Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Species
2.2. Field Sampling
2.3. Dendrochronological Methods
2.4. Statistical Analyses
3. Results
3.1. Tree-Ring Data and Post-Fire Growth Changes
3.2. Growth Responses to Climate Variables in Burnt and Unburnt Stands
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Turco, M.; Rosa-Cánovas, J.J.; Bedia, J.; Jerez, S.; Montávez, J.P.; Llasat, M.C.; Provenzale, A. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Bär, A.; Michaletz, S.T.; Mayr, S. Fire effects on tree physiology. New Phytol. 2019, 223, 1728–1741. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Verdú, M. Plant persistence traits in fire-prone ecosystems of the Mediterranean basin: A phylogenetic approach. Oikos 2005, 109, 196–202. [Google Scholar] [CrossRef]
- Catry, F.X.; Rego, F.; Moreira, F.; Fernandes, P.M.; Pausas, J.G. Post-fire tree mortality in mixed forests of central Portugal. For. Ecol. Manag. 2010, 260, 1184–1192. [Google Scholar] [CrossRef]
- Battipaglia, G.; Savi, T.; Ascoli, D.; Castagneri, D.; Esposito, A.; Mayr, S.; Nardini, A. Effects of prescribed burning on ecophysiological, anatomical and stem hydraulic properties in Pinus pinea L. Tree Physiol. 2016, 36, 1019–1031. [Google Scholar] [CrossRef]
- Battipaglia, G.; Strumia, S.; Esposito, A.; Giuditta, E.; Sirignano, C.; Altieri, S.; Rutigliano, F.A. The effects of prescribed burning on Pinus halepensis Mill. as revealed by dendrochronological and isotopic analyses. For. Ecol. Manag. 2014, 334, 201–208. [Google Scholar] [CrossRef]
- Battipaglia, G.; De Micco, V.; Fournier, T.; Aronne, G.; Carcaillet, C. Isotopic and anatomical signals for interpreting fire-related responses in Pinus halepensis. Trees 2014, 28, 1095–1104. [Google Scholar] [CrossRef]
- Beghin, R.; Cherubini, P.; Battipaglia, G.; Siegwolf, R.; Saurer, M.; Bovio, G. Tree-ring growth and stable isotopes (13C and 15N) detect effects of wildfires on tree physiological processes in Pinus sylvestris L. Trees 2011, 25, 627–636. [Google Scholar] [CrossRef]
- Alfaro-Sánchez, R.; Camarero, J.J.; Sánchez-Salguero, R.; Sangüesa-Barreda, G.; Heras, J.D.L. Post-fire Aleppo pine growth, C and N isotope composition depend on site dryness. Trees 2016, 30, 581–595. [Google Scholar] [CrossRef]
- Camarero, J.J.; Díaz-Delgado, R.; Colangelo, M.; Valeriano, C.; Sánchez-Salguero, R.; Madrigal, J. Differential Post-Fire Recovery of Tree and Shrub Growth and Water-Use Efficiency in a Mediterranean Coastal Dune System. Fire 2022, 5, 135. [Google Scholar] [CrossRef]
- Valor, T.; Casals, P.; Altieri, S.; González-Olabarria, J.R.; Piqué, M.; Battipaglia, G. Disentangling the effects of crown scorch and competition release on the physiological and growth response of Pinus halepensis Mill. using δ13C and δ18O isotopes. For. Ecol. Manag. 2018, 424, 276–287. [Google Scholar] [CrossRef]
- Guiterman, C.H.; Margolis, E.Q.; Allen, C.D.; Falk, D.A.; Swetnam, T.W. Long-Term Persistence and Fire Resilience of Oak Shrubfields in Dry Conifer Forests of Northern New Mexico. Ecosystems 2018, 21, 943–959. [Google Scholar] [CrossRef]
