Fuel Drivers of Fire Behaviour in Coastal Mallee Shrublands
Abstract
:1. Introduction
2. Materials and Methods
2.1. Review of the Literature on Fuel Drivers in Shrubland Fire Models
- Include shrubland vegetation;
- Include empirical modelling or validation of fire sustainability and/or rate of spread;
- Include a measurement of fuel attributes.
2.2. Expert Workshop on Fuel Drivers in Shrublands
3. Results
3.1. Review of Shrubland Fire Behaviour Model Literature
Region | Fuel Type | Source | Fuel Metrics Used in Rate of Spread Model | Fuel Metrics Used in Fire Sustainability Model |
---|---|---|---|---|
Australia (Tas) | Buttongrass moorlands | [47,54] | Fuel Age | NA |
Australia and NZ | Shrublands | [49] | Height | NA |
Australia (WA) | Semi-arid Mallee | [14] | None | NA |
Australia (SA) | Semi-arid Mallee | [13] ** | FHS * | Cover |
Australia (SA) | Semi-arid heath | [13] ** | FHS *, Height | NA |
Australia (SA and WA) | Semi-arid Mallee | [12] | Height, Cover | Cover |
New Zealand | Gorse Shrubland | [70] | Height | NA |
Global | Shrublands | [48] | Height | NA |
UK (Scotland) | Moorlands | [56] | Height, Canopy Diversity | NA |
Canada (NS) | Shrublands | [55] | Bulk Density | NA |
USA (Texas) | Semi-arid Shrublands | [37] | Height | NA |
Mediterranean (Portugal) | Shrublands | [41] | Height | NA |
Mediterranean (Portugal) | Shrublands | [40] | Height | NA |
Mediterranean (Spain) | Shrublands | [43] | Height | NA |
Mediterranean (Spain) | Gorse Shrublands | [44] | None | NA |
Mediterranean (Turkey) | Shrublands | [42] | Height, Cover | NA |
Mediterranean (Turkey) | Shrublands | [39] | Cover | NA |
3.2. Expert Workshop Results
4. Discussion
4.1. Horizontal Fuel Continuity Metrics
4.2. Vertical Fuel Continuity Metrics
4.3. Bulk Density Metrics
5. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Coastal Mallee Fuel Driver Workshop Questions
Appendix A.1. Paired Photos of Closed Mallee Shrublands—Fuel Strata
- Canopy fuel;
- Elevated fuel;
- Near-surface fuel;
- Surface fuel.
Appendix A.2. Paired Photos of Closed Mallee Shrublands—Fuel Metrics
- Canopy fuel height;
- Gap between elevated and canopy;
- Elevated fuel density;
- Near-surface fuel height;
- Surface fuel cover.
- Canopy cover;
- Elevated fuel height;
- Near-surface fuel density;
- Surface fuel load;
- Whole fuel bed bulk density.
- Canopy height;
- Elevated fuel height;
- Near-surface and elevated fuel load;
- Near-surface cover;
- Surface fuel connectivity.
- Canopy cover;
- Elevated to canopy gap;
- Near-surface fuel vertical connectivity;
- Surface fuel load;
- Surface cover.
- Canopy height;
- Elevated to canopy gap;
- Elevated fuel density;
- Near-surface fuel load;
- Surface fuel cover.
- Canopy fuel;
- Elevated to canopy gap;
- Elevated fuel height;
- Near-surface to elevated connectivity;
- Surface fuel depth.
- Canopy cover;
- Canopy height;
- Elevated fuel load;
- Near-surface fuel cover;
- Surface fuel depth.
Appendix A.3. Influence of Fuel Metrics on Sustained Fire Spread in Shrublands
- Maximum height or depth in assessment area (e.g., the top of canopy of tallest tree);
- nth percentile height of all measurement in assessment area (e.g., 95, 90, 75th);
- Average litter/shrub/canopy heights in assessment area;
- Visual estimate of height or depth.
- Canopy;
- Elevated;
- Near-surface;
- Surface;
- Overall vegetation cover.
- Percent cover;
- Minimum gap spacing;
- Maximum gap spacing;
- Average (or a percentile) gap spacing.
- Gap between near-surface and elevated fuel;
- Gap between elevated and canopy base;
- Canopy or elevated height;
- Size of the largest gap between any fuel layers;
- Vertical connectivity.
- Canopy height;
- Elevated height;
- Near-surface height;
- Gap between layers is more important.
- Canopy;
- Elevated;
- Near-surface;
- Surface;
- Combined total density.
