A Review of Leaf-Level Flammability Traits in Eucalypt Trees
Abstract
:1. Introduction
2. Systematic Review
- (eucalypt*) AND
- (*fire* OR flammab* OR ignit* OR combust*) AND
- ((leaf flammab*) OR (shoot flammab*) OR (leaf trait*))
- (eucapyto) AND
- (fuego OR incendio OR (incendio forestal) OR *flamable OR ignici* OR combust*) AND
- (hoja OR caracteristica) AND
- (Language: Spanish)
- (Eucalipto) AND
- (Fogo OR incêndio OR (incêndio florestal) OR *flamável OR ignição OR combustão OR combustível) AND
- (folha OR (folha de árvore) OR característica) AND
- (Language: Portuguese)
Document Screening and Information Extraction
3. Linking Leaf-Level Traits to Flammability
3.1. Water Content
3.2. Physical Traits
3.3. Volatile Organic Compounds
3.4. Structural Carbohydrates
3.5. Other Compounds
4. Discussion
4.1. Different Ways of Measuring Flammability Traits Prevent Direct Trait Comparisons
4.2. Short-Term vs. Long Term Data Collection
4.3. Linking Species and Leaf-Level Flammability to Fire Behaviour
4.4. Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Krawchuk, M.A.; Moritz, M.A.; Parisien, M.-A.; Van Dorn, J.; Hayhoe, K. Global Pyrogeography: The Current and Future Distribution of Wildfire. PLoS ONE 2009, 4, e5102. [Google Scholar] [CrossRef] [PubMed]
- Bowman, D.M.J.S.; Murphy, B.P.; Burrows, G.E.; Crisp, M. Fire Regimes and the Evolution of the Australian Biota. In Flammable Australia; CSIRO Publishing: Melbourne, Australia, 2012. [Google Scholar]
- Bowman, D.; Kolden, C.A.; Abatzoglou, J.T.; Johnston, F.H.; van der Werf, G.R.; Flannigan, M. Vegetation Fires in the Anthropocene. Nat. Rev. Earth Environ. 2020, 1, 500–515. [Google Scholar] [CrossRef]
- Gallagher, R.V.; Allen, S.; Mackenzie, B.D.E.; Yates, C.J.; Gosper, C.R.; Keith, D.A.; Merow, C.; White, M.D.; Wenk, E.; Maitner, B.S.; et al. High Fire Frequency and the Impact of the 2019–2020 Megafires on Australian Plant Diversity. Divers. Distrib. 2021, 27, 1166–1179. [Google Scholar] [CrossRef]
- Nolan, R.H.; Bowman, D.M.J.S.; Clarke, H.; Haynes, K.; Ooi, M.K.J.; Price, O.F.; Williamson, G.J.; Whittaker, J.; Bedward, M.; Boer, M.M.; et al. What Do the Australian Black Summer Fires Signify for the Global Fire Crisis? Fire 2021, 4, 97. [Google Scholar] [CrossRef]
- RCNNDA. Royal Commission into National Natural Disaster Arrangements Report; Commonwealth of Australia 2020: Canberra, Australia, 2020. [Google Scholar]
- Bowman, D.; Williamson, G.J.; Yebra, M.; Lizundia-Loiola, J.; Pettinari, M.L.; Shah, S.; Bradstock, R.A.; Chuvieco, E. Wildfires: Australia Needs a National Monitoring Agency. Nature 2020, 584, 188–191. [Google Scholar] [CrossRef] [PubMed]
- Boer, M.M.; Resco de Dios, V.; Bradstock, R.A. Unprecedented Burn Area of Australian Mega Forest Fires. Nat. Clim. Change 2020, 10, 171–172. [Google Scholar] [CrossRef]
- NSW Government. NSW Bushfire Inquiry; NSW Government: Sydney, Australia, 2021.
