The Effects of Solvent Extraction on the Functional Group Structure of Long-Flame Coal
Abstract
:1. Introduction
2. Experimental Section
2.1. Selection of Extractants
2.2. Extraction Procedures
2.3. Extraction Validation
2.4. Quantitative Analysis of Functional Groups
3. Extraction Effectiveness
3.1. Extraction Results
3.2. Analysis of Infrared Spectra
3.3. Infrared Data Processing
3.4. Quantitative Analysis of Functional Groups
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, L.C.; Liang, Y.T.; Luo, H.Z. Research progress and prospect of mine thermal dynamic disaster theory in China. Coal Sci. Technol. 2018, 46, 1–9. [Google Scholar]
- Guo, J.; Liu, H.; Jin, Y.; Cai, G.; Liu, Y.; Yang, P. Review of underground coal spontaneous combustion hidden fire detection methods and new technology prospects. Chin. J. Saf. Sci. 2022, 32, 111–119. [Google Scholar]
- Guo, J.; Cai, G.B.; Jin, Y.; Zheng, X. Research progress and trend of coal spontaneous combustion fire prevention technology. Saf. Coal Mines 2020, 51, 180–184. [Google Scholar]
- Zheng, X.Z.; Jia, Y.X.; Guo, J.; Wen, H.; Wang, B. Research status and prospect of coal field fire monitoring technology. Ind. Mine Autom. 2019, 45, 6–10+61. [Google Scholar]
- Wang, D.M.; Shao, Z.L.; Zhu, Y.F. Some scientific problems in coal mine thermal power disaster. J. China Coal Soc. 2021, 46, 57–64. [Google Scholar]
- Tan, B.; Zhu, H.Q.; Wang, H.Y. Structure and key technologies of mine fire intelligent prevention and control. Saf. Secur. 2022, 43, 1–7+9+89. [Google Scholar]
- Li, X.X.; Ma, Y.L.; Wang, D.; Shi, C.Z.; Li, J.; Wang, J.L.; Wang, W.M.; Zhang, S.J.; Zhao, M. Study on chemical constituents of ETOAC extract from corn whisker. J. Qiqihar Univ. (Nat. Sci. Ed.) 2020, 36, 54–56. [Google Scholar]
- Wang, S.; Tao, D.Y.; Meiheriguli, A.; Liu, Q.; Jiang, X.M. Mechanism of antifungal effect of n-butanol extract from Paniculata saliculata on Staphylococcus aureus. Prog. Vet. Med. 2019, 40, 44–47. [Google Scholar]
- Hu, J.P.; Peng, Y.; Liu, F.; Zhang, M.; Peng, C.; Li, B. Screening of antioxidant and antibacterial substances from hawthorn kernel and analysis of chemical constituents by UPLC-Q-TOF/MS. Food Sci. Technol. 2020, 45, 334–340. [Google Scholar]
- Wang, X. Application of supercritical extraction technology in the extraction of anti-aging components from Dandelion. Chem. Ind. Times 2022, 36, 14–16+39. [Google Scholar]
- Deng, J.; Li, Y.Q.; Zhang, Y.T.; Yang, C.; Zhang, J.; Shi, Q. Effect of hydroxyl (-OH) on oxidation characteristics of side chain active groups of coal spontaneous combustion. J. China Coal Soc. 2020, 45, 232–240. [Google Scholar]
- Wang, J.R.; Jin, Z.X.; Deng, C.B. Quantum Chemistry Theory of Coal Spontaneous Combustion; Science Press: Beijing, China, 2007; pp. 195–207. [Google Scholar]
- Deng, C.B. Study on Spontaneous Combustion Mechanism and Spontaneous Combustion Risk Index of Coal. Ph.D. Thesis, Liaoning Technical University, Fuxin, China, 2006; pp. 12–35. [Google Scholar]
- Li, K.J.; Rita, K.; Zhang, J.L.; Barati, M.; Liu, Z.; Xu, T.; Yang, T.; Sahajwalla, V. Comprehensive investigation of various structural features of bituminous coals using advanced analytical techniques. Energy Fuels 2015, 29, 7187–7189. [Google Scholar] [CrossRef]
- Ndaji, F.E.; Butterfield, I.M.; Mark, T.K. Changes in the macromolecular structure of coals with pyrolysis temperature. Fuel 1997, 76, 169–177. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Yang, C.P.; Li, Y.Q.; Huang, Y.; Zhang, J.; Zhang, Y.; Li, Q. Ultrasonic extraction and oxidation characteristics of functional groups during coal spontaneous combustion. Fuel 2019, 242, 288–294. [Google Scholar] [CrossRef]
- Ma, Y.Y.; Ma, F.Y.; Mo, W.L.; Wang, Q. Five-stage sequential extraction of Hefeng coal and direct liquefaction performance of the extraction residue. Fuel 2020, 266, 10. [Google Scholar] [CrossRef]