- Bravo, S.; Bogino, S.; Leiva, M.; Lepiscopo, M.; Cendoya, M.A.; Kunst, C.; Birrun, F. Wood anatomy, fire wounds and dendrochronological potential of Prosopis pugionata Burkart (Fabaceae) in arid Argentine Chaco. IAWA J. 2021, 42, 101–110. [Google Scholar] [CrossRef]
- Barker, J.S.; Gray, A.N.; Fried, J.S. The effects of crown scorch on post-fire delayed mortality are modified by drought exposure in California (USA). Fire 2022, 5, 21. [Google Scholar] [CrossRef]
- Retana, J.; Riba, M.; Castell, C.; Espelta, J.M. Regeneration by sprouting of holm-oak (Quercus ilex) stands exploited by selection thinning. Vegetatio 1992, 99–100, 355–364. [Google Scholar] [CrossRef]
- Pausas, J.G.; Keeley, J.E. Epicormic resprouting in fire-prone ecosystems. Trends Plant Sci. 2017, 22, 1008–1015. [Google Scholar] [CrossRef]
- Camarero, J.J.; Sánchez-Salguero, R.; Sangüesa-Barreda, G.; Matías, L. Tree species from contrasting hydrological niches show divergent growth and water-use efficiency. Dendrochronologia 2018, 52, 87–95. [Google Scholar] [CrossRef]
- Tavşanoğlu, Ç.; Pausas, J.G. A functional trait database for Mediterranean Basin plants. Sci. Data 2018, 5, 180135. [Google Scholar] [CrossRef]
- Navas, A.; Walling, D.; Quine, T.; Mach’ın, J.; Soto, J. Soil redistribution patterns and factors along a transect in central Ebro basin (NE Spain) and its controls. In Sediment Budgets 1; Walling, D.E., Horowitz, A.J., Eds.; IAHS: Oxfordshire, UK, 2005; Volume 291, pp. 70–77. [Google Scholar]
- Caudullo, G.; Welk, E.; San-Miguel-Ayanz, J. Chorological maps for the main European woody species. Data Brief 2017, 12, 662–666. [Google Scholar] [CrossRef]
- Fritts, H.C. Tree Rings and Climate; Blackburn Press: Caldwell, ID, USA, 2001. [Google Scholar]
- Larsson, L. CDendro & CooRecorder Program Package, Version 9.8.1. 2005. Available online: https://www.cybis.se/forfun/dendro (accessed on 10 September 2024).
- Holmes, R.L. Computer-Assisted Quality Control in Tree-Ring Dating and Measurement. Tree Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Biondi, F.; Qeadan, F. A Theory-Driven Approach to Tree-Ring Standardization: Defining the Biological Trend from Expected Basal Area Increment. Tree Ring Res. 2008, 64, 81–96. [Google Scholar] [CrossRef]
- Wigley, T.M.L.; Briffa, K.R.; Jones, P.D. On the Average Value of Correlated Time Series, with Applications in Dendroclimatology and Hydrometeorology. Am. Meteorol. Soc. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Bunn, A.G. Statistical and visual crossdating in R using the dplR library. Dendrochronologia 2010, 28, 251–258. [Google Scholar] [CrossRef]
- Bunn, A.G.; Korpela, M.; Biondi, F.; Campelo, F.; Mérian, P.; Qeadan, F.; Zang, C. dplR: Dendrochronology Program Library in R. R Package Version 1.7.7. 2024. Available online: https://CRAN.R-project.org/package=dplR (accessed on 13 September 2024).
- Zang, C.; Biondi, F. Treeclim: An R package for the numerical calibration of proxy-climate relationships. Ecography 2015, 38, 431–436. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2024; Available online: https://www.R-project.org/ (accessed on 13 September 2024).
