Characterization of Fuel Types for the Canadian Region Using MODIS MCD12Q1 Data
Abstract
:1. Introduction
2. Materials and Method
2.1. Study Area
2.2. Data
2.2.1. Canadian Land Cover Map from MODIS MCD12Q1
2.2.2. Canadian Fuel-Type Map from CWFIS
2.3. Pre-Processing
2.4. Processing: Ambiguity Removal, Counting Data Matrix, and Confusion Matrix
2.5. Confusion Matrix and Analysis of Accuracy
3. Results and Discussion
- MODIS LCM classes 1, 2, 8, 9, and 11 were associated with FBP FTM classes 101, 102, 103, 105, and 107 in fuel type Coniferous (C);
- MODIS LCM classes 4 and 6 were associated with FBP FTM class 108 in fuel type Deciduous (D);
- MODIS LCM classes 3 and 5 were associated with FBP FTM class 109 in fuel type Mixedwood (M);
- MODIS LCM 7, 10, 12, and 14 were associated with FBP FTM classes 116 and 122 in fuel type Open (O);
- MODIS LCM class 17 was associated with FBP FTM classes 118 and 120 in fuel type Water and Wetland (WW);
- MODIS LCM classes 15 and 16 were associated with FBP FTM class 119 in fuel type No-Fuel (NF);
- MODIS LCM class 13 was associated with FBP FTM classes 116 and 122 in fuel type Urban and Built-Up area (UBU).
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lasslop, G.; Hantson, S.; Harrison, S.P.; Bachelet, D.; Burton, C.; Forkel, M.; Forrest, M.; Li, F.; Melton, J.R.; Yue, C.; et al. Global Ecosystems and Fire: Multi-Model Assessment of Fire-Induced Tree-Cover and Carbon Storage Reduction. Glob. Chang. Biol. 2020, 26, 5027–5041. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Balch, J.; Artaxo, P.; Bond, W.J.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.; Johnston, F.H.; Keeley, J.E.; Krawchuk, M.A.; et al. The Human Dimension of Fire Regimes on Earth: The Human Dimension of Fire Regimes on Earth. J. Biogeogr. 2011, 38, 2223–2236. [Google Scholar] [CrossRef] [PubMed]
- Mccaffrey, S. Thinking of Wildfire as a Natural Hazard. Soc. Nat. Resour. 2004, 17, 509–516. [Google Scholar] [CrossRef]
- Tyukavina, A.; Potapov, P.; Hansen, M.C.; Pickens, A.H.; Stehman, S.V.; Turubanova, S.; Parker, D.; Zalles, V.; Lima, A.; Kommareddy, I.; et al. Global Trends of Forest Loss Due to Fire from 2001 to 2019. Front. Remote Sens. 2022, 3, 825190. [Google Scholar] [CrossRef]
- Descals, A.; Gaveau, D.L.A.; Verger, A.; Sheil, D.; Naito, D.; Peñuelas, J. Unprecedented Fire Activity above the Arctic Circle Linked to Rising Temperatures. Science 2022, 378, 532–537. [Google Scholar] [CrossRef]
- Justino, F.; Bromwich, D.; Wilson, A.; Silva, A.; Avila-Diaz, A.; Fernandez, A.; Rodrigues, J. Estimates of Temporal-Spatial Variability of Wildfire Danger across the Pan-Arctic and Extra-Tropics. Environ. Res. Lett. 2021, 16, 044060. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire Models and Methods to Map Fuel Types: The Role of Remote Sensing. For. Ecol. Manag. 2008, 256, 1239–1252. [Google Scholar] [CrossRef]
- Gale, M.G.; Cary, G.J.; Van Dijk, A.I.J.M.; Yebra, M. Forest Fire Fuel through the Lens of Remote Sensing: Review of Approaches, Challenges and Future Directions in the Remote Sensing of Biotic Determinants of Fire Behaviour. Remote Sens. Environ. 2021, 255, 112282. [Google Scholar] [CrossRef]
- Or, D.; Furtak-Cole, E.; Berli, M.; Shillito, R.; Ebrahimian, H.; Vahdat-Aboueshagh, H.; McKenna, S.A. Review of Wildfire Modeling Considering Effects on Land Surfaces. Earth Sci. Rev. 2023, 245, 104569. [Google Scholar] [CrossRef]