- UNEP. Spreading like Wildfire—The Rising Threat of Extraordinary Landscape Fires; UNEP: Nairobi, Kenya, 2022. [Google Scholar]
- Schwilk, D.W. Dimensions of Plant Flammability. New Phytol. 2015, 206, 486–488. [Google Scholar] [CrossRef] [PubMed]
- Dickman, L.T.; Jonko, A.K.; Linn, R.R.; Altintas, I.; Atchley, A.L.; Bär, A.; Collins, A.D.; Dupuy, J.-L.; Gallagher, M.R.; Hiers, J.K.; et al. Integrating Plant Physiology into Simulation of Fire Behavior and Effects. New Phytol. 2023, 238, 952–970. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Keeley, J.E.; Schwilk, D.W. Flammability as an Ecological and Evolutionary Driver. J. Ecol. 2017, 105, 289–297. [Google Scholar] [CrossRef]
- Gill, A.M.; Zylstra, P. Flammability of Australian Forests. Aust. For. 2005, 68, 87–93. [Google Scholar] [CrossRef]
- Anderson, H.E. Forest Fuel Ignitibility. Fire Technol. 1970, 6, 312–319. [Google Scholar] [CrossRef]
- Wyse, S.V.; Perry, G.L.W.W.; O’Connell, D.M.; Holland, P.S.; Wright, M.J.; Hosted, C.L.; Whitelock, S.L.; Geary, I.J.; Maurin, K.J.L.L.; Curran, T.J.; et al. A Quantitative Assessment of Shoot Flammability for 60 Tree and Shrub Species Supports Rankings Based on Expert Opinion. Int. J. Wildland Fire 2016, 25, 466–477. [Google Scholar] [CrossRef]
- Blauw, L.G.; Wensink, N.; Bakker, L.; van Logtestijn, R.S.P.; Aerts, R.; Soudzilovskaia, N.A.; Cornelissen, J.H.C. Fuel Moisture Content Enhances Nonadditive Effects of Plant Mixtures on Flammability and Fire Behavior. Ecol. Evol. 2015, 5, 3830–3841. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G.; Keeley, J.E. Wildfires and Global Change. Front. Ecol. Environ. 2021, 19, 387–395. [Google Scholar] [CrossRef]
- Griebel, A.; Boer, M.M.; Blackman, C.; Choat, B.; Ellsworth, D.S.; Madden, P.; Medlyn, B.; Resco de Dios, V.; Wujeska-Klause, A.; Yebra, M.; et al. Specific Leaf Area and Vapour Pressure Deficit Control Live Fuel Moisture Content. Funct. Ecol. 2023, 37, 719–731. [Google Scholar] [CrossRef]
- MPIG. Australia’s State of the Forests Report; ABARES: Canberra, Australia, 2018. [Google Scholar]
- Booth, T.H. Eucalypt Plantations and Climate Change. For. Ecol. Manag. 2013, 301, 28–34. [Google Scholar] [CrossRef]
- Mackey, B.; Keith, H.; Berry, S.L.; Lindenmayer, D.B. Green Carbon: The Role of Natural Forests in Carbon Storage. Part 1, A Green Carbon Account of Australia’s South-Eastern Eucalypt Forest, and Policy Implications; ANU ePress: Canberra, Australia, 2008; ISBN 9781921313875/1921313870. [Google Scholar]
- Bond, W.J.; Midgley, J.J. Kill Thy Neighbour: An Individualistic Argument for the Evolution of Flammability. Oikos 1995, 73, 79–85. [Google Scholar] [CrossRef]
- Midgley, J.J. Flammability Is Not Selected for, It Emerges. Aust. J. Bot. 2013, 61, 102–106. [Google Scholar] [CrossRef]
- Mutch, R.W. Wildland Fires and Ecosystems–A Hypothesis. Ecology 1970, 51, 1046–1051. [Google Scholar] [CrossRef]
- Burrows, G.E.; Hornby, S.K.; Waters, D.A.; Bellairs, S.M.; Prior, L.D.; Bowman, D.M.J.S. A Wide Diversity of Epicormic Structures Is Present in Myrtaceae Species in the Northern Australian Savanna Biome Implications for Adaptation to Fire. Aust. J. Bot. 2010, 58, 493–507. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; Cook, L.G.; Crisp, M.D.; Thornhill, A.H.; Burrows, G.E.; Cook, L.G.; Thornhill, A.H.; Bowman, D.M.J.S. Flammable Biomes Dominated by Eucalypts Originated at the Cretaceous-Palaeogene Boundary. Nat. Commun. 2011, 2, 193. [Google Scholar] [CrossRef] [PubMed]
- Australian Government Department of Agriculture Water and the Environment. National Indicative Aggregated Fire Extent Dataset V20200623. 2020. Available online: https://fed.dcceew.gov.au/datasets/erin::national-indicative-aggregated-fire-extent-dataset/about (accessed on 5 March 2022).
