Lightning-Induced Wildfires: An Overview
Abstract
:1. Introduction
2. Lightning Mechanism
2.1. Types of Cloud-to-Ground Lightning
2.2. Stages of Cloud-to-Ground Lightning
3. Ignition
3.1. Lightning-Ignition Models
3.2. Experimental Investigations of Lightning Ignition
4. Drivers of Lightning-Induced Fire
4.1. Fuel Conditions
4.2. Weather and Climate
4.3. Topography
Reference | Driving Parameter | Conclusions |
---|---|---|
Fuel conditions | ||
Anderson [46] | Moisture content | Dry fuel flames propagated faster than live fuels. |
McAllister and Weiser [61] | Moisture content | Moisture content influenced the burning process, but it is not the best criterion to determine the ignition of live fuels. |
Viegas et al. [62] | Moisture content | Moisture content was critical for determining the ignition probability and ignition delay of fuels. |
Engstrom et al. [63] | Moisture content, chemical composition, shapes, and sizes | The leaf size, shape, and chemical composition significantly influenced the ignition of the live fuels. |
Prince and Fletcher [64] | Moisture content | Internal pressures were higher in more moist fuels. |
Bianchi et al. [65] | Moisture content | Live conifers (less moist) ignited faster than Patagonian leaves. |
Podschwit and Cullen [66] | Moisture content | The moisture content of forest vegetation significantly affected lightning ignition. |
Zhang et al. [14] | Moisture content | The discharge current required to ignite pine needles decreased with decreasing moisture content. |
Feng et al. [12] | Moisture content | Increased moisture content decreased the grass bed voltage. |
Dennison and Moritz [9] | Moisture content | Moisture content influenced the heating values of fuels. |
Sun et al. [57] | Moisture content | Moisture content influenced the heat release rate of fuels. |
Prat-Guitart et al. [67] | Moisture content and bulk density | Increased moisture content and bulk density decreased fire propagation. |
Pineda et al. [68] | Moisture content | The moisture content significantly influenced lightning wildfires. |
Marino et al. [69] | Moisture content and bulk density | The rate of fire spread increased with decreased fuel bulk density and moisture content. |
Weise and Biging [70] | Moisture | Increased moisture content delayed the burning process and reduced flame length. |
Dahale et al. [71] | Moisture and bulk density | Higher moisture content slowed down combustion and increased the unburned mass of the fuel. Increased bulk density delayed the combustion of fuel. |
Weather and climate | ||
Perez-Invernon et al. [75] | Relative humidity, precipitation, and temperature | Low precipitation and high temperatures increased wildfires. |
Cruz and Alexander [76] | Wind speed | Increased wind speed increased wildfire severity. |
D’Este et al. [77] | Temperature | Dry weather conditions increased the severity of wildfires. |
Collins et al. [27] | Temperature, wind speed, and relative humidity | Temperature and wind speed significantly influenced wildfires. |
Mansoor et al. [78] | Temperature | Dry weather conditions decreased fuel moisture, leading to physiological changes in forest vegetation and increasing wildfires. |
Jain et al. [79] | Temperature, relative humidity, and wind speed. | High temperatures, low humidity, and strong wind speed strongly influenced wildfires. |
Huang et al. [80] | Relative humidity, precipitation, and wind speed. | Wildfires increased with low relative humidity, low precipitation, and increased wind speeds. |
Pereira et al. [81] | Precipitation, temperature, relative humidity, and wind speed. | Low precipitation, low relative humidity, and high temperature accelerated the ignition and survival of wildfires. Increased wind speed increased the flame spread rate. |
Mohammadi et al. [82] | Temperature | High temperatures reduced the fuel moisture content and increased its ignition and flammability. |
Flannigan et al. [83] | Temperature, precipitation, and fuel moisture | Increased temperatures increased the drying of fuels and the ignition probability. |
Madadgar et al. [84] | Temperature | Increased temperature increased the vegetation’s flammability. |
Topography | ||
Zhou et al. [88] | Upslope | Radiative and convective heat increased with increased slope. |
Silvani et al. [89] | Upslope | The rate of flame spread increased with increased slope. |
Morandini et al. [90,91] | Upslope | Radiative and convective heat increased with increasing slope, thereby increasing the rate of fire propagation. |
Li et al. [92] | Upslope | Increased in the slope significantly increased the radiative heat and rate of fire spread. |
Zhang et al. [93] | Downslope | The downward slope increased radiant heat and fire spread rate. |
Lecina-Diaz et al. [94] | Upslope | Upslope fires were more severe. |
Weise and Biging [70] | Downslope | The rate of fire spreading was higher for downward-heading fires. |
5. Lightning-Induced Wildfire Modeling Studies
5.1. Lightning-Induced Wildfire Modeling Methods
5.2. Lightning-Induced Investigations
5.2.1. South and North America
5.2.2. Europe
5.2.3. Asia and Australia
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fisher, R.J.; Schnetzer, G.H.; Thottappillil, R.; Rakov, V.A.; Uman, M.A.; Goldberg, J.D. Parameters of triggered-lightning flashes in Florida and Alabama. J. Geophys. Res. 1993, 98, 22887–22902. [Google Scholar] [CrossRef]
- Conedera, M.; Cesti, G.; Pezzatti, G.; Zumbrunnen, T.; Spinedi, F. Lightning-induced fires in the Alpine region: An increasing problem. For. Ecol. Manag. 2006, 234, S68. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M. Lightning-ignited forest fires in northwestern Ontario. Can. J. For. Res. 1991, 21, 277–287. [Google Scholar] [CrossRef]