- Jovanovicalinovska, R.; Kuzmanova, S.; Winkelhausen, E. Application of ultrasound for enhanced extraction of prebiotic oligosaccharides from selected fruits and vegetable. Ultrason. Sonochem. 2015, 22, 446–453. [Google Scholar] [CrossRef]
- Deng, J.; Chen, W.L.; Xiao, Y.; Lu, H.; Wang, H. Experimental study on influence of imidazolium-based ionic liquids on thermo-physical parameters of coal. J. Xi’an Univ. Sci. Technol. 2018, 38, 523–529. [Google Scholar]
- Gorden, J.; Zeiner, T.; Sadowski, G.; Brandenbusch, C. Recovery of cis, cis-muconic acid from organic phase after reactive extraction. Sep. Purif. Technol. 2016, 169, 1–8. [Google Scholar] [CrossRef]
- Marek, S.; Jerzy, S.; Marek, K. Extraction of brown coals with alcohols under supercritical conditions. J. Energy Inst. 2020, 939, 1933–1998. [Google Scholar]
- Liu, C.H. Thermal reaction model construction and oxidation process research of Jurassic coal. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2021. [Google Scholar]
- Bai, Z.J. Microscopical characteristics of ionic liquid inhibiting low temperature oxidation of lignite. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2018. [Google Scholar]
- Zhang, Y.N.; Liu, C.H.; Shu, P.; Hou, Y.; Yang, J.; Li, L. Study on active group and thermal effect of low temperature oxidation of weak viscose coal. J. Saf. Sci. Technol. 2021, 17, 98–104. [Google Scholar]
- Fan, X.; Xu, H. Research progress of mass spectrometry method in coal molecular structure analysis. Clean Coal Technol. 2022, 28, 23–30. [Google Scholar]
- Niu, Z.Y.; Liu, G.J.; Hao, Y.; Zhou, C.; Wu, D.; Yousaf, B.; Wang, C. Effect of pyridine extraction on the pyrolysis of a perhydrous coal based on in-situ FTIR analysis. J. Energy Inst. 2019, 92, 428–437. [Google Scholar] [CrossRef]
- Hao, Z.C.; Zhang, X.D.; Yang, Y.Q.; Sun, F.Y. Chemical composition and kinetic mechanism of tetrahydrofuran extracts from different coal grades. J. China Coal Soc. 2018, 43, 2904–2910. [Google Scholar]
- Xiao, Y.; Lv, H.F.; Ren, S.J.; Deng, J.; Wang, C. Study on the characteristics of imidazole ionic liquids in inhibiting coal spontaneous combustion. J. China Univ. Min. Technol. 2019, 48, 175–181. [Google Scholar]
- Rahman, M.; Samanta, A.; Gupta, R. Production and characterization of ash-free coal from low-rank Canadian coal by solvent extraction. Fuel Process. Technol. 2013, 115, 88–98. [Google Scholar] [CrossRef]
- Alcalde, R.; Garcia, G.; Atilhan, M.; Aparicio, S. Systematic study on the viscosity of ionic liquids: Measurement and prediction. Ind. Eng. Chem. Res. 2015, 54, 10918–10924. [Google Scholar] [CrossRef]
- Zhang, Q.; Chen, F.S. Effect of reverse micellar extraction on structure and properties of soybean protein isolate. Food Sci. 2019, 40, 108–113. [Google Scholar]
- Yang, W.Q.; Mao, K.M.; Mo, W.L.; Ma, F.Y.; Wei, X.Y.; Fan, X.; Ren, T.Z. Analysis of methanolysis mechanism of extraction residue of Zhumaohu lignite based on reaction path of model compounds. J. Fuel Chem. Technol. 2022, 50, 396–407. [Google Scholar] [CrossRef]
- Zhang, H.L.; Wu, N.Y.; Qiao, X.X.; Huo, R.; Gao, W.; Zhao, X.J. Study on crystallization thermodynamics of lycopene crystal in hexane-acetone mixture. China Food Addit. 2021, 32, 135–140. [Google Scholar]
- Zhang, Q.; Chen, F.S.; Sun, Q. Study on the relationship between microstructure of reverse micelles and pre-extraction rate. Food Res. Dev. 2018, 39, 4–10. [Google Scholar]
- Costi, E.M.; Sicilia, M.D.; Rubio, S. Multiresidue analysis of sulfonamides in meat by supramolecular solvent microextraction, liquid chromatography and fluorescence detection and method validation according to the 2002/657/EC decision. J. Chromatogr. A 2010, 1217, 6250–6257. [Google Scholar] [CrossRef] [PubMed]
- GB 474-2008; Method for Preparation of Coal Sample. Standardization Administration of China: Beijing, China, 2008.