Appendix A.4. Influence of Fuel Metrics on Sustained Fire Spread in Shrublands within a Strata
- Litter depth;
- Litter weight (fuel load);
- Litter density/arrangement;
- Litter cover.
- Near-surface height;
- Near-surface cover;
- Near-surface bulk density;
- Near-surface fuel load;
- Vertical connectivity to elevated fuel (or gap size);
- Live:Dead ratio.
- Elevated fuel height;
- Elevated fuel load;
- Elevated fuel cover;
- Elevated fuel density;
- Gap between elevated and canopy base;
- Live:Dead fine fuel ratio.
- Canopy height;
- Canopy base height;
- Canopy cover;
- Canopy bulk density;
- Canopy load.
- Hazard score for assessing fuel for prescribed burn in shrublands;
- Visual fuel hazard method important in shrublands;
- Data derived hazard score important in shrublands;
- Physical measures of fuel are important in fire spread thresholds.
Appendix B. Coastal Mallee Fuel Driver Workshop Photos Pair Slides Used in Appendix A.1 and Appendix A.2
References
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s catastrophic 2019/20 bushfire season on communities and environment. Retrospective analysis and current trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Peace, M.; Mills, G. A Case Study of the 2007 Kangaroo Island Bushfires; Centre for Australian Weather and Climate Research: Melbourne, Australia, 2012. [Google Scholar]
- Clarke, H.; Cirulis, B.; Price, O.; Bradstock, R.; Boer, M.; Rawlins, A.; Penman, T. Risk Mitigation from Prescribed Burning in Kangaroo Island and Mount Lofty Ranges; Bushfire and Natural Hazards CRC: Melbourne, Australia, 2021. [Google Scholar]
- DoEE. MVG 14–Mallee Woodlands and Shrublands; Australian Government, Department of the Environment and Energy: Canberra, Australia, 2017.
- Nicolle, D. Native Eucalypts of South Australia; Dean Nicolle: Adelaide, SA, USA, 2013. [Google Scholar]
- Bradstock, R.A.; Gill, A.M. Fire in Semiarid, Mallee Shrublands—Size of Flames From Discrete Fuel Arrays and Their Role in the Spread of Fire. Int. J. Wildland Fire 1993, 3, 3–12. [Google Scholar] [CrossRef]
- Ball, D. Kangaroo Island Vegetation Mapping; Department for Transport, Urban Planning and the Arts: Adelaide, Australia, 1998.
- Brandle, R. A Biological Survey of the Eyre Peninsula, South Australia; Department for Environment and Heritage, Government of South Australia: Adelaide, Australia, 2010.
- CANBR. EUCLID—Eucalypts of Australia Fourth Edition; Centre for Australian National Biodiversity Research, Australian National Herbarium & CSIRO National Research Collections Australia: Canberra, Australia, 2020.
- Berkinshaw, T. Native Vegetatin of the Eyre Pensisula, South Australia; Finsbury Green Printers: Adelaide, Australia, 2010; p. 234. [Google Scholar]
- Robinson, A.C.; Armstrong, D.M. A Biological Survey of Kangaroo Island, 1989 & 1990; Department for Environment, Heritage and Aboriginal Affairs, Government of South Australia: Adelaide, Australia, 1999.
- Cruz, M.G.; McCaw, W.L.; Anderson, W.R.; Gould, J.S. Fire behaviour modelling in semi-arid mallee-heath shrublands of southern Australia. Environ. Model. Softw. 2013, 40, 21–34. [Google Scholar] [CrossRef]
- Cruz, M.; Matthews, S.; Gould, J.; Ellis, P.; Henderson, M.; Knight, I.; Watters, J. Fire Dynamics in Mallee-Heath. In Fuel, Weather and Fire Behaviour Prediction in South Australian Semi-Arid Shrublands; CSIRO Sustainable Ecosystems: Canberra, Australia, 2010. [Google Scholar]
- McCaw, W.L. Predicting Fire Spread in Western Australian Mallee-Heath Scrubland. Ph.D. Thesis, University of New South Wales, Canberra, Australia, 1997. [Google Scholar]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland surface fire spread modelling, 19902007. 1: Physical and quasi-physical models. Int. J. Wildland Fire 2009, 18, 349–368. [Google Scholar] [CrossRef]
- Sullivan, A.L. Wildland surface fire spread modelling, 19902007. 2: Empirical and quasi-empirical models. Int. J. Wildland Fire 2009, 18, 369–386. [Google Scholar] [CrossRef]
- Moinuddin, K.A.M.; Sutherland, D. Modelling of tree fires and fires transitioning from the forest floor to the canopy with a physics-based model. Math. Comput. Simul. 2020, 175, 81–95. [Google Scholar] [CrossRef]
- Ahmed, M.M. Simulations of flaming combustion and flaming-to-smoldering transition in wildland fire spread at flame scale. Combust. Flame 2024, 262, 113370. [Google Scholar] [CrossRef]
- Simeoni, A.; Salinesi, P.; Morandini, F. Physical modelling of forest fire spreading through heterogeneous fuel beds. Int. J. Wildland Fire 2011, 20, 625–632. [Google Scholar] [CrossRef]
- Alexander, M.E.; Cruz, M.G. Are the applications of wildland fire behaviour models getting ahead of their evaluation again? Environ. Model. Softw. 2013, 41, 65–71. [Google Scholar] [CrossRef]
- Rothermel, R.C. A Mathematical Model for Predicting Fire Spread in Wildland Fuels; Intermountain Forest and Range Experiment Station, Forest Service, U.S. Department of Agriculture: Ogeden, UT, USA, 1972; Volume 115.
