Thermogravimetric Assessment of Biomass: Unravelling Kinetic, Chemical Composition and Combustion Profiles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biomass Samples
2.2. Thermogravimetric Analysis
2.3. Fraser–Suzuki Deconvolution
2.4. Combustion Indices
2.5. Kinetic Models
2.5.1. Friedman Method
2.5.2. Kissinger–Akahira–Sunose (KAS) Method
2.5.3. Flynn–Wall–Ozawa (FWO) Method
2.6. Thermodynamic Parameters
3. Results and Discussion
3.1. TGA Results
3.2. Fraser–Suzuki Composition Model Results
3.3. Combustion Indices Results
3.4. Kinetic Analysis Results
3.5. Thermodynamic Parameters Results
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Neves, S.A.; Marques, A.C.; Patrício, M. Determinants of CO2 emissions in European Union countries: Does environmental regulation reduce environmental pollution? Econ. Anal. Policy 2020, 68, 114–125. [Google Scholar] [CrossRef]
- European Commission. The Paris Protocol—A blueprint for tackling change beyond 2020. Communication 2015, 17, 1–17. [Google Scholar]
- Scarlat, N.; Dallemand, J.-F.; Monforti-Ferrario, F.; Banja, M.; Motola, V. Renewable energy policy framework and bioenergy contribution in the European Union—An overview from National Renewable Energy Action Plans and Progress Reports. Renew. Sustain. Energy Rev. 2015, 51, 969–985. [Google Scholar] [CrossRef]
- Solano Rodriguez, B.; Drummond, P.; Ekins, P. Decarbonizing the EU energy system by 2050: An important role for BECCS. Clim. Policy 2017, 17, S93–S110. [Google Scholar] [CrossRef]
- Vakulchuk, R.; Overland, I.; Scholten, D. Renewable energy and geopolitics: A review. Renew. Sustain. Energy Rev. 2020, 122, 109547. [Google Scholar] [CrossRef]
- Farrell, A.E.; Gopal, A.R. Bioenergy Research Needs for Heat, Electricity, and Liquid Fuels. MRS Bull. 2008, 33, 373–380. [Google Scholar] [CrossRef]
- Srivastava, R.K.; Shetti, N.P.; Reddy, K.R.; Kwon, E.E.; Nadagouda, M.N.; Aminabhavi, T.M. Biomass utilization and production of biofuels from carbon neutral materials. Environ. Pollut. 2021, 276, 116731. [Google Scholar] [CrossRef]
- Schlamadinger, B.; Apps, M.; Bohlin, F.; Gustavsson, L.; Jungmeier, G.; Marland, G.; Pingoud, K.; Savolainen, I. Towards a standard methodology for greenhouse gas balances of bioenergy systems in comparison with fossil energy systems. Biomass Bioenergy 1997, 13, 359–375. [Google Scholar] [CrossRef]
- Christoforou, E.; Fokaides, P.A. Sustainability Considerations of Solid Biofuels Production and Exploitation. In Advances in Solid Biofuels: Green Energy and Technology; Springer: Cham, Switzerland, 2019; pp. 97–109. [Google Scholar]
- McKendry, P. Energy production from biomass (part 2): Conversion technologies. Bioresour. Technol. 2002, 83, 47–54. [Google Scholar] [CrossRef]
- Bilgili, F.; Koçak, E.; Bulut, Ü.; Kuşkaya, S. Can biomass energy be an efficient policy tool for sustainable development? Renew. Sustain. Energy Rev. 2017, 71, 830–845. [Google Scholar] [CrossRef]
- Nikolaisen, L.S.; Jensen, P.D. Biomass feedstocks: Categorisation and preparation for combustion and gasification. In Biomass Combustion Science, Technology and Engineering; Elsevier: Amsterdam, The Netherlands, 2013; pp. 36–57. [Google Scholar]
- Osman, A.I.; Mehta, N.; Elgarahy, A.M.; Al-Hinai, A.; Al-Muhtaseb, A.H.; Rooney, D.W. Conversion of biomass to biofuels and life cycle assessment: A review. Environ. Chem. Lett. 2021, 19, 4075–4118. [Google Scholar] [CrossRef]
- Tursi, A. A review on biomass: Importance, chemistry, classification, and conversion. Biofuel Res. J. 2019, 6, 962–979. [Google Scholar] [CrossRef]
- Hongzhang, C. Lignocellulose Biorefinery Engineering; Woodhead Publishing Limited: Cambridge, UK, 2015. [Google Scholar]
- Fernandez-Lopez, M.; Pedrosa-Castro, G.J.; Valverde, J.L.; Sanchez-Silva, L. Kinetic analysis of manure pyrolysis and combustion processes. Waste Manag. 2016, 58, 230–240. [Google Scholar] [CrossRef] [PubMed]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Fuel 2013, 105, 19–39. [Google Scholar] [CrossRef]
- Achinas, S.; Achinas, V.; Euverink, G.J.W. A Technological Overview of Biogas Production from Biowaste. Engineering 2017, 3, 299–307. [Google Scholar] [CrossRef]
