Silica Fume Enhances the Mechanical Strength of Alkali-Activated Slag/Fly Ash Pastes Subjected to Elevated Temperatures
Abstract
:1. Introduction
2. Material and Methods
2.1. Raw Materials
2.2. Preparation of Specimens
2.3. Characterizations
3. Results
3.1. XRD
3.2. Mechanical Strength of Specimens Subjected to High Temperatures
3.2.1. Residual Stress of Specimens
3.2.2. Deformation
3.3. Morphology and Microstructure
3.3.1. Macromorphologies
3.3.2. Micromorphologies
3.3.3. Pore Size Distributions
3.4. TG/DTG and DSC
3.5. FTIR Analysis
4. Discussions
4.1. Mechanical Strength and Elevated Temperatures
4.2. Microstructure and Elevated Temperatures
5. Conclusions
- (1)
- The replacement of FA with 10 wt.% SF triggers an increasing pore volume of 0.2~3 μm during sub-high temperatures below 850 °C, leading to a continuous increase in the mechanical strength, “right shifts” of the endothermic peak, and a uniform and compact fracture surface due to its filling and pozzolan effects through the propagation of N–A–S–H or N–(Ca)–A–S–H.
- (2)
- The transformation of gehlenite and labradorite is determined for the samples after exposure to an elevated temperature above 850 °C. The bloating effect is proposed to be involved in unreacted SF together with the amorphous N–A–S–H or N–(Ca)–A–S–H at 1200 °C, leading to a greater deformation due to the further restructuring of the geopolymer chain composed of the [SiO4]4− and [AlO4]5− tetrahedra.
- (3)
- However, this study’s limitations lie in accurately testing the bonding structure of N–A–S–H or N–(Ca)–A–S–HN, which is full of challenges because of the shortage of relative techniques and theories. Meanwhile, future improvements in the application of these geopolymers as cementitious materials with multi-component metallurgical solid waste require the development of relative standards and rules, especially policies to subsidize enterprises.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, S.; Liu, B.; Zhang, Q.; Wen, Q.; Lu, X.; Xiao, K.; Ekberg, C.; Zhang, S. Application of geopolymers for treatment of industrial solid waste containing heavy metals: State-of-the-art review. J. Clean. Prod. 2023, 390, 136053. [Google Scholar] [CrossRef]
- Harmal, A.; Khouchani, O.; El-Korchi, T.; Tao, M.; Walker, H.W. Bioinspired brick-and-mortar geopolymer composites with ultra-high toughness. Cem. Concr. Compos. 2023, 137, 104944. [Google Scholar] [CrossRef]
- Peng, X.; Li, H.; Hu, Y. Preparation of metakaolin-fly ash cenosphere based geopolymer matrices for passive fire protection. J. Mater. Res. Technol. 2023, 23, 604–610. [Google Scholar] [CrossRef]
- Kaliyannan, G.V.; Kumar, P.S.; Kumar, S.M.; Deivasigamani, R.; Rajasekar, R. Mechanical and tribological behavior of SiC and fly ash reinforced Al 7075 composites compared to SAE 65 bronze. Mater. Test. 2018, 60, 1225–1231. [Google Scholar] [CrossRef]
- Roy, R.; Chakraborty, S.; Bisai, R.; Palaniappan, S.K.; Pal, S.K. Suitability of Bottom Ash for Stowing in Underground Coal Mines with and Without Addition of Settling Agent. J. Inst. Eng. India Ser. D 2021, 102, 505–520. [Google Scholar] [CrossRef]
- Raut, A.; Murmu, A.; Alomayri, T. Physico-Mechanical and thermal behavior of prolong heat Cured geopolymer blocks. Constr. Build. Mater. 2023, 370, 130309. [Google Scholar] [CrossRef]
