | 27 | Journal of Applied Polymer Science | [75] |
49 | Yin J., Zhang Y. et al. | 2005 | 27 | Journal of Applied Polymer Science | [76] |
50 | Liauw C.M., Rothon R.N. et al. | 2001 | 27 | Journal of Adhesion Science and Technology | [77] |
SI No | Keyword | Citation Count | Year |
---|---|---|---|
1 | magnesium hydroxide | 195 | 2010 |
2 | mechanical property | 82 | 2010 |
3 | flame retardancy | 69 | 2010 |
4 | flame retardants | 62 | 2010 |
5 | flame retardant | 58 | 2010 |
6 | Composites | 42 | 2011 |
7 | nanocomposites | 42 | 2010 |
8 | Flammability | 41 | 2010 |
9 | Behavior | 39 | 2010 |
10 | magnesium compounds | 32 | 2015 |
11 | Magnesium | 25 | 2010 |
12 | Degradation | 23 | 2011 |
13 | Polypropylene | 21 | 2010 |
14 | filled polymers | 19 | 2010 |
15 | thermogravimetric analysis | 19 | 2014 |
16 | mechanical properties | 18 | 2011 |
17 | thermal stability | 18 | 2011 |
18 | aluminum hydroxide | 16 | 2010 |
19 | Combustion | 16 | 2010 |
20 | Nanoparticles | 16 | 2015 |
21 | limiting oxygen index | 15 | 2011 |
Cluster ID | Size | Silhouette | Top Keyword | Year |
---|---|---|---|---|
0 | 76 | 0.666 | magnesium hydroxide | 2012 |
1 | 64 | 0.784 | Polypropylene | 2008 |
2 | 62 | 0.745 | flame retardant | 2013 |
3 | 58 | 0.834 | mechanical property | 2012 |
4 | 36 | 0.816 | degradation | 2009 |
5 | 23 | 0.993 | Cross linking | 2005 |
6 | 22 | 0.991 | Stability | 1997 |
7 | 21 | 0.888 | Polymer composite | 2012 |
8 | 21 | 0.995 | tensile strength | 2018 |
9 | 18 | 0.995 | Smoke supression | 2002 |
10 | 18 | 0.858 | Polymers | 2006 |
Rank | Author Name | No of Articles | h-Index | Total Citations | Country |
---|---|---|---|---|---|
1 | Jizhao Liang | 7 | 36 | 5242 | China |
2 | Jichun Liu | 4 | 14 | 588 | China |
3 | Xiaolang Chen | 3 | 22 | 1789 | China |
4 | Lijuan Li | 3 | 17 | 845 | China |
5 | Bingli Pan | 3 | 18 | 1111 | China |
6 | De-yi Wang | 3 | 61 | 296 | Spain |
7 | Nour F. Attia | 2 | 28 | 1638 | Egypt |
8 | Liang Cai | 2 | 3 | 26 | China |
9 | Dehong Chen | 2 | 8 | 184 | China |
10 | Mingcai Chen | 2 | 24 | 1839 | China |
SL No | Authors | Year | Cited by | Source Title | Ref. |
---|---|---|---|---|---|
1 | Jeencham R., Suppakarn N. et al. | 2014 | 138 | Composites Part B: Engineering | [84] |
2 | Ye L., Wu Q.et al. | 2009 | 134 | Polymer Degradation and Stability | [12] |
3 | Suppakarn N., Jarukumjorn K. | 2009 | 133 | Composites Part B: Engineering | [85] |
4 | Ghanbari D., Salavati-Niasari M. et al. | 2013 | 110 | Composites Part B: Engineering | [86] |
5 | Wang J., Tung J.F. et al. | 1996 | 101 | Journal of Applied Polymer Science | [37] |
6 | Liang J., Zhang Y. | 2010 | 70 | Polymer International | [41] |
7 | Zaghloul M.M.Y., Zaghloul M.M.Y. | 2017 | 63 | Journal of Reinforced Plastics and Composites | [17] |
8 | Zhang Y., Hu Y. et al. | 2008 | 50 | Polymers for Advanced Technologies | [51] |
9 | Kim S., Han T. et al. | 2017 | 48 | Electrochimica Acta | [87] |
10 | Lv J.-P., Liu W.-H. | 2007 | 47 | Journal of Applied Polymer Science | [52] |