- Gill, A.M.; Moore, P.H.R. Ignitibility of Leaves of Australian Plants; Centre for Plant Biodiversity Research, CSIRO Plant Industry: Canberra, ACT, Australia, 1996. [Google Scholar]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C.; Cornwell, W.K. Burn or Rot: Leaf Traits Explain Why Flammability and Decomposability Are Decoupled across Species. Funct. Ecol. 2015, 29, 1486–1497. [Google Scholar] [CrossRef]
- Popović, Z.; Bojović, S.; Marković, M.; Cerdà, A. Tree Species Flammability Based on Plant Traits: A Synthesis. Sci. Total Environ. 2021, 800, 149625. [Google Scholar] [CrossRef] [PubMed]
- Burton, J.E.; Cawson, J.G.; Filkov, A.I.; Penman, T.D. Leaf Traits Predict Global Patterns in the Structure and Flammability of Forest Litter Beds. J. Ecol. 2021, 109, 1344–1355. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. PLoS Med. 2021, 18, e1003583. [Google Scholar] [CrossRef]
- Bozada, T.; Borden, J.; Workman, J.; Del Cid, M.; Malinowski, J.; Luechtefeld, T. Sysrev: A FAIR Platform for Data Curation and Systematic Evidence Review. Front. Artif. Intell. 2021, 4, 105. [Google Scholar] [CrossRef] [PubMed]
- Celebrezze, J.V.; Boving, I.; Moritz, M.A. Tissue-Level Flammability Testing: A Review of Existing Methods and a Comparison of a Novel Hot Plate Design to an Epiradiator Design. Fire 2023, 6, 149. [Google Scholar] [CrossRef]
- Burrows, N.D. Flame Residence Times and Rates of Weight Loss of Eucalypt Forest Fuel Particles. Int. J. Wildland Fire 2001, 10, 137–143. [Google Scholar] [CrossRef]
- Clarke, P.J.; Prior, L.D.; French, B.J.; Vincent, B.; Kirsten, J.E.K.; David, M.J.S.B.; Knox, K.J.E.E.; Bowman, D. Using a Rainforest-Flame Forest Mosaic to Test the Hypothesis That Leaf and Litter Fuel Flammability Is under Natural Selection. Oecologia 2014, 176, 1123–1133. [Google Scholar] [CrossRef]
- Dickinson, K.J.M.; Kirkpatrick, J.B. The Flammability and Energy Content of Some Important Plant Species and Fuel Components in the Forests of Southeastern Tasmania. J. Biogeogr. 1985, 12, 121. [Google Scholar] [CrossRef]
- Dimitrakopoulos, A.P.; Papaioannou, K.K. Flammability Assessment of Mediterranean Forest Fuels. Fire Technol. 2001, 37, 143–152. [Google Scholar] [CrossRef]
- Gill, A.M.; Trollope, W.S.W.; McArthur, D.A. Role of Moisture in the Flammability of Natural Fuels in the Laboratory. Aust. For. Res. 1978, 8, 199–208. [Google Scholar]
- Guerrero, F.; Toledo, M.; Ripoll, N.; Espinoza, L.; Morales, R.; Muñoz, A.; Taborga, L.; Carrasco, Y. Thermo-and Physicochemical Properties of Native and Exotic Forest Species of Valparaíso, Chile, as Essential Information for Fire Risk Management. Int. J. Wildland Fire 2020, 29, 675–685. [Google Scholar] [CrossRef]
- Guerrero, F.; Hernández, C.; Toledo, M.; Espinoza, L.; Carrasco, Y.; Arriagada, A.; Muñoz, A.; Taborga, L.; Bergmann, J.; Carmona, C. Leaf Thermal and Chemical Properties as Natural Drivers of Plant Flammability of Native and Exotic Tree Species of the Valparaíso Region, Chile. Int. J. Environ. Res. Public Health 2021, 18, 7191. [Google Scholar] [CrossRef] [PubMed]
- Krix, D.W.; Murray, B.R. Landscape Variation in Plant Leaf Flammability Is Driven by Leaf Traits Responding to Environmental Gradients. Ecosphere 2018, 9, e02093. [Google Scholar] [CrossRef]
- Krix, D.W.; Phillips, M.L.; Murray, B.R. Relationships among Leaf Flammability Attributes and Identifying Low-Leaf-Flammability Species at the Wildland-Urban Interface. Int. J. Wildland Fire 2019, 28, 295–297. [Google Scholar] [CrossRef]