- Aragoneses, E.; Chuvieco, E. Generation and Mapping of Fuel Types for Fire Risk Assessment. Fire 2021, 4, 59. [Google Scholar] [CrossRef]
- Abdollahi, A.; Yebra, M. Forest Fuel Type Classification: Review of Remote Sensing Techniques, Constraints and Future Trends. J. Environ. Manag. 2023, 342, 118315. [Google Scholar] [CrossRef]
- Stocks, B.J.; Lynham, T.J.; Lawson, B.D.; Alexander, M.E.; Wagner, C.E.V.; McAlpine, R.S.; Dubé, D.E. Canadian Forest Fire Danger Rating System: An Overview. For. Chron. 1989, 65, 258–265. [Google Scholar] [CrossRef]
- Coogan, S.C.P.; Daniels, L.D.; Boychuk, D.; Burton, P.J.; Flannigan, M.D.; Gauthier, S.; Kafka, V.; Park, J.S.; Wotton, B.M. Fifty Years of Wildland Fire Science in Canada. Can. J. For. Res. 2021, 51, 283–302. [Google Scholar] [CrossRef]
- CWFGM Steering Committee Prometheus User Manual v. 3.0.1; Canadian Forest Service: Ottawa, ON, Canada, 2004; Available online: https://prometheus.io/docs/introduction/overview/ (accessed on 3 December 2024).
- Hirsch, K.G. Canadian Forest Fire Behavior Prediction (FBP) System: User’s Guide; Natural Resources Canada: Ottawa, ON, Canada; Canadian Forest Service: Ottawa, ON, Canada; Northern Forestry Centre: Edmonton, AB, Canada, 1996. [Google Scholar]
- Forestry Canada Fire Danger Group (FCFDG). Development and Structure of the Canadian Forest Fire Behavior Prediction System; Information Report ST-X-3; Forestry Canada: Ottawa, ON, Canada, 1992; 64p, Available online: https://cfs.nrcan.gc.ca/publications?id=10068 (accessed on 3 December 2024).
- Aragoneses, E.; García, M.; Salis, M.; Ribeiro, L.M.; Chuvieco, E. Classification and Mapping of European Fuels Using a Hierarchical, Multipurpose Fuel Classification System. Earth Syst. Sci. Data 2023, 15, 1287–1315. [Google Scholar] [CrossRef]
- Chuvieco, E.; Wagtendonk, J.; Riaño, D.; Yebra, M.; Ustin, S.L. Estimation of Fuel Conditions for Fire Danger Assessment. In Earth Observation of Wildland Fires in Mediterranean Ecosystems; Chuvieco, E., Ed.; Springer: Berlin/Heidelberg, Germany, 2009; pp. 83–96. ISBN 978-3-642-01753-7. [Google Scholar]
- Marino, E.; Ranz, P.; Tomé, J.L.; Noriega, M.Á.; Esteban, J.; Madrigal, J. Generation of High-Resolution Fuel Model Maps from Discrete Airborne Laser Scanner and Landsat-8 OLI: A Low-Cost and Highly Updated Methodology for Large Areas. Remote Sens. Environ. 2016, 187, 267–280. [Google Scholar] [CrossRef]
- Chrysafis, I.; Damianidis, C.; Giannakopoulos, V.; Mitsopoulos, I.; Dokas, I.M.; Mallinis, G. Vegetation Fuel Mapping at Regional Scale Using Sentinel-1, Sentinel-2, and DEM Derivatives—The Case of the Region of East Macedonia and Thrace, Greece. Remote Sens. 2023, 15, 1015. [Google Scholar] [CrossRef]
- Domingo, D.; De La Riva, J.; Lamelas, M.; García-Martín, A.; Ibarra, P.; Echeverría, M.; Hoffrén, R. Fuel Type Classification Using Airborne Laser Scanning and Sentinel 2 Data in Mediterranean Forest Affected by Wildfires. Remote Sens. 2020, 12, 3660. [Google Scholar] [CrossRef]
- Li, Z.; Chen, X.; Qi, J.; Xu, C.; An, J.; Chen, J. Accuracy Assessment of Land Cover Products in China from 2000 to 2020. Sci. Rep. 2023, 13, 12936. [Google Scholar] [CrossRef]