- Scott, A.C. The Pre-Quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2000, 164, 281–329. [Google Scholar] [CrossRef]
- Kauf, Z. Testing Vegetation Flammability: Examining Seasonal and Local Differences in Six Mediterranean Tree Species. Ph.D. Thesis, University of Hohenheim, Stuttgart, Germany, 2016. [Google Scholar]
- Couto, F.T.; Iakunin, M.; Salgado, R.; Pinto, P.; Viegas, T.; Pinty, J.-P. Lightning modelling for the research of forest fire ignition in Portugal. Atmos. Res. 2020, 242, 104993. [Google Scholar] [CrossRef]
- Rodríguez-Pérez, J.R.; Ordóñez, C.; Roca-Pardiñas, J.; Vecín-Arias, D.; Castedo-Dorado, F. Evaluating lightning-caused fire occurrence using spatial generalized additive models: A case study in central Spain. Risk Anal. 2020, 40, 1418–1437. [Google Scholar] [CrossRef] [PubMed]
- Canadell, J.G.; Meyer, C.P.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 2021, 12, 6921. [Google Scholar] [CrossRef] [PubMed]
- Dennison, P.E.; Moritz, M.A. Critical live fuel moisture in chaparral ecosystems: A threshold for fire activity and its relationship to antecedent precipitation. Int. J. Wildland Fire 2009, 18, 1021–1027. [Google Scholar] [CrossRef]
- Malamud, B.D.; Millington, J.D.A.; Perry, G.L.W. Characterizing wildfire regimes in the United States. Proc. Natl. Acad. Sci. USA 2005, 102, 4694–4699. [Google Scholar] [CrossRef]
- Shu, Y.; Shi, C.; Yi, B.; Zhao, P.; Guan, L.; Zhou, M. Influence of climatic factors on lightning fires in the primeval forest region of the Northern Daxing’an Mountains, China. Sustainability 2022, 14, 5462. [Google Scholar] [CrossRef]
- Feng, J.; Liang, D.; Shen, H. Experimental analysis of artificial lightning breakdown and ignition characteristics in grassland. Theor. Appl. Clim. 2020, 141, 817–825. [Google Scholar] [CrossRef]
- Jiao, Q.; Fan, M.; Tao, J.; Wang, W.; Liu, D.; Wang, P. Forest fire patterns and lightning-caused forest fire detection in Heilongjiang Province of China using satellite data. Fire 2023, 6, 166. [Google Scholar] [CrossRef]
- Zhang, H.; Qiao, Y.; Chen, H.; Liu, N.; Zhang, L.; Xie, X. Experimental study on flaming ignition of pine needles by simulated lightning discharge. Fire Saf. J. 2021, 120, 103029. [Google Scholar] [CrossRef]
- Yang, Y.; Song, D.; Wang, S.; Li, P.; Xu, Y. Characteristics of cloud-to-ground lightning and its relationship with climate change in Muli, Sichuan province, China. Nat. Hazards 2018, 91, 1097–1112. [Google Scholar] [CrossRef]
- Feng, J.; Shen, H.; Liang, D. Experimental study on artificial lightning ignition phenomenon and model of the fuel bed. Int. J. Wildland Fire 2021, 30, 720–731. [Google Scholar] [CrossRef]
- Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence and its future trend under climate change in a boreal forest of Northeast China. Glob. Chang. Biol. 2012, 18, 2041–2056. [Google Scholar] [CrossRef]
- Barros, A.M.; Day, M.A.; Preisler, H.K.; Abatzoglou, J.T.; Krawchuk, M.A.; Houtman, R.; Ager, A.A. Contrasting the role of human- and lightning-caused wildfires on future fire regimes on a Central Oregon landscape. Environ. Res. Lett. 2021, 16, 064081. [Google Scholar] [CrossRef]
- NFPA, Lightning Fires and Lightning Strikes. 2013. Available online: www.nfpa.org/osds (accessed on 1 June 2023).
- Veraverbeke, S.; Rogers, B.M.; Goulden, M.L.; Jandt, R.R.; Miller, C.E.; Wiggins, E.B.; Randerson, J.T. Lightning as a major driver of recent large fire years in North American boreal forests. Nat. Clim. Chang. 2017, 7, 529–534. [Google Scholar] [CrossRef]
- Wotton, B.M.; Martell, D.L. A lightning fire occurrence model for Ontario. Can. J. For. Res. 2005, 35, 1389–1401. [Google Scholar] [CrossRef]
- Ramos-Neto, M.B.; Pivello, V.R. Lightning fires in a Brazilian Savanna National Park: Rethinking management strategies. Environ. Manag. 2000, 26, 675–684. [Google Scholar] [CrossRef]
- Schumacher, V.; Setzer, A.; Saba, M.M.; Naccarato, K.P.; Mattos, E.; Justino, F. Characteristics of lightning-caused wildfires in central Brazil in relation to cloud-ground and dry lightning. Agric. For. Meteorol. 2022, 312, 108723. [Google Scholar] [CrossRef]
- National Interagency Fire Center, Lightning-Caused and Human-Caused Fires and Acres Lightning Fires. 2023. Available online: https://www.nifc.gov/ (accessed on 23 June 2023).
- Egloff, B. Lightning strikes: Rethinking the nexus between Australian Indigenous land management and natural forces. Aust. For. 2017, 80, 275–285. [Google Scholar] [CrossRef]
- Read, N.; Duff, T.J.; Taylor, P.G. A lightning-caused wildfire ignition forecasting model for operational use. Agric. For. Meteorol. 2018, 253–254, 233–246. [Google Scholar] [CrossRef]
- Collins, K.M.; Penman, T.D.; Price, O.F. Some Wildfire Ignition Causes Pose More Risk of Destroying Houses than Others. PLoS ONE 2016, 11, e0162083. [Google Scholar] [CrossRef]
- Vecín-Arias, D.; Castedo-Dorado, F.; Ordóñez, C.; Rodríguez-Pérez, J.R. Biophysical and lightning characteristics drive lightning-induced fire occurrence in the central plateau of the Iberian Peninsula. Agric. For. Meteorol. 2016, 225, 36–47. [Google Scholar] [CrossRef]
- Nieto, H.; Aguado, I.; García, M.; Chuvieco, E. Lightning-caused fires in Central Spain: Development of a probability model of occurrence for two Spanish regions. Agric. For. Meteorol. 2012, 162–163, 35–43. [Google Scholar] [CrossRef]
- RedZone. Wildfires Rage across South Africa’s Cape Town after Massive Winter Storm. Available online: https://www.redzone.co/2017/06/08/south-africa-winter-storm-wildfires/ (accessed on 1 August 2023).