- Krix, D.W.; Murray, M.L.; Murray, B.R. Increasing Radiant Heat Flux Affects Leaf Flammability Patterns in Plant Species of Eastern Australian Fire-prone Woodlands. Plant Biol. 2022, 24, 302–312. [Google Scholar] [CrossRef] [PubMed]
- Molina, J.R.; Martín, T.; Rodríguez Y Silva, F.; Herrera, M.Á. The Ignition Index Based on Flammability of Vegetation Improves Planning in the Wildland-Urban Interface: A Case Study in Southern Spain. Landsc. Urban Plan. 2017, 158, 129–138. [Google Scholar] [CrossRef]
- Molina, J.R.; Lora, A.; Prades, C.; Rodríguez y Silva, F. Roadside Vegetation Planning and Conservation: New Approach to Prevent and Mitigate Wildfires Based on Fire Ignition Potential. For. Ecol. Manag. 2019, 444, 163–173. [Google Scholar] [CrossRef]
- Murray, B.R.; Hardstaff, L.K.; Phillips, M.L. Differences in Leaf Flammability, Leaf Traits and Flammability-Trait Relationships between Native and Exotic Plant Species of Dry Sclerophyll Forest. PLoS ONE 2013, 8, e79205. [Google Scholar] [CrossRef]
- Possell, M.; Bell, T.L. The Influence of Fuel Moisture Content on the Combustion of Eucalyptus Foliage. Int. J. Wildland Fire 2013, 22, 343–352. [Google Scholar] [CrossRef]
- Ramadhan, M.L.; Zarate, S.; Carrascal, J.; Osorio, A.F.; Hidalgo, J.P. Effect of Fuel Bed Size and Moisture on the Flammability of Eucalyptus Saligna Leaves in Cone Calorimeter Testing. Fire Saf. J. 2021, 120, 103016. [Google Scholar] [CrossRef]
- Ramadhan, M.L.; Carrascal, J.; Osorio, A.; Hidalgo, J.P. The Effect of Moisture Content and Thermal Behaviour on the Ignition of Eucalyptus Saligna Leaves. Int. J. Wildland Fire 2021, 30, 680–690. [Google Scholar] [CrossRef]
- Scarff, F.R.; Westoby, M. Leaf Litter Flammability in Some Semi-Arid Australian Woodlands. Funct. Ecol. 2006, 20, 745–752. [Google Scholar] [CrossRef]
- Yebra, M.; Dennison, P.E.; Chuvieco, E.; Riaño, D.; Zylstra, P.; Hunt, E.R.; Danson, F.M.; Qi, Y.; Jurdao, S. A Global Review of Remote Sensing of Live Fuel Moisture Content for Fire Danger Assessment: Moving towards Operational Products. Remote Sens. Environ. 2013, 136, 455–468. [Google Scholar] [CrossRef]
- Fox-Hughes, P.; Yebra, M.; Kumar, V.; Dowdy, A.; Hope, P.; Peace, M.; Narsey, S.; Shokirov, S.; Delage, F.; Zhang, H. Soil and Fuel Moisture Precursors of Fire Activity during the 2019-20 Fire Season, in Comparison to Previous Seasons; Report Number: 686; Bushfire and Natural Hazards CRC: Melbourne, Australia, 2021. [Google Scholar]
- Leigh, A.; Sevanto, S.; Close, J.D.; Nicotra, A.B. The Influence of Leaf Size and Shape on Leaf Thermal Dynamics: Does Theory Hold up under Natural Conditions? Plant Cell Environ. 2017, 40, 237–248. [Google Scholar] [CrossRef]
- Fernandes, P.M.; Cruz, M.G. Plant Flammability Experiments Offer Limited Insight into Vegetation–Fire Dynamics Interactions. New Phytol. 2012, 194, 606–609. [Google Scholar] [CrossRef] [PubMed]
- Maleknia, S.D.; Bell, T.L.; Adams, M.A. Eucalypt Smoke and Wildfires: Temperature Dependent Emissions of Biogenic Volatile Organic Compounds. Int. J. Mass Spectrom. 2009, 279, 126–133. [Google Scholar] [CrossRef]
- Boland, D.J.; Brophy, J.J.; House, A.P.N. Eucalyptus Leaf Oils: Use, Chemistry, Distillation and Marketing; Melbourne (Australia) Inkata Press: Canberra, Australia, 1991; ISBN 0909605696. [Google Scholar]
- Ciccioli, P.; Centritto, M.; Loreto, F. Biogenic Volatile Organic Compound Emissions from Vegetation Fires. Plant Cell Environ. 2014, 37, 1810–1825. [Google Scholar] [CrossRef]