- Pettinari, M.L.; Chuvieco, E. Fire Danger Observed from Space. Surv. Geophys. 2020, 41, 1437–1459. [Google Scholar] [CrossRef]
- Carbone, A.; Spiller, D.; Laneve, G. Fuel Type Mapping Using a CNN-Based Remote Sensing Approach: A Case Study in Sardinia. Fire 2023, 6, 395. [Google Scholar] [CrossRef]
- Liang, D.; Zuo, Y.; Huang, L.; Zhao, J.; Teng, L.; Yang, F. Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China. ISPRS Int. J. Geo Inf. 2015, 4, 2519–2541. [Google Scholar] [CrossRef]
- Wang, H.; Wen, X.; Wang, Y.; Cai, L.; Peng, D.; Liu, Y. China’s Land Cover Fraction Change during 2001–2015 Based on Remote Sensed Data Fusion between MCD12 and CCI-LC. Remote Sens. 2021, 13, 341. [Google Scholar] [CrossRef]
- DeCastro, A.L.; Juliano, T.W.; Kosović, B.; Ebrahimian, H.; Balch, J.K. A Computationally Efficient Method for Updating Fuel Inputs for Wildfire Behavior Models Using Sentinel Imagery and Random Forest Classification. Remote Sens. 2022, 14, 1447. [Google Scholar] [CrossRef]
- Tymstra, C.; Bryce, R.W.; Wotton, B.M.; Taylor, S.W.; Armitage, O.B. Development and Structure of Prometheus: The Canadian Wildland Fire Growth Simulation Model; Northern Forestry Centre: Edmonton, AB, Canada, 2010. [Google Scholar]
- Seto, D.; Jones, C.; Trugman, A.T.; Varga, K.; Plantinga, A.J.; Carvalho, L.M.V.; Thompson, C.; Gellman, J.; Daum, K. Simulating Potential Impacts of Fuel Treatments on Fire Behavior and Evacuation Time of the 2018 Camp Fire in Northern California. Fire 2022, 5, 37. [Google Scholar] [CrossRef]
- Redpath, T.; Nogarin, F.; Bryce, R.; Brett, M. Wildfire Intelligence and Simulation Engine (WISE). Available online: https://Github.Com/WISE-Developers/WISE_Application (accessed on 1 July 2024).
- Dastour, H.; Ahmed, M.R.; Hassan, Q.K. Analysis of Forest Fire Patterns and Their Relationship with Climate Variables in Alberta’s Natural Subregions. Ecol. Inform. 2024, 80, 102531. [Google Scholar] [CrossRef]
- Baldwin, K.; Allen, L.; Basquill, S.; Chapman, K.; Downing, D.; Flynn, N.; MacKenzie, W.; Major, M.; Meades, W.; Meidinger, D.; et al. Vegetation Zones of Canada: A Biogeoclimatic Perspective; Canadian Forest Service Great Lakes Forestry Centre: Sault Ste. Marie, ON, Canada, 2020. [Google Scholar]
- Ricketts, T. Terrestrial Ecoregions of North America: A Conservation Assessment; Island Press: Washington, DC, USA, 1999. [Google Scholar]
- Majasalmi, T.; Rautiainen, M. Representation of Tree Cover in Global Land Cover Products: Finland as a Case Study Area. Environ. Monit. Assess. 2021, 193, 121. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product. User Guides. NASA EOSDIS Land Process DAAC 2018, 6, 1–18. [Google Scholar]
- Beaudoin, A.; Bernier, P.Y.; Guindon, L.; Villemaire, P.; Guo, X.J.; Stinson, G.; Bergeron, T.; Magnussen, S.; Hall, R.J. Mapping Attributes of Canada’s Forests at Moderate Resolution through k NN and MODIS Imagery. Can. J. For. Res. 2014, 44, 521–532. [Google Scholar] [CrossRef]
- Taylor, S.; Pike, R.G.; Alexander, M.E. Field Guide to the Canadian Forest Fire Behavior Prediction (FBP) System, 3rd ed.; Natural Resources Canada: Ottawa, ON, Canada; Canadian Forest Service: Ottawa, ON, Canada; Northern Forestry Centre: Edmonton, AB, Canada, 1996; Available online: https://ostrnrcan-dostrncan.canada.ca/entities/publication/edc927d6-dd86-4c1a-a146-e69859e7c93f (accessed on 7 March 2024).