- Burgan, R.E.; Rothermel, R.C. BEHAVE: Fire Behavior Prediction and Fuel Modeling System–FUEL Subsystem; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1984.
- Andrews, P.L. Current status and future needs of the BehavePlus Fire Modeling System. Int. J. Wildland Fire 2014, 23, 21–33. [Google Scholar] [CrossRef]
- Finney, M.A. An overview of FlamMap fire modeling capabilities. In Proceedings of the Fuels Management-How to Measure Success: Conference Proceedings, Portland, OR, USA, 28–30 March 2006; Proceedings RMRS-P-41. Andrews, P.L., Butler, B.W., Eds.; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 213–220. [Google Scholar]
- Finney, M.A. FARSITE, Fire Area Simulator–Model Development and Evaluation; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 1998.
- Andrews, P.L. The Rothermel Surface Fire Spread Model and Associated Developments: A Comprehensive Explanation; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2018; p. 121.
- Scott, J.H.; Burgan, R.E. Standard Fire Behavior Fuel Models: A Comprehensive Set for Use with Rothermel’s Surface Fire Spread Model; General Technical Report RMRS-GTR-153; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2005.
- Weise, D.R.; Zhou, X.; Sun, L.; Mahalingam, S. Fire spread in chaparralgo or no-go? Int. J. Wildland Fire 2005, 14, 99–106. [Google Scholar] [CrossRef]
- Conard, S.G.; Regelbrugge, J.C. On Estimating fuel characteristics in California Chaparral. In Proceedings of the 12th Conference on Fire and Forest Meteorology, Jekyll Island, GA, USA, 26–28 October 1993; pp. 120–129. [Google Scholar]
- Dimitrakopoulos, A.P. Mediterranean fuel models and potential fire behaviour in Greece. Int. J. Wildland Fire 2002, 11, 127–130. [Google Scholar] [CrossRef]
- Arca, B.; Duce, P.; Laconi, M.; Pellizzaro, G.; Salis, M.; Spano, D. Evaluation of FARSITE simulator in Mediterranean maquis. Int. J. Wildland Fire 2007, 16, 563. [Google Scholar] [CrossRef]
- Elia, M.; Lafortezza, R.; Lovreglio, R.; Sanesi, G. Developing Custom Fire Behavior Fuel Models for Mediterranean Wildland–Urban Interfaces in Southern Italy. Environ. Manag. 2015, 56, 754–764. [Google Scholar] [CrossRef] [PubMed]
- Malanson, G.P.; Trabaud, L. Computer simulations of fire behaviour in garrigue in southern France. Appl. Geogr. 1988, 8, 53–64. [Google Scholar] [CrossRef]
- Van Wilgen, B.W.; Maitre, D.C.L.; Kruger, F.J. Fire Behaviour in South African Fynbos (Macchia) Vegetation and Predictions from Rothermel’s Fire Model. J. Appl. Ecol. 1985, 22, 207. [Google Scholar] [CrossRef]
- Streeks, T.J.; Owens, M.K.; Whisenant, S.G. Examining fire behavior in mesquiteacacia shrublands. Int. J. Wildland Fire 2005, 14, 131–140. [Google Scholar] [CrossRef]
- Xanthopoulos, G.; Manasi, M. A Practical Methodology for the Development of Shrub Fuel Models for Fire Behavior Prediction; Millpress: Rotterdam, The Netherlands, 2002. [Google Scholar]
- Bilgili, E.; Saglam, B. Fire behavior in maquis fuels in Turkey. For. Ecol. Manag. 2003, 184, 201–207. [Google Scholar] [CrossRef]