- Ilic, D.; Williams, K.; Farnish, R.; Webb, E.; Liu, G. On the challenges facing the handling of solid biomass feedstocks. Biofuels Bioprod. Biorefin. 2018, 12, 187–202. [Google Scholar] [CrossRef]
- Castells, B.; Amez, I.; Medic, L.; García Torrent, J. Particle Size Influence on the Transport Classification Labels and Other Flammability Characteristics of Powders. Appl. Sci. 2020, 10, 8601. [Google Scholar] [CrossRef]
- Varela, A.; Arbizu-Milagro, J.; Tascón, A. Application of Factorial Analysis to the Study of Vented Dust Explosions in Large Biomass Storage Silos. Fire 2023, 6, 226. [Google Scholar] [CrossRef]
- Babiński, P.; Łabojko, G.; Kotyczka-Morańska, M.; Plis, A. Kinetics of coal and char oxycombustion studied by TG–FTIR. J. Therm. Anal. Calorim. 2013, 113, 371–378. [Google Scholar] [CrossRef]
- Vyazovkin, S.; Burnham, A.K.; Criado, J.M.; Pérez-Maqueda, L.A.; Popescu, C.; Sbirrazzuoli, N. ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 2011, 520, 1–19. [Google Scholar] [CrossRef]
- Álvarez, A.; Pizarro, C.; García, R.; Bueno, J.; Lavín, A. Determination of kinetic parameters for biomass combustion. Bioresour. Technol. 2016, 216, 36–43. [Google Scholar] [CrossRef] [PubMed]
- Ashraf, A.; Sattar, H.; Munir, S. A comparative applicability study of model-fitting and model-free kinetic analysis approaches to non-isothermal pyrolysis of coal and agricultural residues. Fuel 2019, 240, 326–333. [Google Scholar] [CrossRef]
- Chen, R.; Li, Q.; Xu, X.; Zhang, D.; Hao, R. Combustion characteristics, kinetics and thermodynamics of Pinus Sylvestris pine needle via non-isothermal thermogravimetry coupled with model-free and model-fitting methods. Case Stud. Therm. Eng. 2020, 22, 100756. [Google Scholar] [CrossRef]
- Gao, M.; Pan, D.X.; Sun, C.Y. Study on the thermal degradation of wood treated with amino resin and amino resin modified with phosphoric acid. J Fire Sci 2003, 21, 189–201. [Google Scholar] [CrossRef]
- Deka, M.; Saikia, C.N.; Baruah, K.K. Studies on thermal degradation and termite resistant properties of chemically modified wood. Bioresour. Technol. 2002, 84, 151–157. [Google Scholar] [CrossRef]
- Zakrzewski, R. Pyrolysis kinetics of wood comparison of iso and polythermal thermogravimetric methods. Electron. J. Pol. Agric. Univ. 2003, 6. [Google Scholar]
- Yorulmaz, S.Y.; Atimtay, A.T. Investigation of combustion kinetics of treated and untreated waste wood samples with thermogravimetric analysis. Fuel Process. Technol. 2009, 90, 939–946. [Google Scholar] [CrossRef]
- Gašparovič, L.; Koreňová, Z.; Jelemenský, L’. Kinetic study of wood chips decomposition by TGA. Chem. Pap. 2010, 64, 174–181. [Google Scholar] [CrossRef]
- Sfakiotakis, S.; Vamvuka, D. Study of co-pyrolysis of olive kernel with waste biomass using TGA/DTG/MS. Thermochim. Acta 2018, 670, 44–54. [Google Scholar] [CrossRef]
- Al bkoor Alrawashdeh, K.; Slopiecka, K.; Alshorman, A.A.; Bartocci, P.; Fantozzi, F. Pyrolytic degradation of Olive Waste Residue (OWR) by TGA: Thermal decomposition behavior and kinetic study. J. Energy Power Eng. 2017, 11, 497–510. [Google Scholar] [CrossRef]
- Castells, B.; Varela, A.; Castillo-Ruiz, F.J.; Calvo, L.F.; Medic, L.; Tascón, A. Ignition and explosion characteristics of olive-derived biomasses. Powder Technol. 2023, 420, 118386. [Google Scholar] [CrossRef]
- Orfão, J.J.M.; Antunes, F.J.A.; Figueiredo, J.L. Pyrolysis kinetics of lignocellulosic materials—Three independent reactions model. Fuel 1999, 78, 349–358. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Berger, A.; Zobel, N. How to determine consistent biomass pyrolysis kinetics in a parallel reaction scheme. Fuel 2014, 123, 230–240. [Google Scholar] [CrossRef]
- Perejón, A.; Sánchez-Jiménez, P.E.; Criado, J.M.; Pérez-Maqueda, L.A. Kinetic analysis of complex solid-state reactions. A new deconvolution procedure. J. Phys. Chem. B 2011, 115, 1780–1791. [Google Scholar] [CrossRef]
- Hu, M.; Chen, Z.; Wang, S.; Guo, D.; Ma, C.; Zhou, Y.; Chen, J.; Laghari, M.; Fazal, S.; Xiao, B.; et al. Thermogravimetric kinetics of lignocellulosic biomass slow pyrolysis using distributed activation energy model, Fraser–Suzuki deconvolution, and iso-conversional method. Energy Convers. Manag. 2016, 118, 1–11. [Google Scholar] [CrossRef]
