Ignition of Forest Fires by Cigarette Butts: Using Pinus massoniana Needles as an Example
Abstract
:1. Introduction
2. Materials and Method
2.1. Field Investigation and Sample Collection
2.2. Preparation of P. massoniana Needle Bed Indoors
2.3. Ignition Experiment Using Cigarette Butts
2.4. Data Processing
2.4.1. Analysis of Ambient Air Temperature and Relative Humidity
2.4.2. Statistical Ignition Probability
2.4.3. Impact Factor Analysis
2.4.4. Prediction Model of Ignition Probability
2.4.5. Prediction Model of Ignition Time
3. Results
3.1. Basic Situation Statistics of Ignition Probability
3.2. Analysis of Ignition Probability
3.2.1. Analysis of Influencing Factors
3.2.2. Prediction Model of Ignition Probability
3.3. Analysis of Ignition Time
3.3.1. Analysis of Influencing Factor
3.3.2. Prediction Model of Ignition Time
4. Discussion
4.1. Number of Ignition
4.2. Influence Factor
4.3. Prediction Model
4.4. Forest Fire Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Wan, F.X.; Zhang, J.C. Ecological Characteristics and Vegetation Rehabilitation Techniques in the Karst Mountain Areas of Guizhou Province. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2003, 27, 45–49. [Google Scholar]
- Lan, S.X.; Hu, Z.L.; Jin, Y.Q.; Chen, F.F.; Zhang, Y.L. Effect of Compactness of Fuelbed on Dynamic Change of Moisture Content of Litter Bed of Pinus massoniana. J. Northeast For. Univ. 2022, 50, 45–50. [Google Scholar]
- Zhang, Y.L.; Tian, L.L. Examining and Reforming the Rothermel Surface Fire Spread Model under No-Wind and Zero-Slope Conditions for the Karst Ecosystems. Forests 2023, 14, 1088. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Guo, Y.; Hu, H.Q. Characteristics of Forest Fire Data in Southwest China during 2001–2017. J. Northwest For. Univ. 2021, 36, 179–186. [Google Scholar]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Yang, J.C. On the ignition of fuel beds by firebrands. Fire Mater. 2006, 30, 77–87. [Google Scholar] [CrossRef]
- Manzello, S.L.; Cleary, T.G.; Shields, J.R.; Maranghides, A.; Mell, W.; Yang, J.C. Experimental investigation of firebrands: Generation and ignition of fuel beds. Fire Saf. J. 2008, 43, 226–233. [Google Scholar] [CrossRef]
- Scholten, R.C.; Jandt, R.; Miller, E.A.; Rogers, B.M.; Veraverbeke, S. Overwintering fires in boreal forests. Nature 2021, 593, 399. [Google Scholar] [CrossRef]
- Barforoush, A.S.; du Preez, M. Quantifying the Effectiveness of a Mesh in Mitigating Burning Capabilities of Firebrand Shower. Fire 2022, 5, 150. [Google Scholar] [CrossRef]
- Cawson, J.; Pickering, B.; Filkov, A.; Burton, J.; Kilinc, M.; Penman, T. Predicting ignitability from firebrands in mature wet eucalypt forests. For. Ecol. Manag. 2022, 519, 120315. [Google Scholar] [CrossRef]
- Fard, M.G.H.; Hostikka, S. Combustion characteristics of non-charring polymer cylinders-experimental and numerical study. Combust. Flame 2022, 249, 112587. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Y.L.; Sun, L.; Hu, H.; Guo, F.; Wang, G.; Zhang, H. Influence of fuel moisture content, packing ratio and wind velocity on the ignition probability of fuel beds composed of Mongolian oak leaves via cigarette butts. Forests 2018, 9, 507. [Google Scholar] [CrossRef]
- Zhang, R.Q.; Tong, Y.M.; Wang, X.; Liu, Y.C.; Zhang, Z.Y.; Ruan, Z.C. Study on cigarette butts igniting a Plagiomnium acutum layer in the understory of a Cupressus torulosa forest. J. For. Environ. 2023, 43, 659–665. [Google Scholar]