- Fernandes, P.M. Fire spread prediction in shrub fuels in Portugal. For. Ecol. Manag. 2001, 144, 67–74. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Catchpole, W.R.; Rego, F.C. Shrubland fire behaviour modelling with microplot data. Can. J. For. Res. 2000, 30, 889–899. [Google Scholar] [CrossRef]
- Saǧlam, B.; Bilgili, E.; Küçük, Ö.; Durmaz, B.D. Fire behavior in Mediterranean shrub species (Maquis). Afr. J. Biotechnol. 2008, 7, 4122–4129. [Google Scholar]
- Vega, J.A.; Cuinas, P.; Fonturbel, T.; Perez-Gorostiaga, P.; Fernandez, C. Predicting fire behaviour in Galician (NW Spain) shrubland fuel complexes. In Proceedings of the Third International Conference on Forest Fire Research/14th Fire and Forest Meteorology Conference, Luso, Portugal, 16–20 November 1998; pp. 713–728. [Google Scholar]
- Baeza, M.J.; De Luís, M.; Raventós, J.; Escarré, A. Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J. Environ. Manag. 2002, 65, 199–208. [Google Scholar] [CrossRef] [PubMed]
- Castillo, S.M.; Plaza, V.Á.; Garfias, S.R. A recent review of fire behavior and fire effects on native vegetation in Central Chile. Glob. Ecol. Conserv. 2020, 24, e01210. [Google Scholar] [CrossRef]
- Julio, G.; Pedernera, P.; Aguilera, R. Aplicaciones del SIG en la Gestión de la Protección contra los Incendios Forestales-El Sistema KITRAL. In Santiago, Chile: Actas Taller Regional FAO Aplicaciones de la Teledetección y los Sistemas de Información Geográfica a la Gestión Agrícola y del Medio Ambiente; FAO Chile: Santiago, Chile, 1998. [Google Scholar]
- Marsden-Smedley, J.B.; Catchpole, W.R. Fire Behaviour Modelling in Tasmanian Buttongrass Moorlands. II. Fire Behaviour. Int. J. Wildland Fire 1995, 5, 215–228. [Google Scholar] [CrossRef]
- Anderson, W.R.; Cruz, M.G.; Fernandes, P.M.; McCaw, L.; Vega, J.A.; Bradstock, R.A.; Fogarty, L.; Gould, J.; McCarthy, G.; Marsden-Smedley, J.B.; et al. A generic, empirical-based model for predicting rate of fire spread in shrublands. Int. J. Wildland Fire 2015, 24, 443–460. [Google Scholar] [CrossRef]
- Catchpole, W.R.; Bradstock, R.; Choate, J.; Fogarty, L.; Gellie, N.; McCarthy, G.; McCaw, L.; Marsden-Smedley, J.; Pearce, H. Cooperative development of equations for heathland fire behaviour. In Proceedings of the 3rd International Conference on Forest Fire Research and 14th Fire and Forest Meteorology Conference, Luso, Portugal, 16–20 November 1998; pp. 631–645. [Google Scholar]
- Marsden-Smedley, J.B. Prescribed Burning in South Australia: Operational Prescriptions; Department of Environment and Natural Resources, Government of South Australia: Adelaide, Australia, 2011.
- Anderson, S.A.J.; Anderson, W.R. Ignition and fire spread thresholds in gorse (Ulex europaeus). Int. J. Wildland Fire 2010, 19, 589–598. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Fernandes, P.M. Evidence for lack of a fuel effect on forest and shrubland fire rates of spread under elevated fire danger conditions: Implications for modelling and management. Int. J. Wildland Fire 2022, 31, 471–479. [Google Scholar] [CrossRef]
- DENR. Overall Fuel Hazard Guide for South Australia Second Edition; Department of Environment and Natural Resources, Government of South Australia: Adelaide, Australia, 2012.