- Luo, G.; Wang, W.; Zhao, Y.; Tao, X.; Xie, W.; Wang, K. Autothermal pyrolysis of lignocellulosic biomass: Experimental, kinetic, and thermodynamic studies. J. Anal. Appl. Pyrolysis 2023, 171, 105972. [Google Scholar] [CrossRef]
- Portarapillo, M.; Pietraccini, M.; Sanchirico, R.; Di Benedetto, A.; Dufaud, O. Investigation of the flash pyrolysis of biomass dust: Is there a correlation between MIT, volatile point and LFL of the pyrolysis gases? In Proceedings of the 15th International Symposium on Hazards, Prevention and Mitigation of Industrial Explosions (ISHPMIE 2024), Naples, Italy, 10–14 June 2024. [Google Scholar]
- Greco, G.; Videgain, M.; Di Stasi, C.; González, B.; Manyà, J.J. Evolution of the mass-loss rate during atmospheric and pressurized slow pyrolysis of wheat straw in a bench-scale reactor. J. Anal. Appl. Pyrolysis 2018, 136, 18–26. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.S.; Cheng, S.; Qu, B.; Li, A.; Meng, F.; Ji, G. The impact of heating rate on the decomposition kinetics and product distribution of algal waste pyrolysis with in-situ weight measurement. Chem. Eng. J. 2023, 457, 141368. [Google Scholar] [CrossRef]
- Aniza, R.; Chen, W.-H.; Kwon, E.E.; Bach, Q.V.; Hoang, A.T. Lignocellulosic biofuel properties and reactivity analyzed by thermogravimetric analysis (TGA) toward zero carbon scheme: A critical review. Energy Convers. Manag. X 2024, 22, 100538. [Google Scholar] [CrossRef]
- Anca-Couce, A.; Tsekos, C.; Retschitzegger, S.; Zimbardi, F.; Funke, A.; Banks, S.; Kraia, T.; Marques, P.; Scharler, R.; de Jong, W.; et al. Biomass pyrolysis TGA assessment with an international round robin. Fuel 2020, 276, 118002. [Google Scholar] [CrossRef]
- Riaz, S.; Oluwoye, I.; Al-Abdeli, Y.M. Oxidative torrefaction of densified woody biomass: Performance, combustion kinetics and thermodynamics. Renew. Energy 2022, 199, 908–918. [Google Scholar] [CrossRef]
- Xu, X.; Pan, R.; Chen, R. Combustion Characteristics, Kinetics, and Thermodynamics of Pine Wood Through Thermogravimetric Analysis. Appl. Biochem. Biotechnol. 2021, 193, 1427–1446. [Google Scholar] [CrossRef] [PubMed]
- Morgan, P.A.; Robertson, S.D.; Unsworth, J.F. Combustion studies by thermogravimetric analysis. Fuel 1986, 65, 1546–1551. [Google Scholar] [CrossRef]
- ASTM D3302-02; Standard Test Method for Total Moisture in Coal. ASTM International: West Conshohocken, PA, USA, 2002.
- UNE 32019:1984; Hard Coal and Coke. Determination of Volatile Matter Content. AENOR: Madrid, Spain, 1984.
- UNE 32004:1984; Solid Mineral Fuels. Determination of Ash. AENOR: Madrid, Spain, 1984.
- ASTM D5373-21; Standard Test Methods for Determination of Carbon, Hydrogen and Nitrogen in Analysis Samples of Coal and Carbon in Analysis Samples of Coal and Coke. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D4239-18e1; Standard Test Method for Sulfur in the Analysis Sample of Coal and Coke Using High-Temperature Tube Furnace Combustion. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D2361-95; Standard Test Method for Chlorine in Coal. ASTM International: West Conshohocken, PA, USA, 2021.
- UNE 32006:1995; Solid Mineral Fuels. Determination of Gross Calorific Value by Automoatic Calorimeter. AENOR: Madrid, Spain, 1995.
- Bitra, V.S.P.; Womac, A.R.; Chevanan, N.; Sokhansanj, S. Comminution Properties of Biomass in Hammer Mill and its Particle Size Characterization. In Proceedings of the 2008 Providence, Providence, RI, USA, 29 June–2 July 2008; American Society of Agricultural and Biological Engineers: St. Joseph, MI, USA, 2008. [Google Scholar]
- Guo, Q.; Chen, X.; Liu, H. Experimental research on shape and size distribution of biomass particle. Fuel 2012, 94, 551–555. [Google Scholar] [CrossRef]
- Castells, B.; Tascón, A.; Amez, I.; Fernandez-Anez, N. Influence of Particle Size on the Flammability and Explosibility of Biomass Dusts: Is a New Approach Needed? Fire Technol. 2023, 59, 2989–3025. [Google Scholar] [CrossRef]
- Varela, A.; Castillo-Ruiz, F.J.; Arbizu-Milagro, J.; Tascón, A. The influence of moisture on the sieving performance of lignocellulosic biomass. Biofuels Bioprod. Biorefin. 2023, 17, 1708–1723. [Google Scholar] [CrossRef]
- Alvarado Flores, J.J.; Rutiaga Quiñones, J.G. Estudio de cinética en procesos termogravimétricos de materiales lignocelulósicos. Maderas Cienc. Y Tecnol. 2018, 20, 221–238. [Google Scholar] [CrossRef]