- Hyungsoo, S.; Yeonsook, C. Vulnerability of Pinus dbuttiflora to forest fire based on ignition characteristics. J. Ecol. Field Biol. 2010, 3, 16–20. [Google Scholar]
- Kim, D.H.; Lee, M.B.; Viegas, D.X. Ignition of surface fuels by cigarette in forest fire. In Proceedings of the 6th International Conference on Forest Fire Research, Coimbra, Portugal, 15–18 November 2010; Volume 11, pp. 15–18. [Google Scholar]
- David, T.; Jeffrey, P.; Douglas, S. Investigation of the decline in reported smoking-caused wildfires in the USA from 2000 to 2011. Int. J. Wildland Fire 2014, 23, 790–798. [Google Scholar]
- Markalas, S. Laboratory experiments on the role of burning cigarette-ends as an ignition cause of forest fires. Criminol. Public Policy 2005, 3, 139–160. [Google Scholar]
- Satoh, K.; Zhong, Y.L.; Yang, K.T. Study of Forest Fire Initiation Due to Lighted Cigarette—Measurement and Observation of Flaming Probability of Dried Leaves; Report of National Research Institute of Fire & Disaster; National Research Institute of Fire & Disaster: Tokyo, Japan, 2003; pp. 146–153. [Google Scholar]
- Zhang, Y.L. Burn Probability of Fuelbed Composed of Mongolian Oak and Pinus Koraiensis Leaf Ignited by Cigarette Ends. Master’s Thesis, Northeast Forestry University, Harbin, China, 2016. [Google Scholar]
- Liu, W.L. Prediction of Moisture Contents of Typical Fuels in Nanchang, Jinagxi Province: Optiomation of Models and Evaluation of FWI. Master’s Thesis, Northeast Forestry University, Harbin, China, 2014. [Google Scholar]
- Ding, B. Study on the Cause and Regulation of Low-Function Forest of Pinus massoniana, Cunninghamia lanceolata in Guizhou. Ph.D. Dissertation, Guizhou University, Guiyang, China, 2018. [Google Scholar]
- Nhongo, E.J.S.; Fontana, D.C.; Guasselli, L.A.; Bremm, C. Probabilistic modeling of wildfire occurrence based on logistic regression, Niassa Reserve, Mozambique. Geomat. Nat. Hazards Risk 2019, 10, 1772–1792. [Google Scholar] [CrossRef]
- Bergado, J.R.; Persello, C.; Reinke, K.; Stein, A. Predicting wildfire burns from big geodata using deep learning. Saf. Sci. 2021, 140, 105276. [Google Scholar] [CrossRef]
- Anderson, H.E. Moisture diffusivity and response time in fine forest fuels. Can. J. For. Res. 1990, 20, 315–325. [Google Scholar] [CrossRef]
- Hu, H.Q. Forest Ecology and Management; China Forestry Press: Beijing, China, 2005. [Google Scholar]
- Liu, Y.; Zhang, R.; Lin, C.-F.; Zhang, Z.; Zhang, R.; Shang, K.; Zhao, M.; Huang, J.; Wang, X.; Li, Y.; et al. Remote sensing of subtropical tree diversity: The underappreciated roles of the practical definition of forest canopy and phenological variation. For. Ecosyst. 2023, 10, 100122. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Research Paper INT-115; USDA Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1972. [Google Scholar]
- Nelson, R.M. Reaction times and burning rates for wind tunnel headfires. Int. J. Wildland Fire 2003, 12, 195–211. [Google Scholar] [CrossRef]
- de Groot, W.J.; Wardati; Wang, Y. Calibrating the fine fuel moisture code for grass ignition potential in Sumatra, Indonesia. Int. J. Wildland Fire 2005, 14, 161–168. [Google Scholar] [CrossRef]
- Jin, S.; Zhang, Y.L.; Zhu, K.; Hu, Y. Burning Probability of Fuelbed Composed of Mongolian Oak Leaf Ignited by Cigarette Butts. J. Northeast For. Univ. 2014, 42, 75–78. [Google Scholar]