- Sun, Z.Y.; Zhang, X.D.; Zhang, S.; Liu, X.; Zhang, S. Mechanism of composition and chemical structure change of THF soluble low molecular compounds during coal evolution. J. China Coal Soc. 2021, 46, 3962–3973. [Google Scholar]
- Weng, S.F. Fourier Transform Infrared Spectroscopy; Chemical Industry Press: Beijing, China, 2010; pp. 377–388. [Google Scholar]
- Lu, M.M. Experimental Study on Low-Temperature Oxidation Spontaneous Combustion Characteristics of Jurassic Coal and Its Indicator Gas. Master’s Thesis, Xi’an University of Science and Technology, Xi’an, China, 2018; pp. 20–22. [Google Scholar]
The Name of the Reagent | For the Group Structure | Action Principle |
---|---|---|
carbon disulfide | associated structures (e.g., macromolecular aromatic hydrocarbons) | It affects charge transfer and breaks hydrogen bonds |
cyclohexane | –C–O–C–, –OH and aliphatic hydrocarbon | Sabotaging the association between molecules |
N, N-dimethyl acetamide | aliphatic hydrocarbon radical | High polarization; it has both electron donors and acceptors |
acetone | aliphatic hydrocarbon–CH3, –C–O–C–, –CH3, –CH2 and heteroatomic compounds | Like dissolves like |
ethanol | structure of aliphatic hydrocarbons | Dissolve part of aliphatic structure or high polarity side chain group unit |
ethylenediamine | –NH2, –CH2, –OH and other hydrogen bonds contain structures | It has a strong ability to supply electrons and break hydrogen bonds |
methanol | aliphatic side chains and highly polar groups | It has strong solubility for polar compounds |
petroleum ether | aliphatic hydrocarbons, aromatic hydrocarbons and heteroatomic compounds | Alkyl substitution reaction |
n-hexane | hydrogen bonds with polar molecules | Absorption of organic matter |
ionic liquid | different functional groups can be extracted by simple preparation and modification of ionic structures | Destruction of hydrogen bonds, branched carbonyl groups and other structures; Reduce or disperse oxygen-containing functional groups |
reverse micelles | polar structures such as proteins | Reverse micellar nanoaggregates are formed by directional arrangement of hydrophilic or hydrophobic structures to control group flow |
Caojiatan (CJT) Raw Coal Sample | Proximate Analysis/% | Elemental Analysis/% | ||||||
---|---|---|---|---|---|---|---|---|
Moisture Content Mad | Ash Content Ad | Volatile Matter Content Vd | Fixed Carbon Content FCad | C | H | N | O | |
CJT1 | 4.72 | 3.65 | 35.63 | 57.85 | 75.93 | 4.987 | 1.135 | 17.948 |
CJT2 | 4.66 | 3.62 | 36.17 | 57.41 | 75.62 | 4.966 | 1.122 | 18.292 |
CJT3 | 4.70 | 3.57 | 36.40 | 57.21 | 75.91 | 4.900 | 1.268 | 17.922 |
average value | 4.69 | 3.61 | 36.06 | 57.49 | 75.82 | 4.951 | 1.175 | 18.054 |
Test Group | Quality of Raw Coal/g | Quality of the Extracted Coal Sample/g | Extraction Rate/% |
---|---|---|---|
MT | 1045 | 953 | 4.457 |
CYH | 1038 | 966 | 2.359 |
N-Hexane | 1022 | 951 | 2.449 |
CYH + AOT + AE | 1036 | 1077 | −9.430 |
AE | 1035 | 960 | 2.749 |
