Enhancing Flame Retardancy in Epoxy Resin with Clever Self-Assembly Method for Optimizing Interface Interaction via Well-Dispersed Cerium Oxide on Piperazine Pyrophosphate
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of CeO2@PAPP
2.2. Thermal Degradation Behaviors of EP Composites
2.3. Flame Retardant Performance Analysis
2.4. Gas Phase Mechanism
2.5. Condensed Phase Mechanism
2.6. Combined Mechanism
3. Materials and Methods
3.1. Materials
3.2. Instruments and Characterization
3.3. Fabrication of the Modified CeO2 (OA@CeO2)
3.4. Fabrication of CeO2@PAPP
3.5. Preparation of EP Composites
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wen, Y.; Chen, C.; Ye, Y.; Xue, Z.; Liu, H.; Zhou, X.; Zhang, Y.; Li, D.; Xie, X.; Mai, Y.W. Advances on thermally conductive epoxy-based composites as electronic packaging underfill materials-a review. Adv. Mater. 2022, 34, 2201023. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Chen, C.; Wen, Y.; Xue, Z.; Zhou, X.; Shi, D.; Hu, G.; Xie, X. Novel micro-nano epoxy composites for electronic packaging application: Balance of thermal conductivity and processability. Compos. Sci. Technol. 2021, 209, 108760. [Google Scholar] [CrossRef]
- Xiang, Q.; Xiao, F. Applications of epoxy materials in pavement engineering. Constr. Build. Mater. 2020, 235, 117529. [Google Scholar] [CrossRef]
- Zhang, C.; Ling, Y.; Zhang, X.; Liang, M.; Zou, H. Ultra-thin carbon fiber reinforced carbon nanotubes modified epoxy composites with superior mechanical and electrical properties for the aerospace field. Compos. Part A Appl. Sci. Manuf. 2022, 163, 107197. [Google Scholar] [CrossRef]
- Sun, Z.; Li, J.; Yu, M.; Kathaperumal, M.; Wong, C. A review of the thermal conductivity of silver-epoxy nanocomposites as encapsulation material for packaging applications. Chem. Eng. J. 2022, 446, 137319. [Google Scholar] [CrossRef]
- Shi, X.; Li, X.; Liu, Q.; Wu, S.; Xie, W.; Zhao, N.; De La Vega, J.; Chen, M.; Wang, D. Constructing Co-decorated layered double hydroxide via interfacial assembly and its application in flame-retardant epoxy resin. Compos. Commun. 2023, 43, 101712. [Google Scholar] [CrossRef]
- Jiao, D.; Zhao, H.; Sima, H.; Cheng, C.; Liu, B.; Zhang, C. Engineering flame retardant epoxy resins with strengthened mechanical property by using reactive catechol functionalized DOPO compounds. Chem. Eng. J. 2024, 485, 149910. [Google Scholar] [CrossRef]
- Liu, B.W.; Zhao, H.B.; Wang, Y.Z. Advanced Flame-Retardant Methods for Polymeric Materials. Adv. Mater. 2022, 34, e2107905. [Google Scholar] [CrossRef]
- Dogan, M.; Dogan, S.D.; Savas, L.A.; Ozcelik, G.; Tayfun, U. Flame retardant effect of boron compounds in polymeric materials. Compos. Part B Eng. 2021, 222, 109088. [Google Scholar] [CrossRef]
- Huo, S.; Song, P.; Yu, B.; Ran, S.; Chevali, V.S.; Liu, L.; Fang, Z.; Wang, H. Phosphorus-containing flame retardant epoxy thermosets: Recent advances and future perspectives. Prog. Polym. Sci. 2021, 114, 101366. [Google Scholar] [CrossRef]
- Teles, F.; Martins, G.; Antunes, F. Fire retardancy in nanocomposites by using nanomaterial additives. J. Anal. Appl. Pyrolysis 2022, 163, 105466. [Google Scholar] [CrossRef]
- Zheng, P.; Zhao, H.; Zhou, Y.; Yuan, Q.; Liu, Q. P/N-containing SiO2 flame retardant particles formed by in-situ hydrolysis for significantly improve the flame retardancy and toughness of epoxy resins. Compos. Commun. 2024, 49, 101989. [Google Scholar] [CrossRef]
- Mohammed Fayyadh, S.; Ben Ahmed, A. A comparative study between the use of nanoparticles of magnesium oxide and zinc oxide as coating for polymeric surfaces a flame retardant and corrosion resistance. Mater. Chem. Phys. 2024, 314, 128899. [Google Scholar] [CrossRef]