- Wotton, B.M.; Alexander, M.; Taylor, S.W. Updates and Revisions to the 1992 Canadian Forest Fire Behavior Prediction System; Information Report GLC-X-10; Great Lakes Forestry Centre: Sault Ste. Marie, ON, Canada, 2009; Available online: https://publications.gc.ca/collections/collection_2010/nrcan/Fo123-2-10-2009-eng.pdf (accessed on 12 December 2023).
- GDAL/OGR Contributors GDAL/OGR Geospatial Data Abstraction Software Library. Open Source Geospatial Foundation. Available online: https://gdal.org (accessed on 3 February 2024).
- Congalton, R.G. A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data. Remote Sens. Environ. 1991, 37, 35–46. [Google Scholar] [CrossRef]
- Stehman, S.V. Selecting and Interpreting Measures of Thematic Classification Accuracy. Remote Sens. Environ. 1997, 62, 77–89. [Google Scholar] [CrossRef]
- Simpson, B.; Englefield, P.; Anderson, K. Fuel-Type Mapping for the CWFIS: Past, Present, and Future. Can. Smoke Newsl. 2010, 2010, 4–9. [Google Scholar]
- Fowler, N.L.; Beckage, B. Savannas of North America. In Savanna Woody Plants and Large Herbivores; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2019; pp. 123–150. ISBN 978-1-119-08111-1. [Google Scholar]
- Pouliot, D.; Latifovic, R.; Zabcic, N.; Guindon, L.; Olthof, I. Development and Assessment of a 250 m Spatial Resolution MODIS Annual Land Cover Time Series (2000–2011) for the Forest Region of Canada Derived from Change-Based Updating. Remote Sens. Environ. 2014, 140, 731–743. [Google Scholar] [CrossRef]
- Kennedy, G.; Mayer, T. Natural and Constructed Wetlands in Canada: An Overview. Water Qual. Res. J. 2002, 37, 295–325. [Google Scholar] [CrossRef]
- Zoltai, S.C.; Vitt, D.H. Canadian Wetlands: Environmental Gradients and Classification. Vegetatio 1995, 118, 131–137. [Google Scholar] [CrossRef]
- Rein, G.; Huang, X. Smouldering Wildfires in Peatlands, Forests and the Arctic: Challenges and Perspectives. Curr. Opin. Environ. Sci. Health 2021, 24, 100296. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.R.; Hardy, E.E.; Roach, J.T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use with Remote Sensor Data; USGS Numbered Series; US Government Printing Office: Washington, DC, USA, 1976; Geological Survey Professional Paper 964. [CrossRef]
- Landis, J.R.; Koch, G.G. The Measurement of Observer Agreement for Categorical Data. Biometrics 1977, 33, 159. [Google Scholar] [CrossRef]
- Aragoneses, E.; Garcia, M.; Chuvieco, E. FirEUrisk_Europe_fuel_map: European Fuel Map at 1 Km Resolution; e-cienciaDatos, V2; Universidad de Alcalá: Madrid, Spain, 2022. [Google Scholar] [CrossRef]
- Eurostat. Land Use/Cover Area Frame Survey (LUCAS). 2018. Available online: https://ec.europa.eu/eurostat/web/lucas/overview (accessed on 13 December 2024).