- Etherington, T.R.; Perry, G.L. Spatially adaptive probabilistic computation of a sub-kilometre resolution lightning climatology for New Zealand. Comput. Geosci. 2017, 98, 38–45. [Google Scholar] [CrossRef]
- Rakor, V.A. Lightning; the science. In Lightning: Science; Engineering, and Economic Implications for Developing Countries; Springer Singapore: Singapore, 2020; pp. 1–35. [Google Scholar]
- Byard, R.W. Thunderstorm mortality: Issues of medicolegal concern. Med. Sci. Law 2023, 63, 334–336. [Google Scholar] [CrossRef] [PubMed]
- Coughlan, R.; Di Giuseppe, F.; Vitolo, C.; Barnard, C.; Lopez, P.; Drusch, M. Using machine learning to predict fire-ignition occurrences from lightning forecasts. Meteorol. Appl. 2021, 28, e1973. [Google Scholar] [CrossRef]
- Baba, Y.; Rakov, V.A. Present understanding of the lightning return stroke. In Lightning: Principles, Instruments and Applications; Springer: Singapore, 2009; pp. 1–20. [Google Scholar]
- Tran, M.D.; Rakov, V.A. Initiation and propagation of cloud-to-ground lightning observed with a high-speed video camera. Sci. Rep. 2016, 6, 39521. [Google Scholar] [CrossRef] [PubMed]
- Hare, B.M.; Scholten, O.; Dwyer, J.; Trinh, T.N.G.; Buitink, S.; ter Veen, S.; Bonardi, A.; Corstanje, A.; Falcke, H.; Hörandel, J.R.; et al. Needle-like structures discovered on positively charged lightning branches. Nature 2019, 568, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Anderson, K. Lightning-caused fire occurrences: An overview. In Proceedings of the 6th Western Region Fire Weather Committee Scientific and Technical Seminar, Edmonton, Alberta, 23 March 1992; pp. 27–43. [Google Scholar]
- Latham, D.; Williams, E. Lightning and forest fires. In Forest Fires; Academic Press: Cambridge, MA, USA, 2001; pp. 375–418. [Google Scholar]
- Podur, J.; Martell, D.L.; Csillag, F. Spatial patterns of lightning-caused forest fires in Ontario, 1976–1998. Ecol. Model. 2003, 164, 1–20. [Google Scholar] [CrossRef]
- Wang, J.; Li, Q.; Wang, J.; Cai, L.; Su, R.; Zhou, M.; Fan, Y. Two successive bidirectional leaders propagated in triggered lightning channel. Sci. Rep. 2022, 12, 9235. [Google Scholar] [CrossRef] [PubMed]
- Lowke, J.J.; Szili, E.J. Toward a theory of ‘stepped-leaders’ in lightning. J. Phys. D Appl. Phys. 2023, 56, 045201. [Google Scholar] [CrossRef]
- Ding, Z.; Rakov, V.A. Toward a better understanding of negative lightning stepped leaders. Electr. Power Syst. Res. 2022, 209, 108043. [Google Scholar] [CrossRef]
- Shi, D.; Wang, D.; Wu, T.; Takagi, N. Correlation between the first return stroke of negative CG lightning and Its preceding discharge processes. J. Geophys. Res. Atmos. 2019, 124, 8501–8510. [Google Scholar] [CrossRef]
- Kašpar, P.; Kolmašová, I.; Santolík, O. Model of the First Lightning Return Stroke Using Bidirectional Leader Concept. J. Geophys. Res. Atmos. 2022, 127, e2022JD037459. [Google Scholar] [CrossRef]
- Anderson, K. A model to predict lightning-caused fire occurrences. Int. J. Wildland Fire 2002, 11, 163. [Google Scholar] [CrossRef]
- Pineda, N.; Montanyà, J.; van der Velde, O.A. Characteristics of lightning related to wildfire ignitions in Catalonia. Atmos. Res. 2014, 135–136, 380–387. [Google Scholar] [CrossRef]
- Huang, H.; Wang, D.; Wu, T.; Takagi, N. Progression features of dart leaders in natural negative cloud-to-ground lightning flashes. J. Geophys. Res. Atmos. 2019, 124, 11143–11154. [Google Scholar] [CrossRef]
- Su, R.; Wang, J.; Cai, L.; Zhou, M.; Fan, Y.; Cao, J.; Wang, F.; Wang, J. Characteristics of dart leader and attempted leader in a triggered lightning. Electr. Power Syst. Res. 2023, 214, 108812. [Google Scholar] [CrossRef]
- Fuquay, D.M.; Baugham, R.G.; Latham, D.J. A Model for Predicting Lightning-Fire Ignition in Wildland Fuels. 1979. Available online: https://digitalcommons.usu.edu/govdocs_wfires (accessed on 1 August 2023).