- Baghdadi, Y.N.; Youssef, L.; Bouhadir, K.; Harb, M.; Mustapha, S.; Patra, D.; Tehrani Bagha, A.R. Thermal and mechanical properties of epoxy resin reinforced with modified iron oxide nanoparticles. J. Appl. Polym. Sci. 2021, 138, e50533. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, D.; Li, Z.; Zhai, Z.; Li, X.; de La Vega, J.; Wang, D. Ultrafine iron oxide decorated mesoporous carbon nanotubes as highly efficient flame retardant in epoxy nanocomposites via catalytic charring effect. Sustain. Mater. Technol. 2024, 39, e00845. [Google Scholar] [CrossRef]
- Yuan, Y.; Yu, B.; Wang, W. The influence of poorly-/well-dispersed organo-montmorillonite on interfacial compatibility, fire retardancy and smoke suppression of polypropylene/intumescent flame retardant composite system. J. Colloid. Interface. Sci. 2022, 622, 367–377. [Google Scholar] [CrossRef]
- He, W.; Song, P.; Yu, B.; Fang, Z.; Wang, H. Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants. Prog. Mater. Sci. 2020, 114, 100687. [Google Scholar] [CrossRef]
- Afolabi, O.A.; Ndou, N. Synergy of hybrid fillers for emerging composite and nanocomposite materials-a review. Polymers 2024, 16, 1907. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, D.; Jian, R.; Liu, Z.; Huang, G. Chemical structure construction of DOPO-containing compounds for flame retardancy of epoxy resin: A review. Prog. Org. Coat. 2023, 175, 107316. [Google Scholar] [CrossRef]
- Song, K.; Pan, Y.; Zhang, J.; Song, P.; He, J.; Wang, D.; Yang, R. Metal-organic frameworks-based flame-retardant system for epoxy resin: A review and prospect. Chem. Eng. J. 2023, 468, 143653. [Google Scholar] [CrossRef]
- Nabipour, H.; Wang, X.; Song, L.; Hu, Y. Organic-inorganic hybridization of isoreticular metal-organic framework-3 with melamine for efficiently reducing the fire risk of epoxy resin. Compos. Part B Eng. 2021, 211, 108606. [Google Scholar] [CrossRef]
- Lei, Y.; Zhao, X.; Xu, L.; Li, H.; Liang, J.; Yeoh, G.H.; Wang, W. Natural flame retardant minerals for advanced epoxy composites. Fire 2024, 7, 308. [Google Scholar] [CrossRef]
- Rong, H.; Guo, Y.; Chen, Z.; Chen, T.; Yu, Y.; He, C.; Zhou, J.; Liu, X.; Zhang, Q.; Bu, Y.; et al. Synergistic effect of phenyl phosphoric acid derivatives and DOPO on multifunctional epoxy resin: Fire safety, mechanical properties, transparency and hydrophobicity. Polym. Degrad. Stabil. 2023, 216, 110471. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, C.; Liu, X.; Fu, Z.; Guo, B.; Du, W.; Xu, Y.; Zeng, B.; Chen, G.; Luo, W.; et al. Enter the multifunctional trifluoromethylated epoxy Resin: Excellent flame retardant, better dielectric, low thermal expansion, etc. Chem. Eng. J. 2024, 481, 148405. [Google Scholar] [CrossRef]
- Chen, W.; Liu, P.; Liu, Y.; Liu, Z. Recent advances in Two-dimensional Ti3C2Tx MXene for flame retardant polymer materials. Chem. Eng. J. 2022, 446, 137239. [Google Scholar] [CrossRef]
- Fang, F.; Ran, S.; Fang, Z.; Song, P.; Wang, H. Improved flame resistance and thermo-mechanical properties of epoxy resin nanocomposites from functionalized graphene oxide via self-assembly in water. Compos. Part B Eng. 2019, 165, 406–416. [Google Scholar] [CrossRef]
- Meng, W.; Dong, Y.; Li, J.; Cheng, L.; Zhang, H.; Wang, C.; Jiao, Y.; Xu, J.; Hao, J.; Qu, H. Bio-based phytic acid and tannic acid chelate-mediated interfacial assembly of Mg(OH)2 for simultaneously improved flame retardancy, smoke suppression and mechanical properties of PVC. Compos. Part B Eng. 2020, 188, 107854. [Google Scholar] [CrossRef]
- Zhang, J.; Li, Z.; Shao, Z.; Zhang, L.; Wang, D. Hierarchically tailored hybrids via interfacial-engineering of self-assembled UiO-66 and prussian blue analogue: Novel strategy to impart epoxy high-efficient fire retardancy and smoke suppression. Chem. Eng. J. 2020, 400, 125942. [Google Scholar] [CrossRef]
- Li, Z.; González, A.J.; Heeralal, V.B.; Wang, D. Covalent assembly of MCM-41 nanospheres on graphene oxide for improving fire retardancy and mechanical property of epoxy resin. Compos. Part B Eng. 2018, 138, 101–112. [Google Scholar] [CrossRef]