- Sismanis, M.; Gitas, I.Z.; Stavrakoudis, D.; Georgopoulos, N.; Antoniadis, K.; Gkounti, E. A Novel Spectral–Spatial Methodology for Hierarchical Fuel Type Mapping in Mediterranean Ecosystems Using Sentinel-2 Timeseries and Auxiliary Thematic Data. Fire 2024, 7, 407. [Google Scholar] [CrossRef]
- Smith, C.W.; Panda, S.K.; Bhatt, U.S.; Meyer, F.J. Improved Boreal Forest Wildfire Fuel Type Mapping in Interior Alaska Using AVIRIS-NG Hyperspectral Data. Remote Sens. 2021, 13, 897. [Google Scholar] [CrossRef]
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; US Department of Agriculture: Washington, DC, USA, 2005; RMRS-GTR-153. [CrossRef]
- Salis, M.; Arca, B.; Alcasena, F.; Arianoutsou, M.; Bacciu, V.; Duce, P.; Duguy, B.; Koutsias, N.; Mallinis, G.; Mitsopoulos, I.; et al. Predicting Wildfire Spread and Behaviour in Mediterranean Landscapes. Int. J. Wildland Fire 2016, 25, 1015–1032. [Google Scholar] [CrossRef]
- Scherer-Lorenzen, M.; Körner, C.; Schulze, E.-D. (Eds.) Forest Diversity and Function. Temperate and Boreal System; Ecological Studies; Springer: Berlin/Heidelberg, 2005; Volume 176, ISBN 978-3-540-22191-3. [Google Scholar] [CrossRef]
- Shugart, H.H.; Leemans, R.; Bonan, G.B. A Systems Analysis of the Global Boreal Forest; Cambridge University Press: Cambridge, UK, 1992; ISBN 978-0-521-40546-1. [Google Scholar]
- de Groot, W.J.; Cantin, A.S.; Flannigan, M.D.; Soja, A.J.; Gowman, L.M.; Newbery, A. A Comparison of Canadian and Russian Boreal Forest Fire Regimes. For. Ecol. Manag. 2013, 294, 23–34. [Google Scholar] [CrossRef]
- Rogers, B.M.; Soja, A.J.; Goulden, M.L.; Randerson, J.T. Influence of Tree Species on Continental Differences in Boreal Fires and Climate Feedbacks. Nat. Geosci. 2015, 8, 228–234. [Google Scholar] [CrossRef]
- Burgan, R.; Rothermel, R. BEHAVE: Fire Behavior Prediction and Fuel Modeling System—FUEL Subsystem; General Technical Report; USDA Forest Service: Washington, DC, USA, 1984; pp. 1–126. [CrossRef]
- Volokitina, A.; Sofronova, T.; Korets, M. Vegetation Fire Behavior Prediction in Russia. In Wood and Fire Safety; Spring: Berlin/Heidelberg, Germany, 2020; pp. 379–385. [Google Scholar] [CrossRef]
- Volokitina, A.; Sofronova, T.; Korets, M. Methods of Creating Information Databases for Vegetation Fire Behavior Prediction. Eng 2022, 3, 620–634. [Google Scholar] [CrossRef]
- Vázquez-Varela, C.; Martínez-Navarro, J.M.; Abad-González, L. Traditional Fire Knowledge: A Thematic Synthesis Approach. Fire 2022, 5, 47. [Google Scholar] [CrossRef]
- Christianson, A.C.; Sutherland, C.R.; Moola, F.; Gonzalez Bautista, N.; Young, D.; MacDonald, H. Centering Indigenous Voices: The Role of Fire in the Boreal Forest of North America. Curr. For. Rep. 2022, 8, 257–276. [Google Scholar] [CrossRef]
Code | Description |
---|---|
1 | Evergreen Needleleaf Forests: dominated by evergreen conifer trees (canopy > 2 m). Tree cover > 60%. Almost all trees remain green all year. Canopy is never without green foliage. |
2 | Evergreen Broadleaf Forests: dominated by evergreen broadleaf and palmate trees (canopy > 2 m). Tree cover > 60%. Almost all trees and shrubs remain green year round. Canopy is never without green foliage. |
3 | Deciduous Needleleaf Forests: dominated by deciduous needleleaf (larch) trees (canopy > 2 m). Tree cover > 60%. Consists of seasonal needleleaf tree communities with an annual cycle of leaf-on and leaf-off periods. |