- Marsden-Smedley, J.B.; Catchpole, W.R. Fire Behaviour Modelling in Tasmanian Buttongrass Moorlands. I. Fuel Characteristics. Int. J. Wildland Fire 1995, 5, 203–214. [Google Scholar] [CrossRef]
- Pepin, A.-C.; Wotton, M. Fire Behaviour Observation in Shrublands in Nova Scotia, Canada and Assessment of Aids to Operational Fire Behaviour Prediction. Fire 2020, 3, 34. [Google Scholar] [CrossRef]
- Davies, G.M.; Legg, C.J.; Smith, A.A.; Macdonald, A.J. Rate of spread of fires in Calluna vulgaris-dominated moorlands. J. Appl. Ecol. 2009, 46, 1054–1063. [Google Scholar] [CrossRef]
- Marino, E.; Hernando, C.; Madrigal, J.; Dez, C.; Guijarro, M. Fuel management effectiveness in a mixed heathland: A comparison of the effect of different treatment types on fire initiation risk. Int. J. Wildland Fire 2012, 21, 969–979. [Google Scholar] [CrossRef]
- Fontaine, J.B.; Westcott, V.C.; Enright, N.J.; Lade, J.C.; Miller, B.P. Fire behaviour in south-western Australian shrublands: Evaluating the influence of fuel age and fire weather. Int. J. Wildland Fire 2012, 21, 385–395. [Google Scholar] [CrossRef]
- Saǧlam, B.; Küçük, Ö.; Bilgili, E.; Durmaz, B.D.; Baysal, I. Estimating fuel biomass of some Shrub species (maquis) in Turkey. Turk. J. Agric. For. 2008, 32, 349–356. [Google Scholar]
- Wright, C.S.; Prichard, S.J. Biomass Consumption during Prescribed Fires in Big Sagebrush Ecosystems; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006; pp. 489–500.
- Baeza, M.J.; Raventós, J.; Escarré, A.; Vallejo, V.R. Fire risk and vegetation structural dynamics in Mediterranean shrubland. Plant Ecol. 2006, 187, 189–201. [Google Scholar] [CrossRef]
- Arca, B.; Laconi, M.; Maccioni, A.; Pellizzaro, G.; Salis, M. Validation of farsite model in mediterranean area. In Proceedings of the Joint Meeting of the Sixth Symposium on Fire and Forest Meteorology and the 19th Interior West Fire Council Meeting, Canmore, AB, Canada, 25–27 October 2005; pp. 329–332. [Google Scholar]
- De Luis, M.; Baeza, M.J.; Raventós, J.; González-Hidalgo, J.C. Fuel characteristics and fire behaviour in mature Mediterranean gorse shrublands. Int. J. Wildland Fire 2004, 13, 79–87. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Dritsa, S. Novel nomographs for fire behaviour prediction in Mediterranean and submediterranean vegetation types. Forestry 2003, 76, 479–490. [Google Scholar] [CrossRef]
- Papió, C.; Trabaud, L. Comparative study of the aerial structure of five shrubs of mediterranean shrublands. For. Sci. 1991, 37, 146–159. [Google Scholar]
- Papió, C.; Trabaud, L. Structural characteristics of fuel components of five Meditarranean shrubs. For. Ecol. Manag. 1990, 35, 249–259. [Google Scholar] [CrossRef]
- Brown, J.K. Fuel and Fire Behavior Prediction in Big Sagebrush; US Department of Agriculture, Forest Service, Intermountain Forest and Range: Ogden, UT, USA, 1982; Volume 290.
- Vega, J.A.; Arellano-Pérez, S.; Álvarez-González, J.G.; Fernández, C.; Jiménez, E.; Fernández-Alonso, J.M.; Vega-Nieva, D.J.; Briones-Herrera, C.; Alonso-Rego, C.; Fontúrbel, T.; et al. Modelling aboveground biomass and fuel load components at stand level in shrub communities in NW Spain. For. Ecol. Manag. 2022, 505, 119926. [Google Scholar] [CrossRef]
- Marino, E.; Guijarro, M.; Madrigal, J.; Hernando, C.; Diez, C. Assessing fire propagation empirical models in shrub fuel complexes using wind tunnel data. WIT Trans. Ecol. Environ. 2008, 119, 121–130. [Google Scholar] [CrossRef]