- Goodger, J.Q.D.D.; Senaratne, S.L.; Nicolle, D.; Woodrow, I.E. Differential Metabolic Specialization of Foliar Oil Glands in Eucalyptus Brevistylis Brooker (Myrtaceae). Tree Physiol. 2018, 38, 1451–1460. [Google Scholar] [CrossRef]
- Sørensen, M.; Rinnan, R.; Woodrow, I.; Møller, B.L.; Neilson, E.H.J. The Entangled Dynamics of Eucalypt Leaf and Flower Volatile Emissions. Environ. Exp. Bot. 2020, 176, 104032. [Google Scholar] [CrossRef]
- Ormeño, E.; Céspedes, B.; Sánchez, I.A.; Velasco-García, A.; Moreno, J.M.; Fernandez, C.; Baldy, V. The Relationship between Terpenes and Flammability of Leaf Litter. For. Ecol. Manag. 2009, 257, 471–482. [Google Scholar] [CrossRef]
- Bignell, C.M.; Dunlop, P.J.; Brophy, J.J. Volatile Leaf Oils of Some South-western and Southern Australian Species of the Genus Eucalyptus (Series 1). Part XIX. Flavour Fragr. J. 1998, 13, 131–139. [Google Scholar] [CrossRef]
- Schneider, M.A. Past Fire Shaping Future Fuel: The Influence of Fire Regimes on Leaf Chemical Composition of Eucalyptus Pilularis; Australian National University: Canberra, Australia, 2021. [Google Scholar]
- Weise, D.R.; Fletcher, T.H.; Safdari, M.S.; Amini, E.; Palarea-Albaladejo, J. Application of Compositional Data Analysis to Determine the Effects of Heating Mode, Moisture Status and Plant Species on Pyrolysates. Int. J. Wildland Fire 2021, 31, 24–45. [Google Scholar] [CrossRef]
- Scarff, F.R.; Westoby, M. The Influence of Tissue Phosphate on Plant Flammability: A Kinetic Study. Polym. Degrad. Stab. 2008, 93, 1930–1934. [Google Scholar] [CrossRef]
- Lowden, L.A.; Hull, T.R. Flammability Behaviour of Wood and a Review of the Methods for Its Reduction. Fire Sci. Rev. 2013, 2, 4. [Google Scholar] [CrossRef]
- van der Veen, I.; de Boer, J. Phosphorus Flame Retardants: Properties, Production, Environmental Occurrence, Toxicity and Analysis. Chemosphere 2012, 88, 1119–1153. [Google Scholar] [CrossRef] [PubMed]
- Scarff, F.R.; Gray, B.F.; Westoby, M. Exploring Phosphate Effects on Leaf Flammability Using a Physical Chemistry Model. Int. J. Wildland Fire 2012, 21, 1042–1051. [Google Scholar] [CrossRef]
- Calviño-Cancela, M.; Cañizo-Novelle, N. Human Dimensions of Wildfires in NW Spain: Causes, Value of the Burned Vegetation and Administrative Measures. PeerJ 2018, 6, e5657. [Google Scholar] [CrossRef]
- Gómez-González, S.; Ojeda, F.; Fernandes, P.M. Portugal and Chile: Longing for Sustainable Forestry While Rising from the Ashes. Environ. Sci. Policy 2018, 81, 104–107. [Google Scholar] [CrossRef]
- Romero, B.; Fernandez, C.; Lecareux, C.; Ormeño, E.; Ganteaume, A. How Terpene Content Affects Fuel Flammability of Wildland-Urban Interface Vegetation. Int. J. Wildland Fire 2019, 28, 614–627. [Google Scholar] [CrossRef]
- Pérez-Harguindeguy, N.; Díaz, S.; Garnier, E.; Lavorel, S.; Poorter, H.; Jaureguiberry, P.; Bret-Harte, M.S.; Cornwell, W.K.; Craine, J.M.; Gurvich, D.E.; et al. New Handbook for Standardised Measurement of Plant Functional Traits Worldwide. Aust. J. Bot. 2013, 61, 167–234. [Google Scholar] [CrossRef]
- Wyse, S.V.; Perry, G.L.W.; Curran, T.J. Shoot-Level Flammability of Species Mixtures Is Driven by the Most Flammable Species: Implications for Vegetation-Fire Feedbacks Favouring Invasive Species. Ecosystems 2018, 21, 886–900. [Google Scholar] [CrossRef]
- Murray, B.R.; Hawthorne, T.; Curran, T.J.; Krix, D.W.; Wallace, M.I.; Young, K.; Murray, M.L.; Morley, E.; Huber-Smith, N.; Webb, J.K. Shoot Flammability Patterns among Plant Species of the Wildland–Urban Interface in the Fire-Prone Greater Blue Mountains World Heritage Area. Int. J. Wildland Fire 2023, 32, 1119–1134. [Google Scholar] [CrossRef]