AOT | 1018 | 1115 | −15.505 |
Spectral Peak Number | Peak Position/cm−1 | Absorption Peak Band/cm−1 | Spectrum Peaks Belonging | The Group Type |
---|---|---|---|---|
1 | 819 | 798–840 | C-H external bending vibration of ectopic substituted benzene | substituted benzene |
2 | 876 | 840–931 | Substituted benzene C-H out-of-plane bending vibration | substituted benzene |
3 | 1045 | 931–1064 | Saturated fat ether C-O-C symmetric stretching | C-O |
4 | 1084 | 1064–1108 | C-O stretching vibration | C-O |
5 | 1370 | 1311–1388 | -CH3 symmetric variable Angle vibration | -CH3 |
6 | 1447 | 1388–1533 | C=C frame stretching vibration in aromatic ring/thick ring | C=C |
7 | 1617 | 1533–1847 | C=C | |
8 | 2338 | 2300–2344 | -OH stretching vibration in -COOH | -COOH |
9 | 2361 | 2344–2389 | -COOH | |
10 | 2925 | 2883–2946 | Methylene C-H stretching vibration | -CH2 |
11 | 2968 | 2946–3012 | Antisymmetric stretching vibration of methyl group | -CH3 |
12 | 3060 | 3012–3100 | Aromatics C-H stretching vibration | -CH |
13 | 3385 | 3100–3737 | -OH in phenols, alcohols, carboxylic acids | -OH |
Type | The Average Center | Absorption Peak Attribution | Peak Area |
---|---|---|---|
aromatic hydrocarbon | 819.8679 | substituted benzene | 7.73811 |
874.0013 | substituted benzene | 11.41824 | |
1456.101 | C=C | 106.9726 | |
1606.582 | C=C | 78.49535 | |
1906.579 | C-H | 2.10692 | |
3045.912 | aromatic hydrocarbon | 86.86852 | |
aliphatic hydrocarbon | 1362.781 | -CH3 | 7.33262 |
2878.893 | -CH2 | 72.19418 | |
2953.148 | -CH3 | 35.99535 | |
2970.776 | -CH3 | 54.26141 | |
oxygen-containing functional group | 1043.967 | C-O | 8.10314 |
1080.765 | C-O | 2.86622 | |
1083.765 | C-O | 29.71096 | |
1186.923 | C-O | 32.11245 | |
1299.023 | C-O | 104.4787 | |
1702.144 | C=O | 66.69472 | |
2104.148 | -COOH | 4.98769 | |
2210.091 | -COOH | 9.21649 | |
2341.694 | -COOH | 26.25363 | |
2361.334 | -COOH | 2.15573 | |
2518.659 | -COOH | 59.63693 | |
2634.681 | -COOH | 23.09355 | |
2749.189 | -COOH | 62.38078 | |
3192.25 | -OH | 50.10662 | |
3374.61 | -OH | 349.8566 | |
3557.065 | -OH | 35.27509 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, J.; Quan, Y.; Wen, H.; Zheng, X.; Cai, G.; Jin, Y. The Effects of Solvent Extraction on the Functional Group Structure of Long-Flame Coal. Fire 2023, 6, 307. https://doi.org/10.3390/fire6080307
Guo J, Quan Y, Wen H, Zheng X, Cai G, Jin Y. The Effects of Solvent Extraction on the Functional Group Structure of Long-Flame Coal. Fire. 2023; 6(8):307. https://doi.org/10.3390/fire6080307
Chicago/Turabian StyleGuo, Jun, Yanping Quan, Hu Wen, Xuezhao Zheng, Guobin Cai, and Yan Jin. 2023. "The Effects of Solvent Extraction on the Functional Group Structure of Long-Flame Coal" Fire 6, no. 8: 307. https://doi.org/10.3390/fire6080307
APA StyleGuo, J., Quan, Y., Wen, H., Zheng, X., Cai, G., & Jin, Y. (2023). The Effects of Solvent Extraction on the Functional Group Structure of Long-Flame Coal. Fire, 6(8), 307. https://doi.org/10.3390/fire6080307