- Zhang, H.; Hu, X.; Liu, Y.; Zhang, S.; Wu, Z. Convenient synthesis of one-dimensional a-SEP@LDH via self-assembly towards simultaneously improved fire retardance, mechanical strength and thermal resistance for epoxy resin. Compos. Part B Eng. 2021, 216, 108857. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, M.; Pan, Z.; Biesold, G.M.; Liang, S.; Rao, H.; Lin, Z.; Zhong, X. Colloidal inorganic ligand-capped nanocrystals: Fundamentals, status, and insights into advanced functional nanodevices. Chem. Rev. 2021, 2, 4091–4162. [Google Scholar] [CrossRef] [PubMed]
- Boles, M.A.; Engel, M.; Talapin, D.V. Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chem. Rev. 2016, 116, 11220–11289. [Google Scholar] [CrossRef]
- Wang, C.; Gong, K.; Yu, B.; Zhou, K. Rare earth-based flame retardants for polymer composites: Status and challenges. Compos. Part B Eng. 2023, 265, 110935. [Google Scholar] [CrossRef]
- Du, B.; Chen, N.; Zhang, G.; Chen, Y.; Gao, B.; Liu, L.; Zhao, Y. Enhanced ultraviolet aging resistance of epoxy resins through surface enrichment achieved by fluorinated graphene oxide@ CeO2. Compos. Sci. Technol. 2024, 253, 110655. [Google Scholar] [CrossRef]
- Zhu, M.; Jia, P.; Yang, G.; Song, L.; Hu, Y.; Wang, B. Synergistic effects of core-shell structured piperazine pyrophosphate microcapsules on fire safety and mechanical property in styrenic thermoplastic elastomer. J. Colloid. Interface. Sci. 2024, 653, 1112–1122. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Hong, Y.; Zhang, L.; Chai, J.; Wang, B.; Guo, Z.; Li, J.; Huo, S.; Fang, Z. Controllable self-assembly of carbon nanotubes on ammonium polyphosphate as a game-changer for flame retardancy and thermal conductivity in epoxy resin. Macromol. Rapid Commun. 2024, e2400356. [Google Scholar] [CrossRef]
- Xiao, F.; Fontaine, G.; Bourbigot, S. Improvement of flame retardancy and antidripping properties of intumescent polybutylene succinate combining piperazine pyrophosphate and zinc borate. ACS Appl. Polym. Mater. 2022, 4, 1911–1921. [Google Scholar] [CrossRef]
- Qu, Z.; Wu, K.; Meng, W.; Nan, B.; Hu, Z.; Xu, C.; Tan, Z.; Zhang, Q.; Meng, H.; Shi, J. Surface coordination of black phosphorene for excellent stability, flame retardancy and thermal conductivity in epoxy resin. Chem. Eng. J. 2020, 397, 125416. [Google Scholar] [CrossRef]
- Meinier, R.; Sonnier, R.; Zavaleta, P.; Suard, S.; Ferry, L. Fire behavior of halogen-free flame retardant electrical cables with the cone calorimeter. J. Hazard. Mater. 2018, 342, 306–316. [Google Scholar] [CrossRef]
- Liu, Q.; Zhao, Y.; Gao, S.; Yang, X.; Fan, R.; Zhi, M.; Fu, M. Recent advances in the flame retardancy role of graphene and its derivatives in epoxy resin materials. Compos. Pt. A.-Appl. Sci. Manuf. 2021, 149, 106539. [Google Scholar] [CrossRef]
- Zhu, M.; Liu, L.; Wang, Z. Iron-phosphorus-nitrogen functionalized reduced graphene oxide for epoxy resin with reduced fire hazards and improved impact toughness. Compos. Part B Eng. 2020, 199, 108283. [Google Scholar] [CrossRef]
- Yang, X.; Dong, X.; Liu, M.; Xing, H.; Liu, J.; Chang, H.; Lin, T. Efficient flame-retarded ethylene vinyl acetate composite containing microencapsulated expandable graphite and polyphosphoric acid. Polym. Degrad. Stabil. 2024, 227, 110904. [Google Scholar] [CrossRef]
- Wang, W.; Chen, G.; Wu, S.; Liu, Y.; Wang, Q. Solvent-free synthesis of phosphate-containing imidazole fluid for flame retardant one-component epoxy resin with long pot life, low curing temperature and fast curing rate. J. Appl. Polym. Sci. 2023, 140, e53509. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, B.; Yang, C.; Wu, Y. Fabrication of CeO2/carbon molecular sieving membranes for enhanced O2/N2 gas separation. Appl. Surf. Sci. 2024, 649, 159127. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Liu, Y.; Wang, Q. Synergistic effect of piperazine pyrophosphate and epoxy-octavinyl silsesquioxane on flame retardancy and mechanical properties of epoxy resin. Compos. Part B-Eng. 2021, 223, 109115. [Google Scholar] [CrossRef]