- Valencia, A.; Melnik, K.O.; Sanders, N.; Sew Hoy, A.; Yan, M.; Katurji, M.; Zhang, J.; Schumacher, B.; Hartley, R.; Aguilar-Arguello, S.; et al. Influence of fuel structure on gorse fire behaviour. Int. J. Wildland Fire 2023, 32, 927–941. [Google Scholar] [CrossRef]
- Stephens, S.L.; Weise, D.R.; Fry, D.L.; Keiffer, R.J.; Dawson, J.; Koo, E.; Potts, J.; Pagni, P.J. Measuring the Rate of Spread of Chaparral Prescribed fires in Northern California. Fire Ecol. 2008, 4, 74–86. [Google Scholar] [CrossRef]
- Burrows, N.; Ward, B.; Robinson, A. Fire behaviour in spinifex fuels on the Gibson Desert Nature Reserve, Western Australia. J. Arid Environ. 1991, 20, 189–204. [Google Scholar] [CrossRef]
- Pickering, B.J.; Bennett, L.T.; Cawson, J.G. Extending methods for assessing fuel hazard in temperate Australia to enhance data quality and consistency. Int. J. Wildland Fire 2023, 32, 1422–1437. [Google Scholar] [CrossRef]
- Spits, C.; Wallace, L.; Reinke, K. Investigating Surface and Near-Surface Bushfire Fuel Attributes: A Comparison between Visual Assessments and Image-Based Point Clouds. Sensors 2017, 17, 910. [Google Scholar] [CrossRef]
- Cruz, M.G.; Gould, J.S.; Alexander, M.E.; Sullivan, A.L.; McCaw, W.L.; Matthews, S. Empirical-based models for predicting head-fire rate of spread in Australian fuel types. Aust. For. 2015, 78, 118–158. [Google Scholar] [CrossRef]
- Burrows, N.; Gill, M.; Sharples, J. Development and validation of a model for predicting fire behaviour in spinifex grasslands of arid Australia. Int. J. Wildland Fire 2018, 27, 271–279. [Google Scholar] [CrossRef]
- Cheney, N.P.; Gould, J.S.; Catchpole, W.R. Prediction of Fire Spread in Grasslands. Int. J. Wildland Fire 1998, 8, 1–13. [Google Scholar] [CrossRef]
- Gould, J.S.; Lachlan McCaw, W.; Phillip Cheney, N. Quantifying fine fuel dynamics and structure in dry eucalypt forest (Eucalyptus marginata) in Western Australia for fire management. For. Ecol. Manag. 2011, 262, 531–546. [Google Scholar] [CrossRef]
- Cruz, M.G.; Alexander, M.E.; Wakimoto, R.H. Modeling the Likelihood of Crown Fire Occurrence in Conifer Forest Stands. For. Sci. 2004, 50, 640–658. [Google Scholar]
- Cruz, M.G.; Alexander, M.E.; Fernandes, P.A.M. Development of a model system to predict wildfire behaviour in pine plantations. Aust. For. 2008, 71, 113–121. [Google Scholar] [CrossRef]
- Cruz, M.G.; Cheney, N.P.; Gould, J.S.; McCaw, W.L.; Kilinc, M.; Sullivan, A.L. An empirical-based model for predicting the forward spread rate of wildfires in eucalypt forests. Int. J. Wildland Fire 2022, 31, 81–95. [Google Scholar] [CrossRef]
- Weise, D.R.; Koo, E.; Zhou, X.; Mahalingam, S.; Morandini, F.; Balbi, J.H. Fire spread in chaparral—A comparison of laboratory data and model predictions in burning live fuels. Int. J. Wildland Fire 2016, 25, 980–994. [Google Scholar] [CrossRef]
- Frangieh, N.; Accary, G.; Morvan, D.; Méradji, S.; Bessonov, O. Wildfires front dynamics: 3D structures and intensity at small and large scales. Combust. Flame 2020, 211, 54–67. [Google Scholar] [CrossRef]
- Mell, W.; Jenkins, M.A.; Gould, J.; Cheney, P. A physics-based approach to modelling grassland fires. Int. J. Wildland Fire 2007, 16, 1–22. [Google Scholar] [CrossRef]
- Ziegler, J.P.; Hoffman, C.M.; Collins, B.M.; Long, J.W.; Dagley, C.M.; Mell, W. Simulated Fire Behavior and Fine-Scale Forest Structure Following Conifer Removal in Aspen-Conifer Forests in the Lake Tahoe Basin, USA. Fire 2020, 3, 51. [Google Scholar] [CrossRef]
- Mell, W.; Maranghides, A.; McDermott, R.; Manzello, S.L. Numerical simulation and experiments of burning douglas fir trees. Combust. Flame 2009, 156, 2023–2041. [Google Scholar] [CrossRef]