- Oh, J.; Monteiro, P.; Jun, S.; Choi, S.; Clark, S.M. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem. Concr. Res. 2010, 40, 189–196. [Google Scholar] [CrossRef]
- Luo, X.; Xu, J.; Bai, E.; Li, W. Systematic study on the basic characteristics of alkali-activated slag-fly ash cementitious material system. Constr. Build. Mater. 2012, 29, 482–486. [Google Scholar] [CrossRef]
- Chithiraputhiran, S.; Neithalath, N. Isothermal reaction kinetics and temperature dependence of alkali activation of slag, fly ash and their blends. Constr. Build. Mater. 2013, 45, 233–242. [Google Scholar] [CrossRef]
- Danish, A.; Öz, A.; Bayrak, B.; Kaplan, G.; Aydın, A.C.; Ozbakkaloglu, T. Performance evaluation and cost analysis of prepacked geopolymers containing waste marble powder under different curing temperatures for sustainable built environment. Resour. Conserv. Recycl. 2023, 192, 106910. [Google Scholar] [CrossRef]
- Sothornchaiwit, K.; Dokduea, W.; Tangchirapat, W.; Keawsawasvong, S.; Thongchom, C.; Jaturapitakkul, C. Influences of Silica Fume on Compressive Strength and Chemical Resistances of High Calcium Fly Ash-Based AlkaliActivated Mortar. Sustainability 2022, 14, 2652. [Google Scholar] [CrossRef]
- Hossein, H.A.; Hamzawy, E.M.; El-Bassyouni, G.T.; Nabawy, B.S. Mechanical and physical properties of synthetic sustainable geopolymer binders manufactured using rockwool, granulated slag, and silica fume. Constr. Build. Mater. 2023, 367, 130143. [Google Scholar] [CrossRef]
- Zhang, B.; Ma, Y.; Yang, Y.; Zheng, D.; Wang, Y.; Ji, T. Improving the high temperature resistance of alkali-activated slag paste using municipal solid waste incineration bottom ash. J. Build. Eng. 2023, 72, 106664. [Google Scholar] [CrossRef]
- Rovnaník, P.; Bayer, P.; Rovnaníková, P. Characterization of alkali activated slag paste after exposure to high temperatures. Constr. Build. Mater. 2013, 47, 1479–1487. [Google Scholar] [CrossRef]
- Rashad, A.; Bai, Y.; Basheer, P.; Collier, N.; Milestone, N. Chemical and mechanical stability of sodium sulfate activated slag after exposure to elevated temperature. Cem. Concr. Res. 2012, 42, 333–343. [Google Scholar] [CrossRef]
- Rashada, A.; Khalil, M. A preliminary study of alkali-activated slag blended with silica fume under the effect of thermal loads and thermal shock cycles. Constr. Build. Mater. 2013, 40, 522–532. [Google Scholar] [CrossRef]
- Shilar, F.; Ganachari, S.; Patil, V.; Reddy, I.N.; Shim, J. Preparation and validation of sustainable metakaolin based geopolymer concrete for structural application. Constr. Build. Mater. 2023, 371, 130688. [Google Scholar] [CrossRef]
- Bernardo, E.; Dal Maschio, R. Glass–ceramics from vitrified sewage sludge pyrolysis residues and recycled glasses. Waste Manag. 2011, 31, 2245–2252. [Google Scholar] [CrossRef]
- Bernardo, E.; Esposito, L.; Rambaldi, E.; Tucci, A.; Pontikes, Y.; Angelopoulos, G.N. Sintered esseneite–wollastonite–plagioclase glass–ceramics from vitrified waste. J. Eur. Ceram. Soc. 2009, 29, 2921–2927. [Google Scholar] [CrossRef]
- Segui, P.; Aubert, J.E.; Husson, B.; Measson, M. Utilization of a natural pozzolan as the main component of hydraulic road binder. Constr. Build. Mater. 2013, 40, 217–223. [Google Scholar] [CrossRef]