- Matthews, S. Effect of Drying Temperature on Fuel Moisture Content Measurements. Int. J. Wildland Fire 2010, 19, 800–802. [Google Scholar] [CrossRef]
- Matthews, S. Dead Fuel Moisture Research: 1991–2012. Int. J. Wildland Fire 2014, 23, 78–92. [Google Scholar] [CrossRef]
- Younes, N.; Cain, S. Protocol for the Estimation of Fuel Moisture Content (FMC), Equivalent Water Thickness (EWT), Dry Matter Content (DMC), and Specific Leaf Area (SLA) in Eucalypt Leaves. Protoc. Exch. 2023. [Google Scholar] [CrossRef]
- Yebra, M.; Quan, X.; Riaño, D.; Rozas Larraondo, P.; van Dijk, A.I.J.M.; Cary, G.J. A Fuel Moisture Content and Flammability Monitoring Methodology for Continental Australia Based on Optical Remote Sensing. Remote Sens. Environ. 2018, 212, 260–272. [Google Scholar] [CrossRef]
- Viegas, D.X.; Viegas, T.S.P.P.; Ferreira, D. Moisture Content of Fine Forest Fuels and Fire Occurrence in Central Portugal. Int. J. Wildland Fire 1992, 2, 69–86. [Google Scholar] [CrossRef]
- Jolly, W.M.; Johnson, D.M. Pyro-Ecophysiology: Shifting the Paradigm of Live Wildland Fuel Research. Fire 2018, 1, 8. [Google Scholar] [CrossRef]
- Matt Jolly, W.; Hintz, J.; Linn, R.L.; Kropp, R.C.; Conrad, E.T.; Parsons, R.A.; Winterkamp, J. Seasonal Variations in Red Pine (Pinus Resinosa) and Jack Pine (Pinus Banksiana) Foliar Physio-Chemistry and Their Potential Influence on Stand-Scale Wildland Fire Behavior. For. Ecol. Manag. 2016, 373, 167–178. [Google Scholar] [CrossRef]
- Datt, B. Remote Sensing of Water Content in Eucalyptus Leaves. Aust. J. Bot. 1999, 47, 909–923. [Google Scholar] [CrossRef]
- Nagler, P.L.; Inoue, Y.; Glenn, E.P.; Russ, A.L.; Daughtry, C.S.T. Cellulose Absorption Index (CAI) to Quantify Mixed Soil–Plant Litter Scenes. Remote Sens. Environ. 2003, 87, 310–325. [Google Scholar] [CrossRef]
- Nolan, R.H.; Foster, B.; Griebel, A.; Choat, B.; Medlyn, B.E.; Yebra, M.; Younes, N.; Boer, M.M. Drought-Related Leaf Functional Traits Control Spatial and Temporal Dynamics of Live Fuel Moisture Content. Agric. For. Meteorol. 2022, 319, 108941. [Google Scholar] [CrossRef]
- Nolan, R.H.; Blackman, C.J.; de Dios, V.R.V.R.; Choat, B.; Medlyn, B.E.; Li, X.; Bradstock, R.A.; Boer, M.M. Linking Forest Flammability and Plant Vulnerability to Drought. Forests 2020, 11, 779. [Google Scholar] [CrossRef]
- Younes, N.; Northfield, T.D.; Joyce, K.E.; Maier, S.W.; Duke, N.C.; Lymburner, L. A Novel Approach to Modelling Mangrove Phenology from Satellite Images: A Case Study from Northern Australia. Remote Sens. 2020, 12, 4008. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.R.; Belcher, C.M.; Bond, W.J.; Bradstock, R.A.; Daniau, A.-L.L.; Dexter, K.G.; Forrestel, E.J.; Greve, M.; He, T.; et al. Biological and Geophysical Feedbacks with Fire in the Earth System. Environ. Res. Lett. 2018, 13, 33003. [Google Scholar] [CrossRef]
- Alam, M.A.; Wyse, S.V.; Buckley, H.L.; Perry, G.L.W.W.; Sullivan, J.J.; Mason, N.W.H.H.; Buxton, R.; Richardson, S.J.; Curran, T.J. Shoot Flammability Is Decoupled from Leaf Flammability, but Controlled by Leaf Functional Traits. J. Ecol. 2020, 108, 641–653. [Google Scholar] [CrossRef]
- Zylstra, P.; Bradstock, R.A.; Bedward, M.; Penman, T.D.; Doherty, M.D.; Weber, R.O.; Gill, A.M.; Cary, G.J. Biophysical Mechanistic Modelling Quantifies the Effects of Plant Traits on Fire Severity: Species, Not Surface Fuel Loads, Determine Flame Dimensions in Eucalypt Forests. PLoS ONE 2016, 11, e0160715. [Google Scholar] [CrossRef]