11 | Rybiński P., Janowska G. | 2013 | 45 | Thermochimica Acta | [88] |
12 | Ulutan S., Gilbert M. | 2000 | 43 | Journal of Materials Science | [56] |
13 | Huang N.H., Chen Z.J. et al. | 2010 | 42 | Express Polymer Letters | [89] |
14 | Gul R., Islam A. et al. | 2011 | 40 | Journal of Applied Polymer Science | [90] |
15 | Sonnier R., Viretto A. et al. | 2016 | 39 | Polymer Degradation and Stability | [58] |
16 | Suihkonen R., Nevalainen K. et al. | 2012 | 39 | Journal of Materials Science | [60] |
17 | Zadeh K.M., Ponnamma D.et al. | 2017 | 37 | Polymer Testing | |
18 | Chen H., Wang T., Wen Y. et al. | 2019 | 36 | Composites Part B: Engineering | [91] |
19 | Shen L., Chen Y. et al. | 2012 | 33 | Composites Part A: Applied Science and Manufacturing | [92] |
20 | Liu J., Zhang Y. | 2011 | 32 | Polymer Degradation and Stability | [93] |
21 | Ferry L., Lopez Cuesta J.M. et al. | 2001 | 32 | Polymer Degradation and Stability | [94] |
22 | Wang Z., Shen X. et al. | 2002 | 31 | Polymer International | [70] |
23 | Liang J.-Z. | 2017 | 30 | Polymer Testing | [78] |
24 | Liu B., Zhang Y., Wan C. et al. | 2007 | 30 | Polymer Bulletin | [95] |
25 | Eibl S. | 2017 | 28 | Fire and Materials | [96] |
26 | Oyama H.T., Sekikawa M. et al. | 2012 | 28 | Polymer Degradation and Stability | [71] |
27 | Oyama H.T., Sekikawa M. et al. | 2011 | 28 | Journal of Macromolecular Science, Part B: Physics | [72] |
28 | Suriani M.J., Zainudin H.A. et al. | 2021 | 26 | Polymers | [97] |
29 | Attia N.F., Goda E.S. et al. | 2015 | 26 | Materials Chemistry and Physics | [83] |
30 | Schofield W.C.E., Hurst S.J. et al. | 1998 | 25 | Composite Interfaces | [98] |
31 | Bi Q., Yao D. et al. | 2020 | 24 | Reactive and Functional Polymers | [32] |
32 | Suriani M.J., Sapuan S.M. et al. | 2021 | 23 | Textile Research Journal | [99] |
33 | Shen L., Shao C. et al. | 2019 | 23 | Polymer Bulletin | [100] |
34 | Sun L., Wu Q. et al. | 2016 | 21 | RSC Advances | [101] |
35 | Ayrilmis N. | 2011 | 21 | BioResources | [102] |
36 | Liang J.-Z., Yang J. et al. | 2010 | 21 | Polymer Testing | [103] |
37 | Liu P., Guo J. | 2007 | 21 | Journal of Nanoparticle Research | [104] |
38 | Liang J.Z., Yang J. et al. | 2011 | 20 | Journal of Applied Polymer Science | [105] |
39 | Chen X., Yu J. et al. | 2008 | 20 | Journal of Macromolecular Science, Part A: Pure and Applied Chemistry | [80] |
40 | Li Z., Liang W. et al. | 2020 | 19 | Fire and Materials | [106] |
41 | Yu Z., Liu J. et al. | 2015 | 19 | Polymer Degradation and Stability | [81] |
42 | Rybiński P., Janowska G. et al. | 2014 | 19 | Journal of Thermal Analysis and Calorimetry | [107] |
43 | He J., Zeng W. et al. | 2020 | 18 | Journal of Applied Polymer Science | [108] |
44 | Weng P., Yin X. et al. | 2018 | 18 | Cellulose | [109] |
45 | Chen D., Zheng Q. et al. | 2010 | 18 | Journal of Thermoplastic Composite Materials | [110] |
46 | Chen X., Yu J. et al. | 2009 | 18 | Journal of Polymer Research | [111] |