- Bernardo, E.; Bonomo, E.; Dattoli, A. Optimisation of sintered glass–ceramics from an industrial waste glass. Ceram. Int. 2010, 36, 1675–1680. [Google Scholar] [CrossRef]
- Fang, Y.; Kayali, O. The fate of water in fly ash-based geopolymers. Constr. Build. Mater. 2013, 39, 89–94. [Google Scholar] [CrossRef]
- Yilmaz, G. Structural characterization of glass–ceramics made from fly ash containing SiO2–Al2O3–Fe2O3–CaO and analysis by FT-IR–XRD–SEM methods. J. Mol. Struct. 2012, 1019, 37–42. [Google Scholar] [CrossRef]
- Rathossi, C.; Pontikes, Y. Effect of firing temperature and atmosphere on ceramics made of NW Peloponnese clay sediments. Part I: Reaction paths, crystalline phases, microstructure and colour. J. Eur. Ceram. Soc. 2010, 30, 1841–1851. [Google Scholar] [CrossRef]
- Ding, J.; Ma, S.; Zheng, S.; Zhang, Y.; Xie, Z.; Shen, S.; Liu, Z. Study of extracting alumina from high-alumina PC fly ash by a hydro-chemical process. Hydrometallurgy 2016, 161, 58–64. [Google Scholar] [CrossRef]
- Sarıdemir, M.; Çelikten, S. Effects of Ms modulus, Na concentration and fly ash content on properties of vapour-cured geopolymer mortars exposed to high temperatures. Constr. Build. Mater. 2023, 363, 129868. [Google Scholar] [CrossRef]
- Guerrieri, M.; Sanjayan, J. Behavior of combined fly ash/slag-based geopolymers when exposed to high temperatures. Fire Mater. 2010, 34, 163–175. [Google Scholar] [CrossRef]
- Rashad, A.; Sadek, D.; Hassan, H. An investigation on blast-furnace slag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures. J. Clean. Prod. 2016, 112, 1086–1096. [Google Scholar] [CrossRef]
- Hua, S.; Yan, W.; Duan, J. Polymerization of silicate on TiO2 and its influence on arsenate adsorption: An ATR-FTIR study. Colloids Surf. A Physicochem. Eng. Asp. 2015, 469, 180–186. [Google Scholar] [CrossRef]
- Penilla, R.; Bustos, A.; Elizalde, S. Zeolite synthesized by alkaline hydrothermal treatment of bottom ash from combustion of municipal solid wastes. J. Am. Ceram. Soc. 2003, 86, 1527–1533. [Google Scholar] [CrossRef]
- Bai, Y.; Guo, W.; Zhao, Q.; Zhang, N.; Xue, C.; Wang, S.; Song, Y. Performance deterioration of municipal solid waste incineration fly ash-based geopolymer under sulfuric acid attack. Constr. Build. Mater. 2023, 391, 131847. [Google Scholar] [CrossRef]
- Yu, J.; Lin, J.; Zhang, Z.; Li, V.C. Mechanical performance of ECC with high-volume fly ash after sub-elevated temperatures. Constr. Build. Mater. 2015, 99, 82–89. [Google Scholar] [CrossRef]
- Su, H.; Xu, J.; Ren, W. Mechanical properties of geopolymer concrete exposed to dynamic compression under elevated temperatures. Ceram. Int. 2016, 42, 3888–3898. [Google Scholar] [CrossRef]
- Wu, G.; Yazhenskikh, E.; Hack, K.; Wosch, E.; Müller, M. Viscosity model for oxide melts relevant to fuel slags. Part 1: Pure oxides and binary systems in the system SiO2–Al2O3–CaO–MgO–Na2O–K2O. Fuel Process. Technol. 2015, 137, 93–103. [Google Scholar] [CrossRef]
- Zhang, H.Y.; Kodur, V.; Wu, B.; Cao, L.; Wang, F. Thermal behavior and mechanical properties of geopolymer mortar after exposure to elevated temperatures. Constr. Build. Mater. 2016, 109, 17–24. [Google Scholar] [CrossRef]
