Quantifying Fire-Induced Surface Climate Changes in the Savanna and Rainforest Biomes of Brazil
Abstract
:1. Introduction
2. Data and Methods
2.1. Burned Area Fraction
2.2. Study Area
2.3. Model and Experiment Design
2.4. Ash Removal and Vegetation Recovery
3. Results
3.1. Model Performance
3.2. Burned Area Effects
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Archibald, S.; Lehmann, C.E.R.; Gómez-Dans, J.L.; Bradstock, R.A. Defining Pyromes and Global Syndromes of Fire Regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef]
- Bond, W.J.; Keeley, J.E. Fire as a Global ‘Herbivore’: The Ecology and Evolution of Flammable Ecosystems. Trends Ecol. Evol. 2005, 20, 387–394. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The Human Dimension of Fire Regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [Green Version]
- Silveira, M.V.F.; Petri, C.A.; Broggio, I.S.; Chagas, G.O.; Macul, M.S.; Leite, C.C.S.S.; Ferrari, E.M.M.; Amim, C.G.V.; Freitas, A.L.R.; Motta, A.Z.V.; et al. Drivers of Fire Anomalies in the Brazilian Amazon: Lessons Learned from the 2019 Fire Crisis. Land 2020, 9, 516. [Google Scholar] [CrossRef]
- Rother, D.; De Sales, F. Impact of Wildfire on the Surface Energy Balance in Six California Case Studies. Bound.-Layer Meteorol. 2021, 178, 143–166. [Google Scholar] [CrossRef]
- Whitman, E.; Parks, S.A.; Holsinger, L.M.; Parisien, M.-A. Climate-Induced Fire Regime Amplification in Alberta, Canada. Environ. Res. Lett. 2022, 17, 055003. [Google Scholar] [CrossRef]
- Dupuy, J.; Fargeon, H.; Martin-StPaul, N.; Pimont, F.; Ruffault, J.; Guijarro, M.; Hernando, C.; Madrigal, J.; Fernandes, P. Climate Change Impact on Future Wildfire Danger and Activity in Southern Europe: A Review. Ann. For. Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Abram, N.J.; Henley, B.J.; Sen Gupta, A.; Lippmann, T.J.R.; Clarke, H.; Dowdy, A.J.; Sharples, J.J.; Nolan, R.H.; Zhang, T.; Wooster, M.J.; et al. Connections of Climate Change and Variability to Large and Extreme Forest Fires in Southeast Australia. Commun. Earth Environ. 2021, 2, 8. [Google Scholar] [CrossRef]
- De Sales, F.; Xue, Y.K.; Okin, G.S. Impact of Burned Areas on the Northern African Seasonal Climate from the Perspective of Regional Modeling. Clim. Dyn. 2016, 47, 3393–3413. [Google Scholar] [CrossRef] [Green Version]
- De Sales, F.; Okin, G.S.; Xue, Y.; Dintwe, K. On the Effects of Wildfires on Precipitation in Southern Africa. Clim. Dyn. 2019, 52, 951–967. [Google Scholar] [CrossRef] [Green Version]
- Rother, D.E.; Sales, F.D.; Stow, D.; McFadden, J. Impacts of Burn Severity on Short-Term Postfire Vegetation Recovery, Surface Albedo, and Land Surface Temperature in California Ecoregions. PLoS ONE 2022, 17, e0274428. [Google Scholar] [CrossRef] [PubMed]
- Boegelsack, N.; Withey, J.; O’Sullivan, G.; McMartin, D. A Critical Examination of the Relationship between Wildfires and Climate Change with Consideration of the Human Impact. J. Environ. Prot. 2018, 9, 461–467. [Google Scholar] [CrossRef] [Green Version]
- Oris, F.; Asselin, H.; Ali, A.A.; Finsinger, W.; Bergeron, Y. Effect of Increased Fire Activity on Global Warming in the Boreal Forest. Environ. Rev. 2014, 22, 206–219. [Google Scholar] [CrossRef] [Green Version]