- Manals, E.; Penedo, M.; Ortega, G. Thermogravimetric and Thermal Analysis Differential Different Vegetable Biomasses. Chem. Technol. 2011, 20, 180–190. [Google Scholar]
- Torrent, J.G.; Ramírez-Gómez, Á.; Fernandez-Anez, N.; Pejic, L.M.; Tascón, A. Influence of the composition of solid biomass in the flammability and susceptibility to spontaneous combustion. Fuel 2016, 184, 503–511. [Google Scholar] [CrossRef]
- Chen, T.; Wu, W.; Wu, J.; Cai, J.; Wu, J. Determination of the pseudocomponents and kinetic analysis of selected combustible solid wastes pyrolysis based on Weibull model. J. Therm. Anal. Calorim. 2016, 126, 1899–1909. [Google Scholar] [CrossRef]
- Li, Z.; Zhao, W.; Meng, B.; Liu, C.; Zhu, Q.; Zhao, G. Kinetic study of corn straw pyrolysis: Comparison of two different three-pseudocomponent models. Bioresour. Technol. 2008, 99, 7616–7622. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Yu, S.; Kim, M.; Ryu, C. Progressive deconvolution of biomass thermogram to derive lignocellulosic composition and pyrolysis kinetics for parallel reaction model. Energy 2022, 254, 124446. [Google Scholar] [CrossRef]
- Ferreira, A.F.; Ferreira, A.; Dias, A.P.S.; Gouveia, L. Pyrolysis of Scenedesmus obliquus Biomass Following the Treatment of Different Wastewaters. Bioenergy Res. 2020, 13, 896–906. [Google Scholar] [CrossRef]
- Rego, F.; Dias, A.P.S.; Casquilho, M.; Rosa, F.C.; Rodrigues, A. Fast determination of lignocellulosic composition of poplar biomass by thermogravimetry. Biomass Bioenergy 2019, 122, 375–380. [Google Scholar] [CrossRef]
- Naya, S.; Cao, R.; de Ullibarri, I.L.; Artiaga, R.; Barbadillo, F.; García, A. Logistic mixture model versus Arrhenius for kinetic study of material degradation by dynamic thermogravimetric analysis. J. Chemom. 2006, 20, 158–163. [Google Scholar] [CrossRef]
- Chen, C.; Miao, W.; Zhou, C.; Wu, H. Thermogravimetric pyrolysis kinetics of bamboo waste via Asymmetric Double Sigmoidal (Asym2sig) function deconvolution. Bioresour. Technol. 2017, 225, 48–57. [Google Scholar] [CrossRef]
- Castells, B.; Amez, I.; Medic, L.; García-Torrent, J. Torrefaction influence on combustion kinetics of Malaysian oil palm wastes. Fuel Process. Technol. 2021, 218, 106843. [Google Scholar] [CrossRef]
- Cheng, Z.; Wu, W.; Ji, P.; Zhou, X.; Liu, R.; Cai, J. Applicability of Fraser–Suzuki function in kinetic analysis of DAEM processes and lignocellulosic biomass pyrolysis processes. J. Therm. Anal. Calorim. 2015, 119, 1429–1438. [Google Scholar] [CrossRef]
- Bilkic, B.; Haykiri-Acma, H.; Yaman, S. Combustion reactivity estimation parameters of biomass compared with lignite based on thermogravimetric analysis. Energy Sources Part A Recover. Util. Environ. Eff. 2023, 45, 370–383. [Google Scholar] [CrossRef]
- Qin, Z.; Lei, M.; Zhang, L. Thermogravimetric analysis of the co-combustion of bituminous coal, rice straw and sewage sludge. IOP Conf. Ser. Earth Environ. Sci. 2022, 1011, 012028. [Google Scholar] [CrossRef]
- Wang, Z.; Hong, C.; Xing, Y.; Li, Y.; Feng, L.; Jia, M. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal: With and without catalysts. Waste Manag. 2018, 74, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Mureddu, M.; Dessì, F.; Orsini, A.; Ferrara, F.; Pettinau, A. Air- and oxygen-blown characterization of coal and biomass by thermogravimetric analysis. Fuel 2018, 212, 626–637. [Google Scholar] [CrossRef]
- Kumar, R.; Singh, R.I. An investigation of co-combustion municipal sewage sludge with biomass in a 20 kW BFB combustor under air-fired and oxygen-enriched condition. Waste Manag. 2017, 70, 114–126. [Google Scholar] [CrossRef] [PubMed]
- Apaydin-Varol, E.; Polat, S.; Putun, A. Pyrolysis kinetics and thermal decomposition behavior of polycarbonate—A TGA-FTIR study. Therm. Sci. 2014, 18, 833–842. [Google Scholar] [CrossRef]
- Garcia, E.; Ejim, I.F.; Liu, H. Thermogravimetric analysis of co-combustion of a bituminous coal and coffee industry by-products. Thermochim. Acta 2022, 715, 179296. [Google Scholar] [CrossRef]
- Liu, Y.; Cao, X.; Duan, X.; Wang, Y.; Che, D. Thermal analysis on combustion characteristics of predried dyeing sludge. Appl. Therm. Eng. 2018, 140, 158–165. [Google Scholar] [CrossRef]