- Ren, X.; Zhang, W.; Zhang, Y.; Zhang, P.-X.; Liu, J.-H. Effects of Fe2O3 content on microstructure and mechanical properties of CaO−Al2O3−SiO2 system. Trans. Nonferr. Met. Soc. China 2015, 25, 137–145. [Google Scholar] [CrossRef]
- Rong, Z.; Sun, W.; Xiao, H.; Jiang, G. Effects of nano-SiO2 particles on the mechanical and microstructural properties of ultra-high performance cementitious composites. Cem. Concr. Compos. 2015, 56, 25–31. [Google Scholar] [CrossRef]
- Zhao, X.; Zhang, N.; Ru, H.; Liang, B.; Chen, D. Mechanical properties and toughening mechanisms of silicon carbide nano-particulate reinforced Alon composites. Mater. Sci. Eng. A 2012, 538, 118–124. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Wang, Y.C.; Xu, D.L.; Li, S. Mechanical performance and hydration mechanism of geopolymer composite reinforced by resin. Mater. Sci. Eng. A 2010, 527, 6574–6580. [Google Scholar] [CrossRef]
- Xu, J.; Zhao, F.; Guo, Q.; Yu, G.; Liu, X.; Wang, F. Characterization of the melting behavior of high-temperature and low-temperature ashes. Fuel Process. Technol. 2015, 134, 441–448. [Google Scholar] [CrossRef]
- Tsai, C.; Wang, K.; Chiou, I. Effect of SiO2–Al2O3–flux ratio change on the bloating characteristics of lightweight aggregate material produced from recycled sewage sludge. J. Hazard. Mater. B 2006, 134, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, F.; Manari, S.; Aguayo, M.; Santos, K.; Oey, T.; Wei, Z.; Falzone, G.; Neithalath, N.; Sant, G. On the feasibility of using phase change materials (PCMs) to mitigate thermal cracking in cementitious materials. Cem. Concr. Compos. 2014, 51, 14–26. [Google Scholar] [CrossRef]
Raw Materials | Mass Percent (wt.%) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
CaO | SiO2 | Al2O3 | Fe2O3 | MgO | Na2O | K2O | SO3 | TiO2 | Loss | |
FA | 3.82 | 55.18 | 31.19 | 5.07 | 0.60 | 0.29 | 1.99 | 0.28 | 1.05 | 0.53 |
Slag | 39.65 | 31.29 | 14.31 | 0.61 | 8.51 | 0.63 | 0.58 | 2.94 | 0.83 | 0.54 |
SF | 1.81 | 86.21 | 3.49 | 1.85 | 1.93 | 1.18 | 1.66 | 0.38 | 0.84 | 0.65 |
Specimens | <20 nm (%) | 20–200 nm (%) | 0.2~3 μm (%) | >3 μm (%) | Median Pore Diameter (nm) | Porosity (%) |
---|---|---|---|---|---|---|
Slag/FA paste | 40.02 | 9.17 | 11.39 | 38.43 | 6.4 | 20.93 |
SF/slag/FA paste | 41.16 | 3.14 | 35.81 | 19.88 | 5.6 | 13.47 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dai, W.; Wang, Y. Silica Fume Enhances the Mechanical Strength of Alkali-Activated Slag/Fly Ash Pastes Subjected to Elevated Temperatures. Fire 2023, 6, 252. https://doi.org/10.3390/fire6070252
Dai W, Wang Y. Silica Fume Enhances the Mechanical Strength of Alkali-Activated Slag/Fly Ash Pastes Subjected to Elevated Temperatures. Fire. 2023; 6(7):252. https://doi.org/10.3390/fire6070252
Chicago/Turabian StyleDai, Weidong, and Yachao Wang. 2023. "Silica Fume Enhances the Mechanical Strength of Alkali-Activated Slag/Fly Ash Pastes Subjected to Elevated Temperatures" Fire 6, no. 7: 252. https://doi.org/10.3390/fire6070252
APA StyleDai, W., & Wang, Y. (2023). Silica Fume Enhances the Mechanical Strength of Alkali-Activated Slag/Fly Ash Pastes Subjected to Elevated Temperatures. Fire, 6(7), 252. https://doi.org/10.3390/fire6070252