- Prosperi, P.; Bloise, M.; Tubiello, F.N.; Conchedda, G.; Rossi, S.; Boschetti, L.; Salvatore, M.; Bernoux, M. New Estimates of Greenhouse Gas Emissions from Biomass Burning and Peat Fires Using MODIS Collection 6 Burned Areas. Clim. Chang. 2020, 161, 415–432. [Google Scholar] [CrossRef] [Green Version]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global Fire Emissions Estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Lasslop, G.; Hantson, S.; Harrison, S.P.; Bachelet, D.; Burton, C.; Forkel, M.; Forrest, M.; Li, F.; Melton, J.R.; Yue, C.; et al. Global Ecosystems and Fire: Multi-Model Assessment of Fire-Induced Tree-Cover and Carbon Storage Reduction. Glob. Chang. Biol. 2020, 26, 5027–5041. [Google Scholar] [CrossRef]
- Tian, C.; Yue, X.; Zhu, J.; Liao, H.; Yang, Y.; Lei, Y.; Zhou, X.; Zhou, H.; Ma, Y.; Cao, Y. Fire–Climate Interactions through the Aerosol Radiative Effect in a Global Chemistry–Climate–Vegetation Model. Atmos. Chem. Phys. 2022, 22, 12353–12366. [Google Scholar] [CrossRef]
- Zou, Y.; Wang, Y.; Qian, Y.; Tian, H.; Yang, J.; Alvarado, E. Using CESM-RESFire to Understand Climate–Fire–Ecosystem Interactions and the Implications for Decadal Climate Variability. Atmos. Chem. Phys. 2020, 20, 995–1020. [Google Scholar] [CrossRef] [Green Version]
- Pivello, V.R. The Use of Fire in the Cerrado and Amazonian Rainforests of Brazil: Past and Present. Fire Ecol. 2011, 7, 24–39. [Google Scholar] [CrossRef]
- Gatti, L.V.; Basso, L.S.; Miller, J.B.; Gloor, M.; Gatti Domingues, L.; Cassol, H.L.G.; Tejada, G.; Aragão, L.E.O.C.; Nobre, C.; Peters, W.; et al. Amazonia as a Carbon Source Linked to Deforestation and Climate Change. Nature 2021, 595, 388–393. [Google Scholar] [CrossRef]
- De Sales, F.; Santiago, T.; Biggs, T.W.; Mullan, K.; Sills, E.O.; Monteverde, C. Impacts of Protected Area Deforestation on Dry-Season Regional Climate in the Brazilian Amazon. J. Geophys. Res. Atmos. 2020, 125, e2020JD033048. [Google Scholar] [CrossRef]
- Pellegrini, A.F.A.; Anderegg, W.R.L.; Paine, C.E.T.; Hoffmann, W.A.; Kartzinel, T.; Rabin, S.S.; Sheil, D.; Franco, A.C.; Pacala, S.W. Convergence of Bark Investment According to Fire and Climate Structures Ecosystem Vulnerability to Future Change. Ecol. Lett. 2017, 20, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Pereira, A.A.; Pereira, J.M.C.; Libonati, R.; Oom, D.; Setzer, A.W.; Morelli, F.; Machado-Silva, F.; De Carvalho, L.M.T. Burned Area Mapping in the Brazilian Savanna Using a One-Class Support Vector Machine Trained by Active Fires. Remote Sens. 2017, 9, 1161. [Google Scholar] [CrossRef] [Green Version]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, C.O. The Collection 6 MODIS Burned Area Mapping Algorithm and Product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Cochrane, M.A.; Alencar, A.; Schulze, M.D.; Souza, C.M.; Nepstad, D.C.; Lefebvre, P.; Davidson, E.A. Positive Feedbacks in the Fire Dynamic of Closed Canopy Tropical Forests. Science 1999, 284, 1832–1835. [Google Scholar] [CrossRef]
- Nepstad, D.; Carvalho, G.; Cristina Barros, A.; Alencar, A.; Paulo Capobianco, J.; Bishop, J.; Moutinho, P.; Lefebvre, P.; Lopes Silva, U.; Prins, E. Road Paving, Fire Regime Feedbacks, and the Future of Amazon Forests. For. Ecol. Manag. 2001, 154, 395–407. [Google Scholar] [CrossRef]
- Ramos-Neto, M.B.; Pivello, V.R. Lightning Fires in a Brazilian Savanna National Park: Rethinking Management Strategies. Environ. Manag. 2000, 26, 675–684. [Google Scholar] [CrossRef]