- Gao, L.H.; Sun, W. Application of variation factor in reliability engineering. J. Acad. Armored Force Eng. 2004, 18, 5–8. [Google Scholar]
- Wu, M.; Gu, S.S. The statistical inference of variation coefficient of sample and its applications. J. Tongren Univ. 2010, 12, 139–144. [Google Scholar]
- Garcia, C.; Woodard, P.; Titus, S.; Adamowicz, W.; Lee, B. A Logit model for predicting the daily occurrence of human caused forest-fires. Int. J. Wildland Fire 1995, 5, 101–111. [Google Scholar] [CrossRef]
- Anderson, P.L.; Loftsgaarden, D.O.; Bradshaw, L.S. Evaluation of fire danger rating indexes using logistic regression and percentile analysis. Int. J. Wildland Fire 2003, 12, 213–222. [Google Scholar]
- Padilla, M.; Vega-Garcia, C. On the comparative importance of fire danger rating indices and their integration with spatial and temporal variables for predicting daily human-caused fire occurrences in Spain. Int. J. Wildland Fire 2011, 20, 46–58. [Google Scholar] [CrossRef]
- Jiménez-Valverde, A. Insights into the area under the receiver operating characteristic curve (AUC) as a discrimination measure in species distribution modeling. Glob. Ecol. Biogeogr. 2012, 21, 498–507. [Google Scholar] [CrossRef]
- Christmann, T.; Rosado, B.H.P.; Delhaye, G.; Matos, I.S.; Drummond, J.S.; Roland, H.L.; Moraes, Y.C.; Menor, I.O. Functional assembly of tropical montane tree islands in the Atlantic Forest is shaped by stress tolerance, bamboo presence, and facilitation. Ecol. Evol. 2021, 11, 10164–10177. [Google Scholar] [CrossRef]
- Nocentini, A.; Kominoski, J.S.; O’Brien, J.J.; Redwine, J. Fire intensity and ecosystem oligotrophic status drive relative phosphorus release and retention in freshwater marshes. Ecosphere 2022, 13, 4263. [Google Scholar] [CrossRef]
- Yang, G.; Ning, J.; Shu, L.; Zhang, J.; Yu, H.; Di, X. Spotting ignition of larch (Larix gmelinii) fuel bed by different firebrands. J. For. Res. 2022, 33, 171–181. [Google Scholar] [CrossRef]
- Garlough, E.C.; Keyes, C.R. Influences of moisture content, mineral content, and bulk density on smoldering combustion of ponderosa pine duff mounds. Int. J. Wildland Fire 2011, 20, 589–596. [Google Scholar] [CrossRef]
- Larjavaara, M.; Kuuluvainen, T.; Tanskanen, H.; Venäläinen, A. Variation in forest fire ignition probability in Finland. Silva Fenn. 2004, 38, 253–266. [Google Scholar] [CrossRef]
- Ganteaume, A.; Guijarro, M.; Jappiot, M.; Hernando, C.; Lampin-Maillet, C.; Pérez-Gorostiaga, P.; Vega, J.A. Laboratory characterization of firebrands involved in spot fires. Ann. For. Sci. 2011, 68, 531–541. [Google Scholar] [CrossRef]
- Ellis, P.F. The likelihood of ignition of dry-eucalypt forest litter by firebrands. Int. J. Wildland Fire 2015, 24, 225–235. [Google Scholar] [CrossRef]
- Ganteaume, A.; Lampin-Maillet, C.; Guijarro, M.; Hernando, C.; Jappiot, M.; Fonturbel, T.; Pérez-Gorostiaga, P.; Vega, J.A. Spot fires: Fuel bed flammability and capability of firebrands to ignite fuel bed. Int. J. Wildland Fire 2009, 18, 951–969. [Google Scholar] [CrossRef]
- Plucinski, M.P.; Anderson, W.R.; Bradstock, R.A.; Gill, A.M. The initiation of fire spread in shrubland fuels recreated in the laboratory. Int. J. Wildland Fire 2010, 19, 512–520. [Google Scholar] [CrossRef]
- Plucinski, M.P.; Anderson, W.R. Laboratory determination of factors influencing successful point ignition in the litter layer of shrubland vegetation. Int. J. Wildland Fire 2008, 17, 628–637. [Google Scholar] [CrossRef]