- Fuquay, D.M.; Taylor, A.R.; Hawe, R.G.; Schmid, C.W. Lightning discharges that caused forest fires. J. Geophys. Res. 1972, 77, 2156–2158. [Google Scholar] [CrossRef]
- Larjavaara, M.; Pennanen, J.; Tuomi, T. Lightning that ignites forest fires in Finland. Agric. For. Meteorol. 2005, 132, 171–180. [Google Scholar] [CrossRef]
- Darveniza, M.; Zhou, Y. Lightning-initiated fires: Energy absorbed by fibrous materials from impulse current arcs. J. Geophys. Res. 1994, 99, 10663–10670. [Google Scholar]
- Latham, D.J.; Schlieter, J.A. Ignition Probabilities of Wildland Fuels Based on Simulated Lightning Discharges; Forgotten Books: London, UK, 1989. [Google Scholar]
- Zhang, H.; Guo, P.; Chen, H.; Liu, N.; Qiao, Y.; Xu, M.; Zhang, L. Lightning-induced smoldering ignition of peat: Simulation experiments by an electric arc with long continuing current. Proc. Combust. Inst. 2023, 39, 4185–4193. [Google Scholar] [CrossRef]
- Feng, J.; Shen, H.; Liang, D. Investigation of lightning ignition characteristics based on an impulse current generator. Ecol. Evol. 2019, 9, 14234–14243. [Google Scholar] [CrossRef]
- Sun, L.; Zhou, X.; Mahalingam, S.; Weise, D.R. Comparison of burning characteristics of live and dead chaparral fuels. Combust. Flame 2006, 144, 349–359. [Google Scholar] [CrossRef]
- Tihay-Felicelli, V.; Santoni, P.-A.; Barboni, T.; Leonelli, L. Autoignition of Dead Shrub Twigs: Influence of Diameter on Ignition. Fire Technol. 2016, 52, 897–929. [Google Scholar] [CrossRef]
- Ahmad, A.D.; Abubaker, A.M.; Salaimeh, A.; Akafuah, N.K.; Finney, M.; Forthofer, J.M.; Saito, K. Ignition and burning mechanisms of live spruce needles. Fuel 2021, 304, 121371. [Google Scholar] [CrossRef]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C.; Cornwell, W.K. Burn or rot: Leaf traits explain why flammability and decomposability are decoupled across species. Funct. Ecol. 2015, 29, 1486–1497. [Google Scholar] [CrossRef]
- McAllister, S.; Weise, D.R. Effects of season on ignition of live wildland fuels using the forced ignition and flame spread test apparatus. Combust. Sci. Technol. 2017, 189, 231–247. [Google Scholar] [CrossRef]
- Viegas, D.X.; Almeida, M.; Raposo, J.; Oliveira, R.; Viegas, C.X. Ignition of Mediterranean fuel beds by several types of firebrands. Fire Technol. 2014, 50, 61–77. [Google Scholar] [CrossRef]
- Engstrom, J.D.; Butler, J.K.; Smith, S.G.; Baxter, L.L.; Fletcher, T.H. Ignition behavior of live California Chaparal leaves. Combust. Sci. Tech 2004, 176, 1577–1591. [Google Scholar] [CrossRef]
- Prince, D.R.; Fletcher, T.H. Differences in burning behavior of live and dead leaves, Part 1: Measurements. Combust. Sci. Technol. 2014, 186, 1844–1857. [Google Scholar] [CrossRef]
- Bianchi, L.O.; Oddi, F.J.; Muñoz, M.; Defossé, G.E. Comparison of leaf moisture content and ignition characteristics among native species and exotic conifers in Northwestern Patagonia, Argentina. For. Sci. 2018, 65, 375–386. [Google Scholar] [CrossRef]
- Podschwit, H.; Cullen, A. Patterns and trends in simultaneous wildfire activity in the United States from 1984 to 2015. Int. J. Wildland Fire 2020, 29, 1057–1071. [Google Scholar] [CrossRef]
- Prat-Guitart, N.; Rein, G.; Hadden, R.M.; Belcher, C.M.; Yearsley, J.M. Propagation probability and spread rates of self-sustained smouldering fires under controlled moisture content and bulk density conditions. Int. J. Wildland Fire 2016, 25, 456–465. [Google Scholar] [CrossRef]
- Pineda, N.; Altube, P.; Alcasena, F.J.; Casellas, E.; Segundo, H.S.; Montanyà, J. Characterising the holdover phase of lightning-ignited wildfires in Catalonia. Agric. For. Meteorol. 2022, 324, 109111. [Google Scholar] [CrossRef]
- Marino, E.; Dupuy, J.-L.; Pimont, F.; Guijarro, M.; Hernando, C.; Linn, R. Fuel bulk density and fuel moisture content effects on fire rate of spread: A comparison between FIRETEC model predictions and experimental results in shrub fuels. J. Fire Sci. 2012, 30, 277–299. [Google Scholar] [CrossRef]
- Weise, D.R.; Biging, G.S. Effects of wind velocity and slope on fire behavior. Fire Saf. Sci.-Proc. Fourth Int. Symp. 1994, 4, 1041–1051. [Google Scholar] [CrossRef]
- Dahale, A.; Ferguson, S.; Shotorban, B.; Mahalingam, S. Effects of distribution of bulk density and moisture content on shrub fires. Int. J. Wildland Fire 2013, 22, 625–641. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Santos, J.A.; Castedo-Dorado, F.; Almeida, R. Fire from the Sky in the Anthropocene. Fire 2021, 4, 13. [Google Scholar] [CrossRef]
- Fargeon, H.; Pimont, F.; Martin-StPaul, N.; De Caceres, M.; Ruffault, J.; Barbero, R.; Dupuy, J.-L. Projections of fire danger under climate change over France: Where do the greatest uncertainties lie? Clim. Chang. 2020, 160, 479–493. [Google Scholar] [CrossRef]
- Boyer, E.W.; Wagenbrenner, J.W.; Zhang, L. Wildfire and hydrological processes. Hydrol. Process. 2022, 36, e14640. [Google Scholar] [CrossRef]
- Pérez-Invernón, F.J.; Huntrieser, H.; Moris, J.V. Meteorological conditions associated with lightning ignited fires and long-continuing-current lightning in Arizona, New Mexico and Florida. Fire 2022, 5, 96. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E. The 10% wind speed rule of thumb for estimating a wildfire’s forward rate of spread in forests and shrublands. Ann. For. Sci. 2019, 76, 44. [Google Scholar] [CrossRef]