- Zhu, M.; Jia, P.; Sun, P.; Yu, F.; Yang, G.; Hu, Y.; Yu, B.; Song, L.; Wang, B. Core-shell structure antioxidant microencapsulated piperazine pyrophosphate towards improving service performance and fire safety of styrenic thermoplastic elastomer. Compos. Part A-Appl. Sci. Manuf. 2023, 174, 107732. [Google Scholar] [CrossRef]
- Yin, L.; Zhang, S.; Huang, Y.; Yan, C.; Du, Y. Cerium contained advanced materials: Shining star under electrocatalysis. Coord. Chem. Rev. 2024, 518, 216111. [Google Scholar] [CrossRef]
- Zhu, Y.; Wu, W.; Xu, T.; Xu, H.; Zhong, Y.; Zhang, L.; Ma, Y.; Sui, X.; Wang, B.; Feng, X.; et al. Preparation and characterization of polyphosphazene-based flame retardants with different functional groups. Polym. Degrad. Stabil. 2022, 196, 109815. [Google Scholar] [CrossRef]
- Huang, Z.; Wang, Z. Synthesis of a bio-based piperazine phytate flame retardant for epoxy resin with improved flame retardancy and smoke suppression. Polym. Adv. Technol. 2021, 32, 4282–4295. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Song, L.; Xing, W.; Lu, H.; Lv, P.; Jie, G. Flame retardancy and thermal degradation mechanism of epoxy resin composites based on a DOPO substituted organophosphorus oligomer. Polymer 2010, 51, 2435–2445. [Google Scholar] [CrossRef]
- Senanayake, R.B.; Gan, H.; Liu, D.; Zhang, J.; Basnayake, A.P.; Heitzmann, M.T.; Varley, R.J. Partially bio-derived phosphazene-tannic acid microspheres as fire retardant additives for an epoxy tannic acid resin system. Compos. Pt. B-Eng. 2024, 287, 111831. [Google Scholar] [CrossRef]
- Yang, P.; Ren, M.; Chen, K.; Liang, Y.; Lü, Q.; Zhang, T. Synthesis of a novel silicon-containing epoxy resin and its effect on flame retardancy, thermal, and mechanical properties of thermosetting resins. Mater. Today Commun. 2019, 19, 186–195. [Google Scholar] [CrossRef]
- Wen, N.; Zeng, W.; Yang, Y.; Yang, Z.; Li, H.; Li, X.; Li, Q.; Ding, H.; Lei, Z. Preparation of the Intrinsic Flame-Retardant Curing Agent of Inorganic Epoxy Resin Containing Nitrogen and Phosphorus. J. Inorg. Organomet. Polym. Mater. 2022, 32, 412–422. [Google Scholar] [CrossRef]
- Shi, X.; Luo, S.; Du, X.; Li, Q.; Cheng, S. Improvement the flame retardancy and thermal conductivity of epoxy composites via melamine polyphosphate-modified carbon nanotubes. Polymers 2022, 14, 3091. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, J.; Wu, Z.; Hong, Y.; Li, H.; Qian, J.; Wu, K.; Xia, Y. Enhancing Flame Retardancy in Epoxy Resin with Clever Self-Assembly Method for Optimizing Interface Interaction via Well-Dispersed Cerium Oxide on Piperazine Pyrophosphate. Fire 2024, 7, 372. https://doi.org/10.3390/fire7110372
Zhao J, Wu Z, Hong Y, Li H, Qian J, Wu K, Xia Y. Enhancing Flame Retardancy in Epoxy Resin with Clever Self-Assembly Method for Optimizing Interface Interaction via Well-Dispersed Cerium Oxide on Piperazine Pyrophosphate. Fire. 2024; 7(11):372. https://doi.org/10.3390/fire7110372
Chicago/Turabian StyleZhao, Jiajun, Zhengqian Wu, Yutong Hong, Hongyu Li, Junbo Qian, Kailiang Wu, and Yan Xia. 2024. "Enhancing Flame Retardancy in Epoxy Resin with Clever Self-Assembly Method for Optimizing Interface Interaction via Well-Dispersed Cerium Oxide on Piperazine Pyrophosphate" Fire 7, no. 11: 372. https://doi.org/10.3390/fire7110372
APA StyleZhao, J., Wu, Z., Hong, Y., Li, H., Qian, J., Wu, K., & Xia, Y. (2024). Enhancing Flame Retardancy in Epoxy Resin with Clever Self-Assembly Method for Optimizing Interface Interaction via Well-Dispersed Cerium Oxide on Piperazine Pyrophosphate. Fire, 7(11), 372. https://doi.org/10.3390/fire7110372