- Zylstra, P. Linking Fire Behaviour and Its Ecological Effects to Plant Traits, Using FRaME in R. Methods Ecol. Evol. 2021, 12, 1365–1378. [Google Scholar] [CrossRef]
- Bowman, D.M.J.S.; French, B.J.; Prior, L.D. Have Plants Evolved to Self-Immolate? Front. Plant Sci. 2014, 5, 590. [Google Scholar] [CrossRef] [PubMed]
- Varner, J.M.; Kane, J.M.; Kreye, J.K.; Engber, E. The Flammability of Forest and Woodland Litter: A Synthesis. Curr. For. Rep. 2015, 1, 91–99. [Google Scholar] [CrossRef]
- Ganteaume, A. Does Plant Flammability Differ between Leaf and Litter Bed Scale? Role of Fuel Characteristics and Consequences for Flammability Assessment. Int. J. Wildland Fire 2018, 27, 342–352. [Google Scholar] [CrossRef]
- Cruz, M.G.; Cheney, N.P.; Gould, J.S.; McCaw, W.L.; Kilinc, M.; Sullivan, A.L. An Empirical-Based Model for Predicting the Forward Spread Rate of Wildfires in Eucalypt Forests. Int. J. Wildland Fire 2022, 31, 81–95. [Google Scholar] [CrossRef]
- Grootemaat, S.; Wright, I.J.; van Bodegom, P.M.; Cornelissen, J.H.C. Scaling up Flammability from Individual Leaves to Fuel Beds. Oikos 2017, 126, 1428–1438. [Google Scholar] [CrossRef]
- Pausas, J.G.; Moreira, B. Flammability as a Biological Concept. New Phytol. 2012, 194, 610–613. [Google Scholar] [CrossRef] [PubMed]
- Tumino, B.J.; Duff, T.J.; Goodger, J.Q.D.D.; Cawson, J.G. Plant Traits Linked to Field-Scale Flammability Metrics in Prescribed Burns in Eucalyptus Forest. PLoS ONE 2019, 14, e0221403. [Google Scholar] [CrossRef]
- Younes, N.; Yebra, M.; Sharp, R.; Lee, J.-U.; Hughes, D. OzFuel Pre-Phase A Study: Australian Forest Fuel Monitoring from Space; Canberra, Australia. 2021. Available online: https://opg.optica.org/ViewMedia.cfm?r=1&uri=HMISE-2023-HM1C.4&seq=0 (accessed on 5 April 2022).
- Younes, N.; Yebra, M.; Mathew, J.; Sharp, R. OzFuel: A Space-Based Vegetation Fuel Flammability Monitoring System. In Proceedings of the SPIE Sensors, Systems, and Next-Generation Satellites XXVII, Amsterdam, The Netherlands, 19 October 2023; Volume 12729, p. 127291B. [Google Scholar]
- Melnik, O.M.; Paskaluk, S.A.; Ackerman, M.Y.; Melnik, K.O.; Thompson, D.K.; McAllister, S.S.; Flannigan, M.D. New In-Flame Flammability Testing Method Applied to Monitor Seasonal Changes in Live Fuel. Fire 2022, 5, 1. [Google Scholar] [CrossRef]
Scale of Experiment | Material Used | Heating or Ignition Source | Reference |
---|---|---|---|
Leaf | FL, DL | Pilot flame | [36] |
FL, DL | Pilot flame | [37] | |
FL, DL | Pilot flame, bomb calorimeter | [38] | |
FL, DL | Radiator cone | [39] | |
FL, DL | Muffle furnace | [29] | |
DL | Pilot flame | [40] | |
FL, DL, LL | Muffle furnace | [30] | |
FL, DL | Bomb calorimeter, Cleveland open-cup tester | [41] | |
FL, DL | Epiradiator, bomb calorimeter, Cleveland open-cup tester | [42] | |
FL | Muffle furnace | [43] | |
FL | Muffle furnace | [44] | |
FL | Muffle furnace | [45] | |
FL | Epiradiator | [46] | |
FL | Epiradiator | [47] | |
FL, DL | Muffle furnace | [48] | |
FL, DL | Mass-loss calorimeter | [49] | |
FL, DL | Cone colorimeter | [50] | |
FL, DL | Cone colorimeter | [51] | |
LL | Pilot flame | [52] | |
Shoot | Shoot | Grill | [16] |
Category | Trait Name | Material Used | Ignitability | Combustibility | Sustainability | Consumability | Reference |
---|---|---|---|---|---|---|---|
Water content | Water content | DL | (-) | (-) | (-) | [40] | |
FL | (-) | * | * | [43] | |||