- D’este, M.; Ganga, A.; Elia, M.; Lovreglio, R.; Giannico, V.; Spano, G.; Colangelo, G.; Lafortezza, R.; Sanesi, G. Modeling fire ignition probability and frequency using Hurdle models: A cross-regional study in Southern Europe. Ecol. Process. 2020, 9, 54. [Google Scholar] [CrossRef]
- Mansoor, S.; Farooq, I.; Kachroo, M.M.; Mahmoud, A.E.D.; Fawzy, M.; Popescu, S.M.; Alyemeni, M.; Sonne, C.; Rinklebe, J.; Ahmad, P. Elevation in wildfire frequencies with respect to the climate change. J. Environ. Manag. 2022, 301, 113769. [Google Scholar] [CrossRef] [PubMed]
- Jain, P.; Castellanos-Acuna, D.; Coogan, S.C.P.; Abatzoglou, J.T.; Flannigan, M.D. Observed increases in extreme fire weather driven by atmospheric humidity and temperature. Nat. Clim. Chang. 2022, 12, 63–70. [Google Scholar] [CrossRef]
- Huang, X.; Ding, K.; Liu, J.; Wang, Z.; Tang, R.; Xue, L.; Wang, H.; Zhang, Q.; Tan, Z.-M.; Fu, C.; et al. Smoke-weather interaction affects extreme wildfires in diverse coastal regions. Science 2023, 379, 457–461. [Google Scholar] [CrossRef]
- Pereira, M.G.; Parente, J.; Amraoui, M.; Oliveira, A.; Fernandes, P.M. The role of weather and climate conditions on extreme wildfires. In Extreme Wildfire Events and Disasters: Root Causes and New Management Strategies; Elsevier: Amsterdam, The Netherlands, 2019; pp. 55–72. [Google Scholar]
- Mohammadi, Z.; Lohmander, P.; Kašpar, J.; Berčák, R.; Holuša, J.; Marušák, R. The effect of climate factors on the size of forest wildfires (case study: Prague-East district, Czech Republic). J. For. Res. 2022, 33, 1291–1300. [Google Scholar] [CrossRef]
- Flannigan, M.D.; Wotton, B.M.; Marshall, G.A.; de Groot, W.J.; Johnston, J.; Jurko, N.; Cantin, A.S. Fuel moisture sensitivity to temperature and precipitation: Climate change implications. Clim. Chang. 2016, 134, 59–71. [Google Scholar] [CrossRef]
- Madadgar, S.; Sadegh, M.; Chiang, F.; Ragno, E.; AghaKouchak, A. Quantifying increased fire risk in California in response to different levels of warming and drying. Stoch. Environ. Res. Risk Assess. 2020, 34, 2023–2031. [Google Scholar] [CrossRef]
- Dobrowski, S.Z.; Abatzoglou, J.T.; Greenberg, J.A.; Schladow, S. How much influence does landscape-scale physiography have on air temperature in a mountain environment? Agric. For. Meteorol. 2009, 149, 1751–1758. [Google Scholar] [CrossRef]
- Kane, V.R.; Lutz, J.A.; Cansler, C.A.; Povak, N.A.; Churchill, D.J.; Smith, D.F.; Kane, J.T.; North, M.P. Water balance and topography predict fire and forest structure patterns. For. Ecol. Manag. 2015, 338, 1–13. [Google Scholar] [CrossRef]
- Ireland, G.; Petropoulos, G.P. Exploring the relationships between post-fire vegetation regeneration dynamics, topography and burn severity: A case study from the Montane Cordillera Ecozones of Western Canada. Appl. Geogr. 2015, 56, 232–248. [Google Scholar] [CrossRef]
- Zhou, X.; Weise, D.; Mahalingam, S. Experimental measurements and numerical modeling of marginal burning in live chaparral fuel beds. Proc. Combust. Inst. 2005, 30, 2287–2294. [Google Scholar] [CrossRef]
- Silvani, X.; Morandini, F.; Dupuy, J.-L. Effects of slope on fire spread observed through video images and multiple-point thermal measurements. Exp. Therm. Fluid Sci. 2012, 41, 99–111. [Google Scholar] [CrossRef]
- Morandini, F.; Silvani, X.; Honoré, D.; Boutin, G.; Susset, A.; Vernet, R. Slope effects on the fluid dynamics of a fire spreading across a fuel bed: PIV measurements and OH* chemiluminescence imaging. Exp. Fluids 2014, 55, 1788. [Google Scholar] [CrossRef]
- Morandini, F.; Silvani, X.; Dupuy, J.-L.; Susset, A. Fire spread across a sloping fuel bed: Flame dynamics and heat transfers. Combust. Flame 2018, 190, 158–170. [Google Scholar] [CrossRef]
- Li, H.; Liu, N.; Xie, X.; Zhang, L.; Yuan, X.; He, Q.; Viegas, D.X. Effect of Fuel Bed Width on Upslope Fire Spread: An Experimental Study. Fire Technol. 2021, 57, 1063–1076. [Google Scholar] [CrossRef]
- Yang, Z.; Zhang, H.; Zhang, L.; Chen, H. Experimental study on downslope fire spread over a pine needle fuel bed. Fire Technol. 2018, 54, 1487–1503. [Google Scholar] [CrossRef]
- Lecina-Diaz, J.; Alvarez, A.; Retana, J. Extreme fire severity patterns in topographic, convective and wind-driven historical wildfires of Mediterranean pine forests. PLoS ONE 2014, 9, e85127. [Google Scholar] [CrossRef] [PubMed]
- Touge, Y.; Shi, K.; Nishino, T.; Sun, C.; Sekizawa, A. Spatial-temporal characteristics of more than 50,000 wildfires in Japan from 1995 to 2020. Fire Saf. J. 2024, 142, 104025. [Google Scholar] [CrossRef]
- Oliveira, S.; Oehler, F.; San-Miguel-Ayanz, J.; Camia, A.; Pereira, J.M. Modeling spatial patterns of fire occurrence in Mediterranean Europe using multiple regression and random forest. For. Ecol. Manag. 2012, 275, 117–129. [Google Scholar] [CrossRef]
- Jiao, Z.; Zhang, Y.; Xin, J.; Mu, L.; Yi, Y.; Liu, H.; Liu, D. A deep learning based forest Fire detection approach using UAV and YOLOv3. In Proceedings of the 2019 1st International Conference on Industrial Artificial Intelligence (IAI), Shenyang, China, 23–27 July 2019; pp. 1–8. [Google Scholar]
- Jain, P.; Coogan, S.C.P.; Subramanian, S.G.; Crowley, M.; Taylor, S.W.; Flannigan, M.D. A review of machine learning applications in wildfire science and management. Environ. Rev. 2020, 28, 478–505. [Google Scholar] [CrossRef]