- Atchley, A.L.; Linn, R.; Jonko, A.; Hoffman, C.; Hyman, J.D.; Pimont, F.; Sieg, C.; Middleton, R.S. Effects of fuel spatial distribution on wildland fire behaviour. Int. J. Wildland Fire 2021, 30, 179–189. [Google Scholar] [CrossRef]
- Coen, J.L.; Cameron, M.; Michalakes, J.; Patton, E.G.; Riggan, P.J.; Yedinak, K.M. WRF-Fire: Coupled Weather–Wildland Fire Modeling with the Weather Research and Forecasting Model. J. Appl. Meteorol. Climatol. 2013, 52, 16–38. [Google Scholar] [CrossRef]
- Peace, M.; Ye, H.; Greenslade, J.; Kepert, J.D. The Destructive Sir Ivan Fire in New South Wales, Australia; Simulations Using a Coupled Fire—Atmosphere Model. Fire 2023, 6, 438. [Google Scholar] [CrossRef]
- Taneja, R.; Hilton, J.; Wallace, L.; Reinke, K.; Jones, S. Effect of fuel spatial resolution on predictive wildfire models. Int. J. Wildland Fire 2021, 30, 776. [Google Scholar] [CrossRef]
- Hillman, S.; Wallace, L.; Reinke, K.; Jones, S. A comparison between TLS and UAS LiDAR to represent eucalypt crown fuel characteristics. ISPRS J. Photogramm. Remote Sens. 2021, 181, 295–307. [Google Scholar] [CrossRef]
- Erdody, T.L.; Moskal, L.M. Fusion of LiDAR and imagery for estimating forest canopy fuels. Remote Sens. Environ. 2010, 114, 725–737. [Google Scholar] [CrossRef]
- Levick, S.R.; Whiteside, T.; Loewensteiner, D.A.; Rudge, M.; Bartolo, R. Leveraging TLS as a Calibration and Validation Tool for MLS and ULS Mapping of Savanna Structure and Biomass at Landscape-Scales. Remote Sens. 2021, 13, 257. [Google Scholar] [CrossRef]
- Hillman, S.; Wallace, L.; Lucieer, A.; Reinke, K.; Turner, D.; Jones, S. A comparison of terrestrial and UAS sensors for measuring fuel hazard in a dry sclerophyll forest. Int. J. Appl. Earth Obs. Geoinf. 2021, 95, 102261. [Google Scholar] [CrossRef]
- Wallace, L.; Hally, B.; Hillman, S.; Jones, S.D.; Reinke, K. Terrestrial Image-Based Point Clouds for Mapping Near-Ground Vegetation Structure: Potential and Limitations. Fire 2020, 3, 59. [Google Scholar] [CrossRef]
- Rowell, E.; Loudermilk, E.L.; Hawley, C.; Pokswinski, S.; Seielstad, C.; Queen, L.; O’Brien, J.J.; Hudak, A.T.; Goodrick, S.; Hiers, J.K. Coupling terrestrial laser scanning with 3D fuel biomass sampling for advancing wildland fuels characterization. For. Ecol. Manag. 2020, 462, 117945. [Google Scholar] [CrossRef]
- Alonso-Rego, C.; Arellano-Pérez, S.; Cabo, C.; Ordoñez, C.; Álvarez-González, J.G.; Díaz-Varela, R.A.; Ruiz-González, A.D. Estimating Fuel Loads and Structural Characteristics of Shrub Communities by Using Terrestrial Laser Scanning. Remote Sens. 2020, 12, 3704. [Google Scholar] [CrossRef]
- Hillman, S.; Wallace, L.; Reinke, K.; Hally, B.; Jones, S.; Saldias, D.S. A Method for Validating the Structural Completeness of Understory Vegetation Models Captured with 3D Remote Sensing. Remote Sens. 2019, 11, 2118. [Google Scholar] [CrossRef]
- Rowell, E.; Loudermilk, E.L.; Seielstad, C.; O’Brien, J.J. Using Simulated 3D Surface Fuelbeds and Terrestrial Laser Scan Data to Develop Inputs to Fire Behavior Models. Can. J. Remote Sens. 2016, 42, 443–459. [Google Scholar] [CrossRef]
- Chen, Y.; Zhu, X.; Yebra, M.; Harris, S.; Tapper, N. Strata-based forest fuel classification for wild fire hazard assessment using terrestrial LiDAR. J. Appl. Remote Sens. 2016, 10, 046025. [Google Scholar] [CrossRef]
- Hancock, S.; Anderson, K.; Disney, M.; Gaston, K.J. Measurement of fine-spatial-resolution 3D vegetation structure with airborne waveform lidar: Calibration and validation with voxelised terrestrial lidar. Remote Sens. Environ. 2017, 188, 37–50. [Google Scholar] [CrossRef]