FL | (-) | (-) | (+) | [44] | |||
FL | (-) | [45] | |||||
FL | (-) | (-) | [46] | ||||
FL | (-) | (-) | (-) | [47] | |||
FL | (-) | (-) | (-) | [16] | |||
FL, DL | (-) | * | [36] | ||||
FL, DL | (-) | (-) | * | [37] | |||
FL, DL | (-) | [39] | |||||
FL, DL | (-) | [29] | |||||
FL, DL | (-) | [41] | |||||
FL, DL | (-) | (+) | [42] | ||||
FL, DL | (-) | [48] | |||||
FL, DL | (-) | (-) | (-) | [49] | |||
FL, DL | (-) | (-) | * | (-) | [50] | ||
FL, DL | (-) | (-) | [51] | ||||
FL, DL, LL | (-) | [30] | |||||
FL, LL | (-) | [38] | |||||
Physical traits | Leaf area (LA) | FL | (+) | (+) | (+) | [43] | |
FL | (-) | (+) | (+) | [44] | |||
FL | (+) | [45] | |||||
FL, DL | * | [37] | |||||
FL, DL | (+) | [48] | |||||
LL | (+) | [52] | |||||
Leaf area/volume | FL, DL | (-) | [36] | ||||
FL, DL | (+) | [29] | |||||
FL, DL, LL | (-) | [30] | |||||
LL | * | [52] | |||||
Leaf density | LL | * | [52] | ||||
Leaf Mass per Area (LMA) | FL | (-) | (+) | (+) | [43] | ||
FL | (-) | (+) | (+) | [44] | |||
FL | (-) | (+) | [45] | ||||
Leaf size (length, width) | FL | (+) | (-) | [46] | |||
FL | (+) | [47] | |||||
FL, DL | * | [37] | |||||
FL, DL | (+) | [48] | |||||
FL, DL, LL | (+) | [30] | |||||
LL | (+) | (+) | [52] | ||||
Leaf thickness | FL, DL | * | [48] | ||||
FL, LL | (-) | [38] | |||||
Mass or weight | DL | * | (+) | (+) | (+) | [40] | |
FL, DL, LL | (+) | (+) | [30] | ||||
FL, LL | (+) | (+) | [38] | ||||
Specific leaf area (SLA) | FL, DL | [37] | |||||
FL, DL | (+) | [48] | |||||
FL, DL, LL | (+) | * | [30] | ||||
LL | * | [52] | |||||
Volatile Organic Compounds (VOCs) | VOCs | FL, LL | (+) | [38] | |||
FL, DL | (+) | (+) | [42] | ||||
Structural carbohydrates | Cellulose and lignin | FL, DL, LL | (+) | (+) | [30] | ||
LL | * | [52] | |||||
Other compounds | Nitrogen | FL, DL, LL | (-) | [30] | |||
Phosphorous | FL, DL, LL | (-) | [30] | ||||
Tannins | FL, DL, LL | (+) | [30] |
Drying Time (h) | Drying Temperature (°C) | Moisture Content (%) | Material Used | Reference |
---|---|---|---|---|
22 | 95 | N/A | FL, DL | [29] |
24 | 23 | 90–200 | FL | [49] * |
24 | 40 | ~3–35 | DL, LL | [49] * |
24 | 75 | 77–87 | FL | [49] * |
24 | 80 | N/A | FL, LL | [38] |
24 | 105 | 72–103 | FL, DL, LL | [30] * |
24 | 110 | N/A | FL, DL | [41,42] |
48 | 60 | 4–120 | FL, DL | [50] |
48 | 65 | 0–162 | FL | [16] |
48 | 75 | 40–48 | FL, DL | [48] * |
48 | 80 | ~3–14 | DL | [37] * |
48 | 80 | 4–120 | FL | [44] * |
48 | 80 | 0–162 | FL, DL | [51] |
48 | 105 | N/A | FL | [38] |
48 | 105 | 5–100 | FL, DL | [39] |
72 | 65 | 67–230 | FL, DL | [37] * |
72 | 70 | 80–113 | FL | [46,47] |
72 | 80 | 70–330 | FL | [43] * |
72 | 80 | N/A | FL | [45] * |
N/A | N/A | 80–120 | FL | [36] * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Younes, N.; Yebra, M.; Boer, M.M.; Griebel, A.; Nolan, R.H. A Review of Leaf-Level Flammability Traits in Eucalypt Trees. Fire 2024, 7, 183. https://doi.org/10.3390/fire7060183
Younes N, Yebra M, Boer MM, Griebel A, Nolan RH. A Review of Leaf-Level Flammability Traits in Eucalypt Trees. Fire. 2024; 7(6):183. https://doi.org/10.3390/fire7060183
Chicago/Turabian StyleYounes, Nicolas, Marta Yebra, Matthias M. Boer, Anne Griebel, and Rachael H. Nolan. 2024. "A Review of Leaf-Level Flammability Traits in Eucalypt Trees" Fire 7, no. 6: 183. https://doi.org/10.3390/fire7060183
APA StyleYounes, N., Yebra, M., Boer, M. M., Griebel, A., & Nolan, R. H. (2024). A Review of Leaf-Level Flammability Traits in Eucalypt Trees. Fire, 7(6), 183. https://doi.org/10.3390/fire7060183