- Sieradzka, M.; Gao, N.; Quan, C.; Mlonka-Mędrala, A.; Magdziarz, A. Biomass Thermochemical Conversion via Pyrolysis with Integrated CO2 Capture. Energies 2020, 13, 1050. [Google Scholar] [CrossRef]
- Castells, B.; Amez, I.; Manić, N.G.; Stojiljković, D.D.; Medic, L.; Garcia-Torrent, J. Kinetic study of different biomass pyrolysis and oxygen-enriched combustion. Therm. Sci. 2022, 26, 4131–4145. [Google Scholar] [CrossRef]
- Friedman, H.L. Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 1964, 6, 183–195. [Google Scholar] [CrossRef]
- Kissinger, H.E. Reaction Kinetics in Differential Thermal Analysis. Anal. Chem. 1957, 29, 1702–1706. [Google Scholar] [CrossRef]
- Flynn, J.H.; Wall, L.A. A quick, direct method for the determination of activation energy from thermogravimetric data. J. Polym. Sci. B 1966, 4, 323–328. [Google Scholar] [CrossRef]
- Zaker, A.; Chen, Z.; Zaheer-Uddin, M.; Guo, J. Co-pyrolysis of sewage sludge and low-density polyethylene—A thermogravimetric study of thermo-kinetics and thermodynamic parameters. J. Environ. Chem. Eng. 2021, 9, 104554. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Hameed, Z.; Tariq, R.; Taqvi, S.A.; Ali, I.; Niazi, M.B.K.; Noor, T.; Hussain, A.; Iqbal, N.; Shahbaz, M. Synergistic effect on co-pyrolysis of rice husk and sewage sludge by thermal behavior, kinetics, thermodynamic parameters and artificial neural network. Waste Manag. 2019, 85, 131–140. [Google Scholar] [CrossRef] [PubMed]
- Maestri, D.; Barrionuevo, D.; Bodoira, R.; Zafra, A.; Jiménez-López, J.; Alché, J.d.D. Nutritional profile and nutraceutical components of olive (Olea europaea L.) seeds. J. Food Sci. Technol. 2019, 56, 4359–4370. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, S.; Reddy Ragula, U.B. Pyrolysis kinetics of Hibiscus rosa sinensis and Nerium oleander. Biofuels 2020, 11, 903–917. [Google Scholar] [CrossRef]
- Manić, N.; Janković, B.; Stojiljković, D.; Radojević, M.; Somoza, B.C.; Medić, L. Self-ignition potential assessment for different biomass feedstocks based on the dynamic thermal analysis. Clean. Eng. Technol. 2021, 2, 100040. [Google Scholar] [CrossRef]
- Ma, Z.; Chen, D.; Gu, J.; Bao, B.; Zhang, Q. Determination of pyrolysis characteristics and kinetics of palm kernel shell using TGA–FTIR and model-free integral methods. Energy Convers. Manag. 2015, 89, 251–259. [Google Scholar] [CrossRef]
- Manic, N.G.; Jankovic, B.Z.; Stojiljkovic, D.D.; Jovanovic, V.V.; Radojevic, M.B. TGA-DSC-MS analysis of pyrolysis process of various agricultural residues. Therm. Sci. 2019, 23, 1457–1472. [Google Scholar] [CrossRef]
- Carrier, M.; Auret, L.; Bridgwater, A.; Knoetze, J.H. Using Apparent Activation Energy as a Reactivity Criterion for Biomass Pyrolysis. Energy Fuels 2016, 30, 7834–7841. [Google Scholar] [CrossRef]
- Sukiran, M.A.; Abnisa, F.; Daud, W.M.A.W.; Abu Bakar, N.; Loh, S.K. A review of torrefaction of oil palm solid wastes for biofuel production. Energy Convers. Manag. 2017, 149, 101–120. [Google Scholar] [CrossRef]
- Svoboda, R.; Málek, J. Applicability of Fraser–Suzuki function in kinetic analysis of complex crystallization processes. J. Therm. Anal. Calorim. 2013, 111, 1045–1056. [Google Scholar] [CrossRef]
- Grønli, M.G.; Várhegyi, G.; Di Blasi, C. Thermogravimetric Analysis and Devolatilization Kinetics of Wood. Ind. Eng. Chem. Res. 2002, 41, 4201–4208. [Google Scholar] [CrossRef]
- Rusanen, A.; Lappalainen, K.; Kärkkäinen, J.; Tuuttila, T.; Mikola, M.; Lassi, U. Selective hemicellulose hydrolysis of Scots pine sawdust. Biomass Convers. Biorefin. 2019, 9, 283–291. [Google Scholar] [CrossRef]
- Shang, L.; Nielsen, N.P.K.; Dahl, J.; Stelte, W.; Ahrenfeldt, J.; Holm, J.K.; Thomsen, T.; Henriksen, U.B. Quality effects caused by torrefaction of pellets made from Scots pine. Fuel Process. Technol. 2012, 101, 23–28. [Google Scholar] [CrossRef]
- Zborowska, M.; Prądzyński, W.; Kusiak, W.; Stachowiak-Wencek, A.; Roszyk, E.; Moliński, W. A Selection of the application of Pinus Sylvestris L. from puszcza notecka by chemical analysis. Drew. Pr. Nauk. Doniesienia Komun. Wood Res. Pap. Rep. Announc. 2018, 61, 39–51. [Google Scholar] [CrossRef]