- Zhan, X.W.; Xue, Y.K.; Collatz, G.J. An Analytical Approach for Estimating CO2 and Heat Fluxes over the Amazonian Region. Ecol. Model. 2003, 162, 97–117. [Google Scholar] [CrossRef] [Green Version]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, X.; Liang, X.Z. MODIS-Derived Vegetation and Albedo Parameters for Agroecosystem-Climate Modeling; ORNL DAAC: Oak Ridge, TN, USA, 2018. [Google Scholar] [CrossRef]
- Lyons, E.; Jin, Y.; Randerson, J. Changes in Surface Albedo after Fire in Boreal Forest Ecosystems of Interior Alaska Assessed Using MODIS Satellite Observations. J. Geophys. Res.-Biogeosci. 2008, 113. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Xue, Y.; Liu, Y.; Li, F.; Okin, G.S. Modeling the Short-Term Fire Effects on Vegetation Dynamics and Surface Energy in Southern Africa Using the Improved SSiB4/TRIFFID-Fire Model. Geosci. Model Dev. 2021, 14, 7639–7657. [Google Scholar] [CrossRef]
- Gatebe, C.K.; Ichoku, C.M.; Poudyal, R.; Roman, M.O.; Wilcox, E. Surface Albedo Darkening from Wildfires in Northern Sub-Saharan Africa. Environ. Res. Lett. 2014, 9, 065003. [Google Scholar] [CrossRef] [Green Version]
- Simon, M.F.; Pennington, T. Evidence for adaptation to fire regimes in the tropical savannas of the Brazilian Cerrado. Int. J. Plant Sci. 2012, 173, 711–723. [Google Scholar] [CrossRef]
- Dintwe, K.; Okin, G.S.; Xue, Y.K. Fire-Induced Albedo Change and Surface Radiative Forcing in Sub-Saharan Africa Savanna Ecosystems: Implications for the Energy Balance. J. Geophys. Res.-Atmos. 2017, 122, 6186–6201. [Google Scholar] [CrossRef] [Green Version]
- Jin, Y.; Randerson, J.T.; Goetz, S.J.; Beck, P.S.A.; Loranty, M.M.; Goulden, M.L. The Influence of Burn Severity on Postfire Vegetation Recovery and Albedo Change during Early Succession in North American Boreal Forests. J. Geophys. Res. Biogeosci. 2012, 117. [Google Scholar] [CrossRef]
- Didan, K.; Munoz, A.B.; Huete, A. MODIS Vegetation Index User’s Guide (MOD13 Series) Version 3.00 2015. Vegetation Index and Phenology Lab, University of Arizona: Tucson, AZ, USA, 2015. [Google Scholar]
- Schaaf, C.; Wang, Z. MCD43A1 MODIS/Terra + Aqua BRDF/Albedo Model Parameters Daily L3 Global—500m V006; NASA EOSDIS Land Processes DAAC: Sioux Falls, SD, USA, 2015. [Google Scholar]
- Rodell, M.; Houser, P.R.; Jambor, U.; Gottschalck, J.; Mitchell, K.; Meng, C.-J.; Arsenault, K.; Cosgrove, B.; Radakovich, J.; Bosilovich, M.; et al. The Global Land Data Assimilation System. Bull. Am. Meteorol. Soc. 2004, 85, 381–394. [Google Scholar] [CrossRef] [Green Version]
- Legates, D.R.; Willmott, C.J. Mean Seasonal and Spatial Variability in Gauge-Corrected, Global Precipitation. Int. J. Climatol. 1990, 10, 111–127. [Google Scholar] [CrossRef]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated High-Resolution Grids of Monthly Climatic Observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Lawrimore, J.H.; Menne, M.J.; Gleason, B.E.; Williams, C.N.; Wuertz, D.B.; Vose, R.S.; Rennie, J. An Overview of the Global Historical Climatology Network Monthly Mean Temperature Data Set, Version 3. J. Geophys. Res. Atmos. 2011, 116. [Google Scholar] [CrossRef]