4 | Deciduous Broadleaf Forests: dominated by deciduous broadleaf trees (canopy > 2 m). Tree cover > 60%. Consists of broadleaf tree communities with an annual cycle of leaf-on and leaf-off periods. |
5 | Mixed Forests: dominated by neither deciduous nor evergreen (40–60% of each) tree types (canopy > 2 m). Tree cover > 60%. Consists of tree communities with interspersed mixtures or mosaics of the other four forest types. None of the forest types exceeds 60% of landscape. |
6 | Closed Shrublands: dominated by woody perennials (1–2 m height), >60% cover. The shrub foliage can be either evergreen or deciduous. |
7 | Open Shrublands: dominated by woody perennials (1–2 m height), 10–60% cover. The shrub foliage can be either evergreen or deciduous. |
8 | Woody Savannas: tree cover, 30–60% (canopy > 2 m). |
9 | Savannas: tree cover, 10–30% (canopy > 2 m). |
10 | Grasslands: dominated by herbaceous annuals (<2 m). Tree and shrub cover is less than 10%. |
11 | Permanent Wetlands: permanently inundated lands with 30–60% water cover and >10% vegetated cover. |
12 | Croplands: at least 60% of area is cultivated cropland. |
13 | Urban and Built-up Lands: at least 30% impervious surface area including building materials, asphalt, and vehicles. |
14 | Cropland/Natural Vegetation Mosaics: mosaics of small-scale cultivation 40–60% with natural tree, shrub, or herbaceous vegetation. |
15 | Permanent Snow and Ice: at least 60% of area is covered by snow and ice for at least 10 months of the year. |
16 | Barren: at least 60% of area is non-vegetated barren (sand, rock, soil) areas with less than 10% vegetation. |
17 | Water Bodies: at least 60% of area is covered by permanent water bodies. |
255 | Has not received a map label because of missing inputs |
Code | FBP Fuel Type | Description |
---|---|---|
101 | C1 | Spruce–Lichen Woodland |
102 | C2 | Boreal Spruce |
103 | C3 | Mature Jack or Lodgepole Pine |
104 | C4 | Immature Jack or Lodgepole Pine |
105 | C5 | Red and White Pine |
106 | C6 | Conifer Plantation |
107 | C7 | Ponderosa Pine–Douglas Fir |
108 | D1 | Leafless Aspen |
109 | M1 | Boreal Mixedwood–Leafless |
110 | M2 | Boreal Mixedwood–Green |
111 | M3 | Dead Balsam Fir Mixedwood–Leafless |
112 | M4 | Dead Balsam Fir Mixedwood–Green |
113 | S1 | Jack or Lodgepole Pine Slash |
114 | S2 | White Spruce–Balsam Slash |
115 | S3 | Coastal Cedar–Hemlock–Douglas |
116 | O1a | Matted Grass |
117 | O1b | Standing Grass |
118 | Water | Water |
119 | Non-Fuel | Non-Fuel |
120 | Unknown | Wetland (FBP fuel-type unknown) |
121 | Urban or Built-Up Area | Urban or Built-Up Area |
122 | Vegetated Non-Fuel | Vegetated Non-Fuel |
Truth | ||||||
---|---|---|---|---|---|---|
Red | Green | Blue | Orange | Total | ||
Predicted | cyan | 0 | 0 | 36 | 18 | 54 |
magenta | 9 | 0 | 0 | 0 | 9 | |
yellow | 0 | 9 | 0 | 0 | 9 | |
Total | 9 | 9 | 36 | 18 | 72 |
Truth | |||||
---|---|---|---|---|---|
Blue + Orange | Red | Green | Total | ||
Predicted | cyan | 54 | 0 | 0 | 54 |
magenta | 0 | 9 | 0 | 9 | |
yellow | 0 | 0 | 9 | 9 | |
Total | 54 | 9 | 9 | 72 |
101 | 102 | 103 | 105 | 107 | 108 | 109 | 116 | 118 | 119 | 120 | 121 | 122 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 10242 | 1418904 | 14715 | 344223 | 54 | 1179 | 17055 | 126 | 405 | 0 | 45 | 9 | 0 |
2 | 0 | 0 | 0 | 270 | 0 | 9 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
3 | 0 | 9 | 0 | 0 | 0 | 81 | 126 | 9 | 0 | 0 | 0 | 0 | 0 |
4 | 0 | 18 | 0 | 9 | 0 | 48456 | 7776 | 0 | 0 | 0 | 9 | 0 | 108 |