Paired Photo No. | Canopy | Elevated | Near-Surface | Surface |
---|---|---|---|---|
1 | 2 | 5 | 6 | 6 |
2 | 1 | 5 | 7 | 6 |
3 | 1 | 4 | 6 | 6 |
4 | 1 | 4 | 7 | 7 |
5 | 2 | 4 | 6 | 6 |
6 | 2 | 7 | 7 | 5 |
7 | 2 | 7 | 6 | 5 |
Summary of all pairs | 1 | 5 | 7 | 6 |
Fuel Metric Class | Number of Times Selected as Most Important | Number of Times Given as Option 1 |
---|---|---|
Connectivity | 2 | 7 |
Cover | 3 | 8 |
Load | 1 | 6 |
Density | 1 | 4 |
Height | 0 | 10 |
Paired Photo No. | Fuel Metric | Average Score |
---|---|---|
Photo Pair 1 | Surface fuel cover | 27 |
Elevated fuel density | 26 | |
Near-surface fuel height | 23 | |
Gap between elevated and canopy | 14 | |
Canopy fuel height | 11 | |
Photo Pair 2 | Near-surface fuel density | 35 |
Surface fuel load | 31 | |
Elevated fuel height | 18 | |
Canopy fuel cover | 9 | |
Overall bulk density | 8 | |
Photo Pair 3 | Surface fuel connectivity | 42 |
Near-surface fuel cover | 29 | |
Near-surface and elevated fuel load | 19 | |
Elevated fuel height | 8 | |
Canopy height | 3 | |
Photo Pair 4 | Surface fuel cover | 35 |
Near-surface vertical connectivity | 29 | |
Surface fuel load | 26 | |
Elevated to canopy gap | 9 | |
Canopy fuel cover | 1 | |
Photo Pair 5 | Near-surface fuel load | 34 |
Surface fuel cover | 25 | |
Elevated fuel density | 24 | |
Elevated to canopy gap | 15 | |
Canopy fuel height | 1 | |
Photo Pair 6 | Near-surface to elevated connectivity | 41 |
Elevated to canopy gap | 29 | |
Elevated fuel height | 21 | |
Surface fuel depth | 8 | |
Canopy fuel cover | 1 | |
Photo Pair 7 | Near-surface fuel cover | 49 |
Elevated fuel load | 29 | |
Surface fuel depth | 13 | |
Canopy fuel height | 8 | |
Canopy fuel cover | 1 |
Question | Fuel Metric | Average Score |
---|---|---|
Importance of surface fuel metrics | Litter cover | 6.1 |
Litter density | 4.4 | |
Litter depth | 3.3 | |
Litter weight (fuel load) | 2.4 | |
Importance of near-surface fuel metrics | Near-surface cover | 6.0 |
Vertical Connectivity to elevated fuel (or gap size) | 6.0 | |
Live:Dead ratio | 5.4 | |
Near-surface height | 5.1 | |
Near-surface fuel load | 3.4 | |
Near-surface bulk density | 2.9 | |
Importance of elevated fuel metrics | Elevated fuel cover | 6.1 |
Live:Dead ratio | 4.6 | |
Gap between elevated and canopy base | 4.5 | |
Elevated fuel height | 4.4 | |
Elevated fuel density | 3.8 | |
Elevated fuel load | 2.8 | |
Importance of canopy fuel metrics | Canopy cover | 4.8 |
Canopy base height | 4.6 | |
Canopy height | 3.3 | |
Canopy bulk density | 1.9 | |
Canopy load | 1.8 | |
Importance of hazard score | Physical measure of fuel important in fire spread thresholds | 6.3 |
Visual fuel hazard method important in shrublands | 4.9 | |
Data derived hazard score important in shrublands | 3.4 | |
Hazard score for assessing fuel for prescribed burning | 2.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Telfer, S.; Reinke, K.; Jones, S.; Hilton, J. Fuel Drivers of Fire Behaviour in Coastal Mallee Shrublands. Fire 2024, 7, 128. https://doi.org/10.3390/fire7040128
Telfer S, Reinke K, Jones S, Hilton J. Fuel Drivers of Fire Behaviour in Coastal Mallee Shrublands. Fire. 2024; 7(4):128. https://doi.org/10.3390/fire7040128
Chicago/Turabian StyleTelfer, Simeon, Karin Reinke, Simon Jones, and James Hilton. 2024. "Fuel Drivers of Fire Behaviour in Coastal Mallee Shrublands" Fire 7, no. 4: 128. https://doi.org/10.3390/fire7040128
APA StyleTelfer, S., Reinke, K., Jones, S., & Hilton, J. (2024). Fuel Drivers of Fire Behaviour in Coastal Mallee Shrublands. Fire, 7(4), 128. https://doi.org/10.3390/fire7040128