47 | Xiao W.-D., Kibble K.A. | 2008 | 18 | Polymers and Polymer Composites | [112] |
48 | Liu T., Wang F. et al. | 2020 | 17 | Journal of Applied Polymer Science | [113] |
49 | Milis S.L., Lees G.C. et al. | 2004 | 16 | Macromolecular Materials and Engineering | [114] |
50 | Liany Y., Tabei A. et al. | 2013 | 14 | Fibers and Polymers | [115] |
Sl No | Keyword | Citation Count | Year |
---|---|---|---|
1 | magnesium hydroxide | 90 | 2010 |
2 | flame retardants | 57 | 2010 |
3 | magnesium compounds | 33 | 2015 |
4 | flame retardancy | 26 | 2011 |
5 | magnesium | 23 | 2010 |
6 | filled polymers | 20 | 2010 |
7 | mechanical property | 20 | 2010 |
8 | flame retardant | 18 | 2013 |
9 | thermogravimetric analysis | 15 | 2014 |
10 | limiting oxygen index | 15 | 2011 |
Cluster ID | Size | Silhouette | Top Keyword | Year |
---|---|---|---|---|
0 | 57 | 0.687 | magnesium hydroxide | 2014 |
1 | 51 | 0.754 | Limiting oxygen index | 2014 |
2 | 34 | 0.779 | magnesium | 2015 |
3 | 29 | 0.908 | flammability | 2014 |
4 | 29 | 0.775 | Smoke | 2015 |
5 | 23 | 0.831 | flame retardant | 2013 |
6 | 21 | 0.849 | composite | 2014 |
7 | 20 | 0.948 | combustion | 2014 |
8 | 19 | 0.995 | Tensile strength | 2019 |
9 | 19 | 0.918 | composites | 2013 |
10 | 19 | 0.94 | Mechanical property | 2010 |
11 | 15 | 0.944 | flame retardant property | 2017 |
Sl No | Polymer Composite | Ref. |
---|---|---|
1 | Polypropylenes | [12,13,16,36,37,41,43,44,45,46,54,62,63,64,70,71,72,74,75,76,78,79,80,84,92,94,101,103,105,110,111,112,117,122,127] |
2 | Ethylene vinyl acetate copolymer | [7,8,33,51,52,53,58,89,98,100,113,114,120,123] |
3 | Nanocomposites | [65,66,83,85,113,124,125,126,128] |
4 | Epoxy resins | [32,42,60,81,96,97,99] |
5 | Low density polyethylene (LDPE) | [10,11,20,49,68,90,93] |
6 | Rubber | [88,106,107,121] |
7 | High density polyethylene (HDPE) | [17,56,115] |
8 | Polystyrenes | [55,82,104] |
9 | Polyvinyl chlorides | [18,46,69] |
10 | Polyamide | [34,44,118] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hasnat, M.R.; Hassan, M.K.; Saha, S. Flame Retardant Polymer Composite and Recent Inclusion of Magnesium Hydroxide Filler Material: A Bibliometric Analysis towards Further Study Scope. Fire 2023, 6, 180. https://doi.org/10.3390/fire6050180
Hasnat MR, Hassan MK, Saha S. Flame Retardant Polymer Composite and Recent Inclusion of Magnesium Hydroxide Filler Material: A Bibliometric Analysis towards Further Study Scope. Fire. 2023; 6(5):180. https://doi.org/10.3390/fire6050180
Chicago/Turabian StyleHasnat, Md Rayhan, Md Kamrul Hassan, and Swapan Saha. 2023. "Flame Retardant Polymer Composite and Recent Inclusion of Magnesium Hydroxide Filler Material: A Bibliometric Analysis towards Further Study Scope" Fire 6, no. 5: 180. https://doi.org/10.3390/fire6050180
APA StyleHasnat, M. R., Hassan, M. K., & Saha, S. (2023). Flame Retardant Polymer Composite and Recent Inclusion of Magnesium Hydroxide Filler Material: A Bibliometric Analysis towards Further Study Scope. Fire, 6(5), 180. https://doi.org/10.3390/fire6050180