5 | 9 | 25128 | 0 | 819 | 0 | 40914 | 485262 | 9 | 171 | 0 | 18 | 0 | 9 |
6 | 0 | 0 | 0 | 0 | 0 | 315 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
7 | 11556 | 3303 | 0 | 0 | 0 | 35928 | 252 | 4104 | 1917 | 405 | 63 | 0 | 3083535 |
8 | 51624 | 562959 | 32418 | 909 | 126 | 325638 | 118899 | 40500 | 936 | 0 | 405 | 0 | 1359 |
9 | 471879 | 109674 | 0 | 9 | 0 | 326097 | 44154 | 55170 | 2817 | 216 | 630 | 9 | 108873 |
10 | 2799 | 909 | 18 | 45 | 0 | 16236 | 297 | 154665 | 10053 | 2318391 | 1161 | 90 | 5417388 |
11 | 10251 | 48420 | 0 | 18 | 0 | 684 | 1620 | 81 | 9207 | 1395 | 5319 | 0 | 9504 |
12 | 0 | 0 | 0 | 0 | 0 | 612 | 0 | 8550 | 846 | 9 | 81 | 162 | 1965087 |
13 | 0 | 0 | 0 | 0 | 0 | 9 | 0 | 0 | 18 | 45 | 0 | 21132 | 180 |
14 | 0 | 0 | 0 | 0 | 0 | 99 | 0 | 0 | 0 | 0 | 0 | 0 | 936 |
15 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 6192 | 3439593 | 0 | 0 | 3213 |
16 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 8928 | 2932209 | 0 | 0 | 16893 |
17 | 0 | 36 | 0 | 0 | 0 | 9 | 0 | 27 | 2815065 | 35433 | 36 | 0 | 1035 |
Coniferous (C) | Deciduous (D) | Mixedwood (M) | Open (O) | Water and Wetland (WW) | No-Fuel (NF) | Urban and Built-Up Area (UBU) | ||||
---|---|---|---|---|---|---|---|---|---|---|
101, 102, 103, 105, 107 | 108 | 109 | 116, 122 | 118, 120 | 119 | 121 | Total | User Accuracy (%) | ||
Coniferous (C) | 1, 2, 8, 9, 11 | 3076695 | 653607 | 181728 | 215613 | 19764 | 1611 | 18 | 4149036 | 74.15 |
Deciduous (D) | 4, 6 | 27 | 48771 | 7776 | 108 | 9 | 0 | 0 | 56691 | 86.02 |
Mixedwood (M) | 3, 5 | 25965 | 40995 | 485388 | 27 | 189 | 0 | 0 | 552564 | 87.84 |
Open (O) | 7, 10, 12, 14 | 18630 | 52875 | 549 | 10634265 | 14121 | 2318805 | 252 | 13039497 | 81.55 |
Water and Wetland (WW) | 17 | 36 | 9 | 0 | 1062 | 2815101 | 35433 | 0 | 2851641 | 98.71 |
No-fuel (NF) | 15, 16 | 0 | 0 | 0 | 20106 | 15120 | 6371802 | 0 | 6407028 | 99.45 |
Urban and Built-Up area (UBU) | 13 | 0 | 9 | 0 | 180 | 18 | 45 | 21132 | 21384 | 98.82 |
Total | 3121353 | 796266 | 675441 | 10871361 | 2864322 | 8727696 | 21402 | 27077841 | ||
Producer Accuracy (%) | 98.57 | 6.12 | 71.86 | 97.82 | 98.28 | 73.01 | 98.74 | OA (%) 86.61 k 0.809 |
Code | Rationalization LC Classes | Rationalization FT Classes | |
---|---|---|---|
Coniferous | C | 1, 2, 8, 9, 11 | 101, 102, 103, 105, 107 |
Deciduous | D | 4, 6 | 108 |
Mixedwood | M | 3, 5 | 109 |
Open | O | 7, 10, 12, 14 | 116, 122 |
Water and Wetland | WW | 17 | 118, 120 |
No-fuel | NF | 15, 16 | 119 |
Urban and Built-Up area | UBU | 13 | 121 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nestola, E.; Gavrichkova, O.; Vitale, V.; Brugnoli, E.; Sarti, M. Characterization of Fuel Types for the Canadian Region Using MODIS MCD12Q1 Data. Fire 2024, 7, 485. https://doi.org/10.3390/fire7120485
Nestola E, Gavrichkova O, Vitale V, Brugnoli E, Sarti M. Characterization of Fuel Types for the Canadian Region Using MODIS MCD12Q1 Data. Fire. 2024; 7(12):485. https://doi.org/10.3390/fire7120485
Chicago/Turabian StyleNestola, Enrica, Olga Gavrichkova, Vito Vitale, Enrico Brugnoli, and Maurizio Sarti. 2024. "Characterization of Fuel Types for the Canadian Region Using MODIS MCD12Q1 Data" Fire 7, no. 12: 485. https://doi.org/10.3390/fire7120485
APA StyleNestola, E., Gavrichkova, O., Vitale, V., Brugnoli, E., & Sarti, M. (2024). Characterization of Fuel Types for the Canadian Region Using MODIS MCD12Q1 Data. Fire, 7(12), 485. https://doi.org/10.3390/fire7120485