- Bera, B.; Shit, P.K.; Sengupta, N.; Saha, S.; Bhattacharjee, S. Forest fire susceptibility prediction using machine learning models with resampling algorithms, Northern part of Eastern Ghat Mountain range (India). Geocarto Int. 2022, 37, 11756–11781. [Google Scholar] [CrossRef]
- Alkhatib, R.; Sahwan, W.; Alkhatieb, A.; Schütt, B. A brief review of machine learning algorithms in forest fires science. Appl. Sci. 2023, 13, 8275. [Google Scholar] [CrossRef]
- Virupaksha Gouda, R.; Anoop, R.; Sameerna, J.; Basha, A.; Gali, S. Forest fire prediction using machine learning. Int. J. Res. Appl. Sci. Eng. Technol. 2023, 11, 792–797. [Google Scholar]
- Pourghasemi, H.R.; Beheshtirad, M.; Pradhan, B. A comparative assessment of prediction capabilities of modified analytical hierarchy process (M-AHP) and Mamdani fuzzy logic models using Netcad-GIS for forest fire susceptibility mapping. Geomat. Nat. Hazards Risk 2016, 7, 861–885. [Google Scholar] [CrossRef]
- Amatulli, G.; Peréz-Cabello, F.; de la Riva, J. Mapping lightning/human-caused wildfires occurrence under ignition point location uncertainty. Ecol. Model. 2007, 200, 321–333. [Google Scholar] [CrossRef]
- Saleh, A.; Zulkifley, M.A.; Harun, H.H.; Gaudreault, F.; Davison, I.; Spraggon, M. Forest fire surveillance systems: A review of deep learning methods. Heliyon 2024, 10, e23127. [Google Scholar] [CrossRef] [PubMed]
- Singh, S.S.; Jeganathan, C. Using ensemble machine learning algorithm to predict forest fire occurrence probability in Madhya Pradesh and Chhattisgarh, India. Adv. Space Res. 2023, 73, 2969–2987. [Google Scholar] [CrossRef]
- Arpaci, A.; Malowerschnig, B.; Sass, O.; Vacik, H. Using multi variate data mining techniques for estimating fire susceptibility of Tyrolean forests. Appl. Geogr. 2014, 53, 258–270. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Stathaki, T.; Dimitropoulos, K.; Grammalidis, N. Early fire detection based on aerial 360-degree sensors, deep convolution neural networks and exploitation of fire dynamic textures. Remote Sens. 2020, 12, 3177. [Google Scholar] [CrossRef]
- Rodrigues, M.; De la Riva, J. An insight into machine-learning algorithms to model human-caused wildfire occurrence. Environ. Model. Softw. 2014, 57, 192–201. [Google Scholar] [CrossRef]
- Lin, H.; Liu, X.; Wang, X.; Liu, Y. A fuzzy inference and big data analysis algorithm for the prediction of forest fire based on rechargeable wireless sensor networks. Sustain. Comput. Informatics Syst. 2018, 18, 101–111. [Google Scholar] [CrossRef]
- Menezes, L.S.; de Oliveira, A.M.; Santos, F.L.; Russo, A.; de Souza, R.A.; Roque, F.O.; Libonati, R. Lightning patterns in the Pantanal: Untangling natural and anthropogenic-induced wildfires. Sci. Total. Environ. 2022, 820, 153021. [Google Scholar] [CrossRef]
- Neto, O.P.; Pinto, I.R.C.A.; Junior, O.P.; Williams, E.R. Evidence of a link between Amazon fires and lightning. J. Atmos. Sol. Terr. Phys. 2023, 249, 106095. [Google Scholar] [CrossRef]
- Evett, R.R.; Mohrle, C.R.; Hall, B.L.; Brown, T.J.; Stephens, S.L. The effect of monsoonal atmospheric moisture on lightning fire ignitions in southwestern North America. Agric. For. Meteorol. 2008, 148, 1478–1487. [Google Scholar] [CrossRef]
- Hessilt, T.D.; Abatzoglou, J.T.; Chen, Y.; Randerson, J.T.; Scholten, R.C.; van der Werf, G.; Veraverbeke, S. Future increases in lightning ignition efficiency and wildfire occurrence expected from drier fuels in boreal forest ecosystems of western North America. Environ. Res. Lett. 2022, 17, 054008. [Google Scholar] [CrossRef]
- Krawchuk, M.A.; Cumming, S.G. Disturbance history affects lightning fire initiation in the mixed wood boreal forest: Observations and simulations. For. Ecol. Manag. 2009, 257, 1613–1622. [Google Scholar] [CrossRef]
- Calef, M.P.; Varvak, A.; McGuire, A.D. Differences in human versus lightning fires between urban and rural areas of the boreal forest in interior Alaska. Forests 2017, 8, 422. [Google Scholar] [CrossRef]
- MacNamara, B.R.; Schultz, C.J.; Fuelberg, H.E. Flash characteristics and precipitation metrics of western U.S. lightning-initiated wildfires from 2017. Fire 2020, 3, 5. [Google Scholar] [CrossRef]
- Li, Y.; Mickley, L.J.; Liu, P.; Kaplan, J.O.; Paulson, J.A. Trends and spatial shifts in lightning fires and smoke concentrations United States. Atmos. Chem. Phys. 2020, 20, 8828–8838. [Google Scholar] [CrossRef]
- Cha, D.; Wang, X.; Kim, J.W. Assessing lightning and wildfire hazard by land properties and cloud to ground lightning data with association rule mining in Alberta, Canada. Sensors 2017, 17, 2413. [Google Scholar] [CrossRef]
- Chen, B.; Jin, Y. Spatial patterns and drivers for wildfire ignitions in California. Environ. Res. Lett. 2022, 17, 055004. [Google Scholar] [CrossRef]
- Coogan, S.C.P.; Cai, X.; Jain, P.; Flannigan, M.D. Seasonality and trends in human-and lightning-caused wildfires ≥ 2 ha in Canada, 1959–2018. Int. J. Wildland Fire 2020, 29, 473–485. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Kolden, C.A.; Balch, J.K.; Bradley, B.A. Controls on interannual variability in lightning-caused fire activity in the western US. Environ. Res. Lett. 2016, 11, 045005. [Google Scholar] [CrossRef]