- Lühr, C.; Pecenka, R. Development of a model for the fast analysis of polymer mixtures based on cellulose, hemicellulose (xylan), lignin using thermogravimetric analysis and application of the model to poplar wood. Fuel 2020, 277, 118169. [Google Scholar] [CrossRef]
- Sun, S.-C.; Wang, P.-F.; Cao, X.-F.; Wen, J.-L. An integrated pretreatment for accelerating the enzymatic hydrolysis of poplar and improving the isolation of co-produced hemicelluloses. Ind. Crop. Prod. 2021, 173, 114101. [Google Scholar] [CrossRef]
- Huang, Y.; Liu, H.; Yuan, H.; Zhan, H.; Zhuang, X.; Yuan, S.; Yin, X.; Wu, C. Relevance between chemical structure and pyrolysis behavior of palm kernel shell lignin. Sci. Total Environ. 2018, 633, 785–795. [Google Scholar] [CrossRef]
- Gul, E.; Alrawashdeh, K.A.B.; Masek, O.; Skreiberg, Ø.; Corona, A.; Zampilli, M.; Wang, L.; Samaras, P.; Yang, Q.; Zhou, H.; et al. Production and use of biochar from lignin and lignin-rich residues (such as digestate and olive stones) for wastewater treatment. J. Anal. Appl. Pyrolysis 2021, 158, 105263. [Google Scholar] [CrossRef]
- Cequier, E.; Aguilera, J.; Balcells, M.; Canela-Garayoa, R. Extraction and characterization of lignin from olive pomace: A comparison study among ionic liquid, sulfuric acid, and alkaline treatments. Biomass Convers. Biorefin. 2019, 9, 241–252. [Google Scholar] [CrossRef]
- Sandouqa, A.; Al-Hamamre, Z.; Asfar, J. Preparation and performance investigation of a lignin-based solid acid catalyst manufactured from olive cake for biodiesel production. Renew. Energy 2019, 132, 667–682. [Google Scholar] [CrossRef]
- Portarapillo, M.; Danzi, E.; Sanchirico, R.; Marmo, L.; Di Benedetto, A. Energy Recovery from Vinery Waste: Dust Explosion Issues. Appl. Sci. 2021, 11, 11188. [Google Scholar] [CrossRef]
- Wzorek, M.; Junga, R.; Yilmaz, E.; Bozhenko, B. Thermal Decomposition of Olive-Mill Byproducts: A TG-FTIR Approach. Energies 2021, 14, 4123. [Google Scholar] [CrossRef]
- Afessa, M.M.; Ramayya, A.V.; Nega, D.T.; Mossisa, H.M.; Locaspi, A.; Faravelli, T.F. Investigation of Kinetic, Thermodynamic and Performance Parameters during Devolatilization of Agricultural biomass Waste via TGA. Ethiop. J. Appl. Sci. Technol. 2023, 16–24. [Google Scholar]
- Menzinger, M.; Wolfgang, R. The Meaning and Use of the Arrhenius Activation Energy. Angew. Chem. Int. Ed. Engl. 1969, 8, 438–444. [Google Scholar] [CrossRef]
- Radojević, M.; Janković, B.; Jovanović, V.; Stojiljković, D.; Manić, N. Comparative pyrolysis kinetics of various biomasses based on model-free and DAEM approaches improved with numerical optimization procedure. PLoS ONE 2018, 13, e0206657. [Google Scholar] [CrossRef]
- Jiang, L.; Yang, X.-R.; Gao, X.; Xu, Q.; Das, O.; Sun, J.-H.; Kuzman, M.K. Pyrolytic Kinetics of Polystyrene Particle in Nitrogen Atmosphere: Particle Size Effects and Application of Distributed Activation Energy Method. Polymers 2020, 12, 421. [Google Scholar] [CrossRef]
- Cui, Z.; Xue, Y.; Xiao, L.; Wang, T. Effect of Particle Size on Activation Energy for Thermal Decomposition of Nano-CaCO3. J. Comput. Theor. Nanosci. 2013, 10, 569–572. [Google Scholar] [CrossRef]
- Özveren, U.; Özdoğan, Z.S. Investigation of the slow pyrolysis kinetics of olive oil pomace using thermo-gravimetric analysis coupled with mass spectrometry. Biomass Bioenergy 2013, 58, 168–179. [Google Scholar] [CrossRef]
- Xiang, Y.; Xiang, Y.; Wang, L. Kinetics of the thermal decomposition of poplar sawdust. Energy Sources Part A Recover. Util. Environ. Eff. 2017, 39, 213–218. [Google Scholar] [CrossRef]
- Sharma, A.; Aravind Kumar, A.; Mohanty, B.; Sawarkar, A.N. Critical insights into pyrolysis and co-pyrolysis of poplar and eucalyptus wood sawdust: Physico-chemical characterization, kinetic triplets, reaction mechanism, and thermodynamic analysis. Renew. Energy 2023, 210, 321–334. [Google Scholar] [CrossRef]
- Gu, X.; Liu, C.; Jiang, X.; Ma, X.; Li, L.; Cheng, K.; Li, Z. Thermal behavior and kinetics of the pyrolysis of the raw/steam exploded poplar wood sawdust. J. Anal. Appl. Pyrolysis 2014, 106, 177–186. [Google Scholar] [CrossRef]
- Xu, L.; Zhou, J.; Ni, J.; Li, Y.; Long, Y.; Huang, R. Investigating the pyrolysis kinetics of Pinus sylvestris using thermogravimetric analysis. Bioresources 2020, 15, 5577–5592. [Google Scholar] [CrossRef]