- Zhang, J.Q. Measurement of seasonal changes in moisture content of different tree species. For. Fire Prev. 2000, 2, 17–18. [Google Scholar]
- Jin, S.; Yan, X.J. Dynamics and modeling of water content of ten shrub species in their growth period in Maoershan Mountain region of Northeast China. Chin. J. Appl. Ecol. 2012, 23, 3317–3324. [Google Scholar]
- Xiao, Y.D.; Zhang, X.Q.; Ji, P. Modeling Forest Fire Occurrences Using Count-Data Mixed Models in Qiannan Autonomous Prefecture of Guizhou Province in China. PLoS ONE 2015, 10, e0120621. [Google Scholar] [CrossRef] [PubMed]
Forest Type | Slope Position | Slope (°) | Mean DBH (cm) | Mean Tree Height (m) | Canopy Density | Average Fuelbed Thickness (cm) | Average Fuelbed Packing Ratio | Forest Age (year) |
---|---|---|---|---|---|---|---|---|
P. massoniana | downhill | 13.60 | 20.60 | 14.80 | 0.73 | 10.00 | 0.038 | 36 |
Index | Minimum Value | Average Value | Maximum Value | 25% Quantile | 75% Quantile | Coefficient of Variation |
---|---|---|---|---|---|---|
Air temperature (°C) | 17.30 | 24.56 | 39.70 | 20.50 | 28.70 | 0.20 |
Relative humidity (%) | 55.10 | 66.87 | 98.54 | 62.60 | 73.30 | 0.14 |
Index | III SS | df | MS | F | Sig. |
---|---|---|---|---|---|
Intercept | 668.730 | 1 | 668.730 | 158.970 | <0.000 |
Packing ratio | 35.179 | 4 | 8.795 | 2.091 | 0.087 |
Wind velocity | 350.503 | 5 | 70.101 | 16.664 | <0.000 |
Moisture content | 306.036 | 3 | 102.012 | 24.250 | <0.000 |
Error | 450.110 | 107 | 4.207 | ||
Total | 1810.557 | 120 |
Type | Model | MAE (%) | RMSE (%) |
---|---|---|---|
Logistics method (LRM) | 1.702 | 2.156 | |
General linear regression method (GLM) | 1.880 | 2.317 | |
Nonlinear regression method (NLM) | 0.048m 1.096 | 0.587 | 0.727 |
Index | Minimum Value | Average Value | Maximum Value | 25% Quantile | 75 Quantile | Standard Deviation | Coefficient of Variance |
---|---|---|---|---|---|---|---|
Ignition time (s) | 164.000 | 269.160 | 435.000 | 230.500 | 300.00 | 57.64 | 0.214 |
Index | III SS | df | MS | F | Sig. |
---|---|---|---|---|---|
Intercept | 3,948,959.194 | 1 | 3,948,959.194 | 16,921.656 | <0.000 |
Packing ratio | 24,995.040 | 4 | 6248.760 | 26.777 | <0.000 |
Wind velocity | 35,364.877 | 4 | 8841.219 | 37.885 | <0.000 |
Moisture content | 8053.467 | 2 | 4026.734 | 17.255 | <0.000 |
Error | 7467.750 | 32 | 233.367 | ||
Total | 6,437,273.000 | 85 |
Tree Species | H (kj·kg−1) | ST (%) | Se (%) | |
---|---|---|---|---|
P. massoniana | 262.525 | 209,07.222 | 2.420 | 1.820 |
P. koraiensis | 316.512 | 17,636.102 | 3.695 | 2.982 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tian, L. Ignition of Forest Fires by Cigarette Butts: Using Pinus massoniana Needles as an Example. Fire 2024, 7, 65. https://doi.org/10.3390/fire7030065
Zhang Y, Tian L. Ignition of Forest Fires by Cigarette Butts: Using Pinus massoniana Needles as an Example. Fire. 2024; 7(3):65. https://doi.org/10.3390/fire7030065
Chicago/Turabian StyleZhang, Yunlin, and Lingling Tian. 2024. "Ignition of Forest Fires by Cigarette Butts: Using Pinus massoniana Needles as an Example" Fire 7, no. 3: 65. https://doi.org/10.3390/fire7030065
APA StyleZhang, Y., & Tian, L. (2024). Ignition of Forest Fires by Cigarette Butts: Using Pinus massoniana Needles as an Example. Fire, 7(3), 65. https://doi.org/10.3390/fire7030065