- Pérez-Invernón, F.J.; Gordillo-Vázquez, F.J.; Huntrieser, H.; Jöckel, P. Variation of lightning-ignited wildfire patterns under climate change. Nat. Commun. 2023, 14, 739. [Google Scholar] [CrossRef]
- Fill, J.M.; Davis, C.N.; Crandall, R.M. Climate change lengthens southeastern USA lightning-ignited fire seasons. Glob. Chang. Biol. 2019, 25, 3562–3569. [Google Scholar] [CrossRef] [PubMed]
- Prestemon, J.P.; Shankar, U.; Xiu, A.; Talgo, K.; Yang, D.; Dixon, E.; McKenzie, D.; Abt, K.L. Projecting wildfire area burned in the south-eastern United States, 2011–2060. Int. J. Wildland Fire 2016, 25, 715–729. [Google Scholar] [CrossRef]
- Brey, S.J.; Barnes, E.A.; Pierce, J.R.; Wiedinmyer, C.; Fischer, E.V. Environmental conditions; ignition type, and air quality impacts of wildfires in the Southeastern and Western United States. Earth’s Futur. 2018, 6, 1442–1456. [Google Scholar] [CrossRef]
- Aftergood, O.S.R.; Flannigan, M.D. Identifying and analyzing spatial and temporal patterns of lightning-ignited wildfires in Western Canada from 1981 to 2018. Can. J. For. Res. 2022, 52, 1399–1411. [Google Scholar] [CrossRef]
- Pineda, N.; Rigo, T. The rainfall factor in lightning-ignited wildfires in Catalonia. Agric. For. Meteorol. 2017, 239, 249–263. [Google Scholar] [CrossRef]
- Pineda, N.; Peña, J.C.; Soler, X.; Aran, M.; Pérez-Zanón, N. Synoptic weather patterns conducive to lightning-ignited wildfires in Catalonia. Adv. Sci. Res. 2022, 19, 39–49. [Google Scholar] [CrossRef]
- Ordóñez, C.; Saavedra, A.; Rodríguez-Pérez, J.; Castedo-Dorado, F.; Covián, E. Using model-based geostatistics to predict lightning-caused wildfires. Environ. Model. Softw. 2012, 29, 44–50. [Google Scholar] [CrossRef]
- Müller, M.M.; Vacik, H.; Diendorfer, G.; Arpaci, A.; Formayer, H.; Gossow, H. Analysis of lightning-induced forest fires in Austria. Theor. Appl. Clim. 2013, 111, 183–193. [Google Scholar] [CrossRef]
- Müller, M.M.; Vacik, H. Characteristics of lightnings igniting forest fires in Austria. Agric. For. Meteorol. 2017, 240–241, 26–34. [Google Scholar] [CrossRef]
- Moris, J.V.; Conedera, M.; Nisi, L.; Bernardi, M.; Cesti, G.; Pezzatti, G.B. Lightning-caused fires in the Alps: Identifying the igniting strokes. Agric. For. Meteorol. 2020, 290, 107990. [Google Scholar] [CrossRef]
- Sari, F. Identifying anthropogenic and natural causes of wildfires by maximum entropy method-based ignition susceptibility distribution models. J. For. Res. 2022, 34, 355–371. [Google Scholar] [CrossRef]
- Zong, X.; Tian, X.; Liu, J. A fire regime zoning system for China. Front. For. Glob. Chang. 2021, 4, 717499. [Google Scholar] [CrossRef]
- Zhang, Q.; Homayouni, S.; Yao, H.; Shu, Y.; Li, M.; Zhou, M. Joint analysis of lightning-induced forest fire and surface influence factors in the Great Xing’an Range. Forests 2022, 13, 1867. [Google Scholar] [CrossRef]
- Hu, T.; Zhou, G. Drivers of lightning- and human-caused fire regimes in the Great Xing’an Mountains. For. Ecol. Manag. 2014, 329, 49–58. [Google Scholar] [CrossRef]
- Bates, B.C.; McCaw, L.; Dowdy, A.J. Exploratory analysis of lightning-ignited wildfires in the Warren Region, Western Australia. J. Environ. Manag. 2018, 225, 336–345. [Google Scholar] [CrossRef] [PubMed]
- Bates, B.C.; Dowdy, A.J.; McCaw, L. A Bayesian approach to exploring the influence of climate variability modes on fire weather conditions and lightning-ignited wildfires. Clim. Dyn. 2021, 57, 1207–1225. [Google Scholar] [CrossRef]
- Dorph, A.; Marshall, E.; Parkins, K.A.; Penman, T.D. Modelling ignition probability for human- and lightning-caused wildfires in Victoria, Australia. Nat. Hazards Earth Syst. Sci. 2022, 22, 3487–3499. [Google Scholar] [CrossRef]
- Clarke, H.; Gibson, R.; Cirulis, B.; Bradstock, R.A.; Penman, T.D. Developing and testing models of the drivers of anthropogenic and lightning-caused wildfire ignitions in south-eastern Australia. J. Environ. Manag. 2019, 235, 34–41. [Google Scholar] [CrossRef]
- Nampak, H.; Love, P.; Fox-Hughes, P.; Watson, C.; Aryal, J.; Harris, R.M.B. Characterizing spatial and temporal variability of lightning activity associated with wildfire over Tasmania, Australia. Fire 2021, 4, 10. [Google Scholar] [CrossRef]
Property | Positive | Negative |
---|---|---|
% of occurrence | 10 | 90 |
Average peak current (kA) | 35 | 30 |
Average current half-life ( | 230 | 30 |
Average number of strokes | 1 | 3–4 |
% of contained long-continuing current | 80 | 20 |
Authors | Lightning Data (Years) | Geographical Location | Observations |
---|---|---|---|
South and North America | |||
Schumacher et al. [23] | 2015–2019 | Central Brazil | Wildfires occurred when precipitation was less than 1 mm and relative humidity was lower. Negative cloud-to-ground lightning flashes significantly caused wildfires. |
Menezes et al. [110] | 2001–2017 | Brazil | Lightning caused only 5% of wildfires. |
Veraverbeke et al. [20] | 1975–2074 | Northwest and Alaska | Lightning flashes caused 55% of wildfires. |
Evett et al. [112] | 1990–2005 | Arizona and New Mexico | Relative humidity strongly influenced lightning-induced wildfires. |
Hessilt et al. [113] | 2001–2018 | Alaska and northwest | Lightning flashes significantly ignited dense forests. |
Krawchuk and Cumming [114] | 1994–2001 | Canada boreal forest | Standing harvest residuals served as a medium for lightning wildfires. |