- Mishra, G.; Kumar, J.; Bhaskar, T. Kinetic studies on the pyrolysis of pinewood. Bioresour. Technol. 2015, 182, 282–288. [Google Scholar] [CrossRef]
- Xiao, R.; Yang, W.; Cong, X.; Dong, K.; Xu, J.; Wang, D.; Yang, X. Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis. Energy 2020, 201, 117537. [Google Scholar] [CrossRef]
- Rego, F.; Dias, A.P.S.; Casquilho, M.; Rosa, F.C.; Rodrigues, A. Pyrolysis kinetics of short rotation coppice poplar biomass. Energy 2020, 207, 118191. [Google Scholar] [CrossRef]
- Quesada, L.; Pérez, A.; Calero, M.; Blázquez, G.; Martín-Lara, M. Kinetic study of thermal degradation of olive cake based on a scheme of fractionation and its behavior impregnated of metals. Bioresour. Technol. 2018, 261, 104–116. [Google Scholar] [CrossRef]
- Asimakidou, T.; Chrissafis, K. Thermal behavior and pyrolysis kinetics of olive stone residue. J. Therm. Anal. Calorim. 2022, 147, 9045–9054. [Google Scholar] [CrossRef]
- Slopiecka, K.; Bartocci, P.; Fantozzi, F. Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. Appl. Energy 2012, 97, 491–497. [Google Scholar] [CrossRef]
- Patidar, K.; Singathia, A.; Vashishtha, M.; Sangal, V.K.; Upadhyaya, S. Investigation of kinetic and thermodynamic parameters approaches to non-isothermal pyrolysis of mustard stalk using model-free and master plots methods. Mater. Sci. Energy Technol. 2022, 5, 6–14. [Google Scholar] [CrossRef]
- Carvalho, M.; Oliveira, A.P.; Mayer, F.; Virgens, C.; Rangel, M.D.C. Thermokinetic and Thermodynamic Parameters for Catalytic Pyrolysis of Medium Density Fiber over Ni/Beta Zeolite. Catal. Res. 2022, 2, 038. [Google Scholar] [CrossRef]
- Fan, F.; Zheng, Y.; Huang, Y.; Lu, Y.; Wang, Z.; Chen, B.; Zheng, Z. Combustion Kinetics of Biochar Prepared by Pyrolysis of Macadamia Shells. Bioresources 2017, 12, 3918–3932. [Google Scholar] [CrossRef]
- Sánchez-Ávila, N.; Cardarelli, A.; Carmona-Cabello, M.; Dorado, M.; Pinzi, S.; Barbanera, M. Kinetic and thermodynamic behavior of co-pyrolysis of olive pomace and thermoplastic waste via thermogravimetric analysis. Renew. Energy 2024, 230, 120880. [Google Scholar] [CrossRef]
- Chaula, Z.; John, G.; Said, M.; Manyele, S.; Mhilu, C. Non-Isothermal Degradation and Thermodynamic Properties of Pine Sawdust. Smart Grid Renew. Energy 2018, 9, 272–284. [Google Scholar] [CrossRef]
Material | Origin | V | A | FC | C | H | N | O | S | Cl | HHV | LHV |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Olive pits | Jaén, Spain | 78.7 | 1.2 | 20.1 | 51.04 | 6.03 | 0.34 | 42.54 | 0.03 | 0.025 | 20.2 | 19.0 |
Olive cake pellets | Sevilla, Spain | 74.3 | 7.2 | 18.5 | 51.29 | 6.24 | 1.49 | 40.72 | 0.10 | 0.162 | 18.9 | 17.7 |
Poplar sawdust | La Rioja, Spain | 83.6 | 1.0 | 15.4 | 49.47 | 5.89 | 1.40 | 43.12 | 0.05 | 0.071 | 19.5 | 18.1 |
Pine pellets | León, Spain | 82.2 | 0.3 | 17.5 | 50.67 | 6.13 | 0.09 | 43.07 | 0.02 | 0.02 | 20.3 | 19.0 |
Material | Sample | d10 (μm) | d50 (μm) | d90 (μm) | SSA (m2/g) | d[3,2] (μm) | d[4,3] (μm) | M (%) |
---|---|---|---|---|---|---|---|---|
Olive pits | OPI | 28.2 | 251.1 | 569.6 | 0.099 | 60.1 | 270.8 | 8.7 |
Olive cake pellets | OCP | 37.0 | 223.5 | 519.9 | 0.073 | 81.7 | 253.4 | 8.2 |
Poplar sawdust | POP | 20.7 | 134.1 | 499.5 | 0.136 | 44.2 | 209.5 | 6.2 |
Pine pellets | PP400 | 80.9 | 315.3 | 683.9 | 0.038 | 158.1 | 355.7 | 6.8 |
PP250 | 36.8 | 169.6 | 406.1 | 0.074 | 80.8 | 200.7 | 7.4 | |
PP80 | 17.7 | 67.6 | 169.8 | 0.191 | 31.4 | 82.5 | 7.8 |
Combustion Index | Equation | |
---|---|---|
Ignition index [71] | (2) | |
Burnout index [71] | (3) | |
Comprehensive combustion index [71] | (4) | |
Flammability index [72] | (5) | |
Combustion intensity index [71] | (6) | |
Combustion stability index [71] | (7) |
Parameters | Equations | |
---|---|---|
Pre-exponential factor, A (1/s) | (16) | |
Enthalpy, ΔH (kJ/mol) | ΔH = (R × T) | (17) |
Gibbs free energy, ΔG (kJ/mol) | ΔG = + R × ×ln [(KB × )/(h × A)] | (18) |
Entropy, ΔS (kJ/mol×K) | (19) |
Sample | Tp 5 K/min | Tp 10 K/min | Tp 20 K/min | IT 5 K/min | IT 10 K/min | IT 20 K/min |
---|---|---|---|---|---|---|
OPI | 276.7 | 294.4 | 335.1 | 240.8 | 255.2 | 257.7 |
OCP | 295.6 | 296.9 | 303.5 | 208.6 | 230.1 | 242.7 |
POP | 333.1 | 342.3 | 344.5 | 270.0 | 282.2 | 288.0 |