- Fan, Y.; van den Dool, H. A Global Monthly Land Surface Air Temperature Analysis for 1948–Present. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Koenker, R.; Bassett, G. Regression Quantiles. Econometrica 1978, 46, 33–50. [Google Scholar] [CrossRef]
- Boisier, J.P.; Ciais, P.; Ducharne, A.; Guimberteau, M. Projected Strengthening of Amazonian Dry Season by Constrained Climate Model Simulations. Nat. Clim. Chang. 2015, 5, 656. [Google Scholar] [CrossRef]
- Fu, R.; Yin, L.; Li, W.; Arias, P.A.; Dickinson, R.E.; Huang, L.; Chakraborty, S.; Fernandes, K.; Liebmann, B.; Fisher, R.; et al. Increased Dry-Season Length over Southern Amazonia in Recent Decades and Its Implication for Future Climate Projection. Proc. Natl. Acad. Sci. USA 2013, 110, 18110–18115. [Google Scholar] [CrossRef] [PubMed]
- Gloor, M.; Barichivich, J.; Ziv, G.; Brienen, R.; Schöngart, J.; Peylin, P.; Ladvocat Cintra, B.B.; Feldpausch, T.; Phillips, O.; Baker, J. Recent Amazon Climate as Background for Possible Ongoing and Future Changes of Amazon Humid Forests. Glob. Biogeochem. Cycles 2015, 29, 1384–1399. [Google Scholar] [CrossRef]
- Lathuillière, M.J.; Solvik, K.; Macedo, M.N.; Graesser, J.; Miranda, E.J.; Couto, E.G.; Johnson, M.S. Cattle Production in Southern Amazonia: Implications for Land and Water Management. Environ. Res. Lett. 2019, 14, 114025. [Google Scholar] [CrossRef]
Biome | Vegetated Cover Fraction (%) | Annual Burned Area (103 km2) | Fraction of Land Cover Burned (%) | Survival Rate (%) |
---|---|---|---|---|
Savanna | 50.6 | 116.0 ± 59.5 | 5.7 ± 2.9 | 15 |
Rainforest | 41.5 | 34.2 ± 22.2 | 2.0 ± 1.3 | 75 |
Others | 7.9 | 3.7 ± 1.9 | 1.1 ± 0.6 | 0.0 |
Biome | Ash Removal Time (Days) | Vegetation Recovery Time (Days) | Number of Pixels Used in Estimation |
---|---|---|---|
Savanna | 49 | 205 | 15,468 |
Rainforest | 43 | 132 | 4255 |
Others | 48 | 182 | 4526 |
Average | 47 | 173 | 24,249 |
Variable | Analysis Mean ± sd | Simulation Bias ± sd | Simulation Mean RMSE | Simulation Mean TCOR |
---|---|---|---|---|
Net radiation | 128.3 ± 17.8 | 5.0 ± 6.5 | 8.2 | 0.9 |
Sensible heat flux | 40.6 ± 25.1 | −11.4 ± 11.0 | 15.8 | 0.9 |
Latent heat flux | 84.0 ± 31.7 | 1.2 ± 8.9 | 9.0 | 0.9 |
Air temperature | 25.1 ± 1.1 | −0.1 ± 0.7 | 0.8 | 0.8 |
Flux | Regression Slope | Pseudo R2 | ||
---|---|---|---|---|
Savanna | Rainforest | Savanna | Rainforest | |
Latent heat | −0.17 | −0.60 | 0.72 | 0.61 |
Sensible heat | 0.04 | 0.32 | 0.25 | 0.54 |
Ground heat | 0.05 | 0.22 | 0.79 | 0.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De Sales, F.; Werner, Z.; de Souza Ribeiro, J.G. Quantifying Fire-Induced Surface Climate Changes in the Savanna and Rainforest Biomes of Brazil. Fire 2023, 6, 311. https://doi.org/10.3390/fire6080311
De Sales F, Werner Z, de Souza Ribeiro JG. Quantifying Fire-Induced Surface Climate Changes in the Savanna and Rainforest Biomes of Brazil. Fire. 2023; 6(8):311. https://doi.org/10.3390/fire6080311
Chicago/Turabian StyleDe Sales, Fernando, Zackary Werner, and João Gilberto de Souza Ribeiro. 2023. "Quantifying Fire-Induced Surface Climate Changes in the Savanna and Rainforest Biomes of Brazil" Fire 6, no. 8: 311. https://doi.org/10.3390/fire6080311
APA StyleDe Sales, F., Werner, Z., & de Souza Ribeiro, J. G. (2023). Quantifying Fire-Induced Surface Climate Changes in the Savanna and Rainforest Biomes of Brazil. Fire, 6(8), 311. https://doi.org/10.3390/fire6080311