Calef et al. [115] | 1943–2016 | Alaska | Lightning-induced fires have dramatically increased over the years. |
Macnamara et al. [116] | 5–10/2017 | Western U.S.A. | Negative cloud-to-ground lightning strikes caused 89% of wildfires. |
Li et al. [117] | 1801–2100 | Western U.S.A. | Lightning-induced wildfire smoke increased by 53%. |
Cha et al. [118] | 2010–2014 | Alberta | High- and low-frequency lightning caused 93% of lightning-related wildfires. |
Chen and Jin [119] | 1992–2015 | California | Lightning wildfires were predominant in the Sierra Nevada. |
Coogan et al. [120] | 1959–2018 | Canada | Lightning wildfires were high at the boreal Shield West. |
Abatzoglou et al. [121] | 1992–2013 | Western U.S.A. | Lightning caused 40% of wildfires and 69% of burned acreage. |
Macnamara et al. [116] | 2012–2015 | U.S.A. | In total, 90% and 10% of the lightning flashes were due to negative and positive cloud-to-ground lightning strikes, respectively. |
Aftergood and Flannigan [126] | 1982–2018 | Western and northern Canada | Lightning wildfires increased in north Alberta. |
Perez-Invernon et al. [122] | Up to 2090 | North America | Lightning wildfires were forecast to increase on the west coast of North America. |
Perez-Invernon et al. [75] | 1998–2014 | Arizona and New Mexico | Coniferous forests and ponderosa pine were more susceptible to lightning fires. |
Prestemon et al. [124] | 2011–2060 | Southeast, U.S.A. | Lightning fires will increase by 34% by the years 2056–2060. |
Fill et al. [123] | 1897–2017 | Southeast, U.S.A. | Increased lightning fires and risks. |
Brey et al. [125] | 1992–2015 | Southeast and western, U.S.A. | Lightning wildfires in the western part of the U.S.A. were higher than those in the southeast part of the U.S.A. |
Europe | |||
Pineda et al. [69] | 2003–2018 | Catalonia | Coniferous forests were more prone to lightning fires. |
Pineda et al. [47] | 2004–2009 | Catalonia | Holdover time was shorter in weather conditions that favor wildfires. |
Pineda and Rigo [127] | 2009–2014 | Catalonia | There was no precipitation for 25% of lightning fires, and 40% and 90% of wildfire occurrences had precipitation less than 2 mm and 10 mm, respectively. |
Pineda et al. [128] | 2005–2020 | Catalonia | Short waves at 500 hPa caused lightning fires. |
Ordóñez et al. [129] | 2002–2007 | Leon, Spain | Negative lightning strikes mainly ignited the forest vegetation. |
Amatulli et al. [102] | 1983–2001 | Aragon, Spain | Lightning-caused wildfires occurred mostly in mountainous areas |
Vecín-Arias et al. [28] | 2000–2010 | Spain | Lightning-induced wildfires increased with an increase in negative cloud-to-ground lightning strikes. |
Muller et al. [130] | 1993–2010 | Austria | Lightning strikes initiated 15% of the wildfires. |
Muller and Vacik [131] | Up to 2016 | Austria | Lightning-induced fires mostly occurred at higher altitudes. |
Moris et al. [132] | 2000–2018 | Switzerland | Positive cloud-to-ground lightning flashes started lightning wildfires. |
Sari [133] | 2013–2020 | Turkey | Lightning flashes started 30.2% of the wildfires. |
Asia and Australia | |||
Liu et al. [17] | 1965–2009 | Northeast China | Coniferous forests were more susceptible to lightning wildfires. |
Zong et al. [134] | 2000–2020 | China | Lightning strikes initiated 4.3% of the total number of wildfires. |
Zhang et al. [135] | 1986–2020 | China | Lightning-induced wildfires were rampant from June to August. |
Hu et al. [136] | 1967–2006 | China | Climate condition is the main cause of lightning strike wildfires. |
Touge et al. [95] | 1995–2020 | Japan | Lightning strikes caused 1.23% of the total number of wildfires. Air moisture content, slope, maximum surface air temperature, wind direction, and surface pressure significantly influenced the ignition and survival of wildfires. |
Bates et al. [137] | 1976–2016 | Warren region, Australia | In total, 76% of lightning strikes that ignited were on or close to trees. |
Bates et al. [138] | 41 years | Southwest Australia. | Lightning wildfires were not influenced by climate conditions. |
Dorph et al.’s [139] | 2000–2019 | Victoria | Weather conditions enhanced lightning strikes ignition. |
Clarke et al. [140] | 1997–2016 | Victoria, Tasmania, and South Australia | The frequency of lightning-induced ignitions in Tasmania was 1.4%, 2.9% in South Australia, and 11% in Victoria. |
Read et al. [26] | February 2009, 2010, and January 2011 | Victoria | Lightning strikes caused a significant number of wildfires. |
Nampak et al. [141] | January 2011–June 2019 | Southeast Australia | Lightning ignition was 70%. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Song, Y.; Xu, C.; Li, X.; Oppong, F. Lightning-Induced Wildfires: An Overview. Fire 2024, 7, 79. https://doi.org/10.3390/fire7030079
Song Y, Xu C, Li X, Oppong F. Lightning-Induced Wildfires: An Overview. Fire. 2024; 7(3):79. https://doi.org/10.3390/fire7030079
Chicago/Turabian StyleSong, Yang, Cangsu Xu, Xiaolu Li, and Francis Oppong. 2024. "Lightning-Induced Wildfires: An Overview" Fire 7, no. 3: 79. https://doi.org/10.3390/fire7030079
APA StyleSong, Y., Xu, C., Li, X., & Oppong, F. (2024). Lightning-Induced Wildfires: An Overview. Fire, 7(3), 79. https://doi.org/10.3390/fire7030079