PP400 | 346.5 | 344.6 | 357.3 | 294.0 | 293.5 | 309.0 |
PP250 | 347.5 | 352.2 | 356.2 | 294.0 | 299.2 | 309.0 |
PP80 | 347.4 | 354.2 | 355.3 | 291.3 | 296.3 | 303.0 |
Sample | PS1 (%) | PS2 (%) | PS3 (%) | R2 |
---|---|---|---|---|
OPI | 27.6 | 15.6 | 56.9 | 0.9964 |
OCP | 14.3 | 34.5 | 51.2 | 0.9744 |
POP | 26.0 | 46.4 | 27.6 | 0.9876 |
PP400 | 36.8 | 39.0 | 24.2 | 0.9615 |
PP250 | 21.7 | 49.2 | 29.2 | 0.9723 |
PP80 | 24.2 | 47.0 | 28.8 | 0.9774 |
Sample | β (K/min) | Di (%/min3) | Db (%/min4) | S (%2/min2 × °C3) | Hf (°C × min2/%) | C (%/min × °C2) | Dw (%/min × °C2) |
---|---|---|---|---|---|---|---|
OPI | 5 | 1.42 × 10−3 | 2.11 × 10−5 | 7.52 × 10−8 | 1168.84 | 4.81 × 10−5 | 4.24 × 10−5 |
10 | 9.10 × 10−3 | 2.95 × 10−4 | 2.08 × 10−7 | 888.59 | 7.66 × 10−5 | 6.85 × 10−5 | |
20 | 5.33 × 10−2 | 3.54 × 10−3 | 5.10 × 10−7 | 607.93 | 1.18 × 10−4 | 1.06 × 10−4 | |
Mean | 2.13 × 10−2 | 1.29 × 10−3 | 2.64 × 10−7 | 888.45 | 8.09 × 10−5 | 7.22 × 10−5 | |
OCP | 5 | 1.01 × 10−3 | 2.38 × 10−5 | 7.39 × 10−8 | 1210.06 | 4.23 × 10−5 | 3.03 × 10−5 |
10 | 7.39 × 10−3 | 2.86 × 10−4 | 1.87 × 10−7 | 906.80 | 7.97 × 10−5 | 6.30 × 10−5 | |
20 | 3.69 × 10−2 | 3.61 × 10−3 | 5.85 × 10−7 | 544.96 | 1.34 × 10−4 | 1.06 × 10−4 | |
Mean | 1.51 × 10−2 | 1.31 × 10−3 | 2.82 × 10−7 | 887.27 | 8.53 × 10−5 | 6.63 × 10−5 | |
POP | 5 | 1.41 × 10−3 | 2.72 × 10−5 | 8.73 × 10−8 | 1405.66 | 4.87 × 10−5 | 4.01 × 10−5 |
10 | 9.88 × 10−3 | 3.60 × 10−4 | 2.31 × 10−7 | 1093.42 | 8.85 × 10−5 | 7.36 × 10−5 | |
20 | 6.19 × 10−2 | 4.34 × 10−3 | 6.78 × 10−7 | 639.70 | 1.45 × 10−4 | 1.23 × 10−4 | |
Mean | 2.44 × 10−2 | 1.57 × 10−3 | 3.32 × 10−7 | 1046.26 | 9.39 × 10−5 | 7.89 × 10−5 | |
PP400 | 5 | 1.50 × 10−3 | 2.59 × 10−5 | 8.88 × 10−8 | 1501.37 | 5.01 × 10−5 | 4.31 × 10−5 |
10 | 1.05 × 10−2 | 3.58 × 10−4 | 2.70 × 10−7 | 1045.52 | 8.71 × 10−5 | 7.54 × 10−5 | |
20 | 6.04 × 10−2 | 4.31 × 10−3 | 5.70 × 10−7 | 678.95 | 1.26 × 10−4 | 1.11 × 10−4 | |
Mean | 2.41 × 10−2 | 1.56 × 10−3 | 3.10 × 10−7 | 1075.28 | 8.76 × 10−5 | 7.65 × 10−5 | |
PP250 | 5 | 1.54 × 10−3 | 2.68 × 10−5 | 8.68 × 10−8 | 1515.35 | 4.97 × 10−5 | 4.24 × 10−5 |
10 | 9.51 × 10−3 | 3.25 × 10−4 | 2.21 × 10−7 | 1116.27 | 8.16 × 10−5 | 7.10 × 10−5 | |
20 | 6.52 × 10−2 | 4.55 × 10−3 | 5.75 × 10−7 | 690.00 | 1.26 × 10−4 | 1.11 × 10−4 | |
Mean | 2.54 × 10−2 | 1.63 × 10−3 | 2.94 × 10−7 | 1107.20 | 8.57 × 10−5 | 7.48 × 10−5 | |
PP80 | 5 | 1.37 × 10−3 | 2.42 × 10−5 | 7.45 × 10−8 | 1588.78 | 5.30 × 10−5 | 4.47 × 10−5 |
10 | 8.97 × 10−3 | 3.15 × 10−4 | 2.12 × 10−7 | 1136.85 | 8.17 × 10−5 | 6.92 × 10−5 | |
20 | 6.25 × 10−2 | 4.52 × 10−3 | 6.01 × 10−7 | 655.65 | 1.31 × 10−4 | 1.16 × 10−4 | |
Mean | 2.43 × 10−2 | 1.62 × 10−3 | 2.96 × 10−7 | 1127.09 | 8.85 × 10−5 | 7.68 × 10−5 |
Sample | Friedman | KAS | FWO | |||
---|---|---|---|---|---|---|
Ea (kJ/mol) | A (s−1) | Ea (kJ/mol) | A (s−1) | Ea (kJ/mol) | A (s−1) | |
OPI | 128.58 | 4.12 × 1042 | 154.73 | 1.14 × 1044 | 156.56 | 3.35 × 1042 |
OCP | 294.19 | 2.10 × 1044 | 251.72 | 6.60 × 1045 | 248.17 | 1.69 × 1044 |
POP | 157.66 | 1.58 × 1041 | 191.76 | 3.94 × 1042 | 191.86 | 1.29 × 1041 |
PP400 | 174.59 | 3.01 × 1040 | 204.44 | 7.12 × 1041 | 203.93 | 2.47 × 1040 |
PP250 | 162.90 | 1.25 × 1040 | 187.19 | 2.86 × 1041 | 187.66 | 1.02 × 1040 |
PP80 | 94.10 | 1.26 × 1040 | 118.07 | 2.89 × 1041 | 121.89 | 1.03 × 1040 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paredes, R.; Castells, B.; Tascón, A. Thermogravimetric Assessment of Biomass: Unravelling Kinetic, Chemical Composition and Combustion Profiles. Fire 2024, 7, 396. https://doi.org/10.3390/fire7110396
Paredes R, Castells B, Tascón A. Thermogravimetric Assessment of Biomass: Unravelling Kinetic, Chemical Composition and Combustion Profiles. Fire. 2024; 7(11):396. https://doi.org/10.3390/fire7110396
Chicago/Turabian StyleParedes, Roberto, Blanca Castells, and Alberto Tascón. 2024. "Thermogravimetric Assessment of Biomass: Unravelling Kinetic, Chemical Composition and Combustion Profiles" Fire 7, no. 11: 396. https://doi.org/10.3390/fire7110396
APA StyleParedes, R., Castells, B., & Tascón, A. (2024). Thermogravimetric Assessment of Biomass: Unravelling Kinetic, Chemical Composition and Combustion Profiles. Fire, 7(11), 396. https://doi.org/10.3390/fire7110396