- Quero, J.L.; Sterck, F.J.; Martínez-Vilalta, J.; Villar, R. Water-use strategies of six co-existing Mediterranean woody species during a summer drought. Oecologia 2011, 166, 45–57. [Google Scholar] [CrossRef]
- Brunetti, C.; Tattini, M.; Guidi, L.; Velikova, V.; Ferrini, F.; Fini, A. An integrated overview of physiological and biochemical responses of Celtis australis to drought stress. Urban For. Urban Green. 2019, 46, 126480. [Google Scholar] [CrossRef]
- Lloret, F.; Siscart, D.; Dalmases, C. Canopy recovery after drought dieback in holm-oak Mediterranean forests of Catalonia (NE Spain). Glob. Chang. Biol. 2004, 10, 2092–2099. [Google Scholar] [CrossRef]
- Camarero, J.J.; Franquesa, M.; Sangüesa-Barreda, G. Timing of drought triggers distinct growth responses in holm oak: Implications to predict warming-induced forest defoliation and growth decline. Forests 2015, 6, 1576–1597. [Google Scholar] [CrossRef]
- Camarero, J.J.; Rubio-Cuadrado, Á. Relating Climate, Drought and Radial Growth in Broadleaf Mediterranean Tree and Shrub Species: A New Approach to Quantify Climate-Growth Relationships. Forests 2020, 11, 1250. [Google Scholar] [CrossRef]
- Baquedano, F.J.; Castillo, F. Drought tolerance in the Mediterranean species Quercus coccifera, Quercus ilex, Pinus halepensis, and Juniperus phoenicea. Photosynthetica 2007, 45, 229–238. [Google Scholar] [CrossRef]
- Baker, W.L.; Ehle, D. Uncertainty in surface-fire history: The case of ponderosa pine forests in the western United States. Can. J. For. Res. 2001, 31, 1205–1226. [Google Scholar] [CrossRef]
- Margolis, E.Q.; Guiterman, C.H.; Chavardès, R.D.; Coop, J.D.; Copes-Gerbitz, K.; Dawe, D.A.; Falk, D.A.; Johnston, J.D.; Larson, E.; Li, H.; et al. The North American tree-ring fire-scar network. Ecosphere 2022, 13, e4159. [Google Scholar] [CrossRef]
- Marschall, J.M.; Stambaugh, M.C.; Jones, B.C.; Abadir, E. Spatial Variability of Historical Fires across a Red Pine–Oak Landscape, Pennsylvania, USA. Ecosphere 2019, 10, e02978. [Google Scholar] [CrossRef]
- Millar, C.I.; Stephenson, N.L. Temperate forest health in an era of emerging megadisturbance. Science 2015, 349, 823–826. [Google Scholar] [CrossRef]
- Batllori, E.; De Cáceres, M.; Brotons, L.; Ackerly, D.D.; Moritz, M.A.; Lloret, F. Compound fire-drought regimes promote ecosystem transitions in Mediterranean ecosystems. J. Ecol. 2019, 107, 1187–1198. [Google Scholar] [CrossRef]
Species | Latitude °N | Longitude °W | Elevation (m a.s.l.) | Slope (°) | Aspect (°) | Dbh (cm) | Crown Defoliation (%) |
---|---|---|---|---|---|---|---|
Q. ilex | 42.1668 | 0.3690 | 604 | 20 | N (30) | 13.8 ± 0.8 | 49.7 ± 5.8 |
C. australis | 42.1838 | 0.3709 | 637 | 5 | N-NE (40) | 23.5 ± 2.0 | −−− |
Species | Fire (F)/No Fire (N) | No. Trees | No. Radii | Timespan | Age at 1.3 m (Years) | Tree-Ring Width (mm) | AR1 | Rbar | EPS |
---|---|---|---|---|---|---|---|---|---|
Q. ilex | F | 15 | 30 | 1963–2022 | 44 ± 8 | 1.06 ± 0.29 | 0.46 ± 0.24 | 0.30 | 0.86 |
N | 15 | 30 | 1942–2022 | 62 ± 12 | 0.92 ± 0.20 | 0.44 ± 0.20 | 0.32 | 0.87 | |
U (p) | 683 (0.11) | 764 (0.18) | 825 (0.46) | – | – | ||||
C. australis | F | 15 | 28 | 1943–2022 | 51 ± 16 | 2.08 ± 0.74 | 0.54 ± 0.15 | 0.34 | 0.89 |
N | 15 | 26 | 1958–2022 | 41 ± 14 | 2.06 ± 0.84 | 0.36 ± 0.28 | 0.36 | 0.90 | |
U (p) | 712 (0.14) | 803 (0.30) | 725 (0.16) | – | – |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Camarero, J.J.; Valeriano, C.; Ortega, M. Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species. Fire 2024, 7, 400. https://doi.org/10.3390/fire7110400
Camarero JJ, Valeriano C, Ortega M. Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species. Fire. 2024; 7(11):400. https://doi.org/10.3390/fire7110400
Chicago/Turabian StyleCamarero, J. Julio, Cristina Valeriano, and Miguel Ortega. 2024. "Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species" Fire 7, no. 11: 400. https://doi.org/10.3390/fire7110400
APA StyleCamarero, J. J., Valeriano, C., & Ortega, M. (2024). Transient Post-Fire Growth Recovery of Two Mediterranean Broadleaf Tree Species. Fire, 7(11), 400. https://doi.org/10.3390/fire7110400