Evaluation of the Properties and Reaction-to-Fire Performance of Binderless Particleboards Made from Canary Island Palm Trunks
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Manufacturing Process of the Particleboards
- A resolution of 1 ηm at 30 kv and 1.5 ηm at 10 kV (under a vacuum);
- A throttle voltage of 200 V to 30 kV;
- A high-vacuum working mode for conductive samples and a low-vacuum working mode for semi- and non-conductive samples;
- An energy-dispersive X-ray microanalysis system (EDS or EDX), Oxford brand, model INCA X-Sight;
- SPSS v.28 software (IBM, Chicago, IL, USA) for performing a statistical analysis of variance (ANOVA) with a significance level of α < 0.05 and Pearson correlations in order to measure the dependence of the manufacturing parameters.
3. Results and Discussion
3.1. Physical and Thermal Properties
3.2. Mechanical Properties
3.3. Reaction-to-Fire Performance
3.4. Evaluation of the Material Microstructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sizirici, B.; Fseha, Y.; Cho, C.-S.; Yildiz, I.; Byon, Y.-J. A Review of Carbon Footprint Reduction in Construction Industry, from Design to Operation. Materials 2021, 14, 6094. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations, FAO Stats. Available online: http://www.fao.org/faostat/en/#data/FO (accessed on 12 May 2024).
- Chen, M.; Zheng, S.; Wu, J.; Xu, J. Study on preparation of high-performance binderless board from Broussonetia papyrifera. J. Wood Sci. 2023, 69, 17. [Google Scholar] [CrossRef]
- Tahir, A.H.F.; Al-Obaidy, A.H.M.J.; Mohammed, F.H. Biochar from date palm waste, production, characteristics and use in the treatment of pollutants: A Review. IOP Conf. Ser. Mater. Sci. Eng. 2020, 737, 012171. [Google Scholar] [CrossRef]
- Almi, K.; Benchabane, A.; Lakel, S.; Krike, A. Potential utilization of date palm wood as composite reinforcement. J. Reinf. Plast. Compos. 2015, 34, 1231–1240. [Google Scholar] [CrossRef]
- Sosa, P.A.; Saro, I.; Johnson, D.; Obon, C.; Alcaraz, F.; Rivera, D. Biodiversity and conservation of Phoenix canariensis: A review. Biodivers. Conserv. 2021, 30, 275–293. [Google Scholar] [CrossRef]
- Murphy, S.T.; Briscoe, B.R. The red palm weevil as an alien invasive: Biology and the prospects for biological control as a component of IPM. BioControl 1999, 20, 35–46. [Google Scholar]
- Ferry, M.; Gomez, S. The red palm weevil in the Mediterranean area. Palms 2002, 46, 172–178. [Google Scholar]
- Garcia-Ortuño, T.; Ferrandez Garcia, M.T.; Andreu Rodriguez, J.; Ferrandez Garcia, C.E.; Ferrandez-Villena, M. Evaluating the properties of palm particle boards (Washingtonia robusta H. Wendl). In Proceedings of the 6th Iberian Congress of Agroengineering, Evora, Portugal, 5–7 September 2011; Sociedad Española de Agroingeniería: Valencia, Spain, 2011; pp. 126–130. ISBN 978-972-778-113-3, 5-7. [Google Scholar]
- Ferrandez-Garcia, M.T.; Ferrandez-Garcia, A.; Garcia-Ortuño, T.; Ferrandez-Garcia, C.E.; Ferrandez-Villena, M. Influence of particle size on the properties of boards made from Washingtonia palm rachis with citric acid. Sustainability 2020, 12, 4841. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, C.E.; Ferrandez-Garcia, A.; Ferrandez-Villena, M.; Hidalgo-Cordero, J.F.; Garcia-Ortuño, T.; Ferrandez-Garcia, M.T. Physical and mechanical properties of particleboard made from palm tree prunings. Forests 2018, 9, 755. [Google Scholar] [CrossRef]
- Garcia-Ortuño, T.; Ferrandez-Garcia, M.T.; Andreu-Rodriguez, J.; Ferrandez-Garcia, C.E.; Ferrandez-Villena, M. Valorization of pruning residues: The use of Phoenix canariensis to elaborate eco-friendly particleboards. In Proceedings of the Structures and Environmental Technologies. International Conference of Agricultural Engineering-CIGR-AgEng 2012, Valencia, Spain, 8–12 July 2012; Federación de Gremios de Editores de España: Madrid, Spain, 2012; ISBN 978-84-615-9928-8. [Google Scholar]
- Amirou, S.; Zerizer, A.; Pizzi, A.; Haddadou, I.; Zhou, X. Particleboards production from date palm biomass. Eur. J. Wood Wood Prod. 2013, 71, 717–723. [Google Scholar] [CrossRef]
- Hegazy, S.; Ahmed, K.; Hiziroglu, S. Oriented strand board production from water-treated date palm fronds. BioResources 2015, 10, 448–456. [Google Scholar] [CrossRef]
- Hegazy, S.; Ahmed, K. Effect of date palm cultivar, particle size, panel density and hot water extraction on particleboards manufactured from date palm fronds. Agriculture 2015, 5, 267–285. [Google Scholar] [CrossRef]
- Or, K.H.; Putra, A.; Selamat, M.Z. Oil palm empty fruit bunch fibers as sustainable acoustic material. In Proceedings of the Mechanical Engineering Research Day 2015 (MERD’15), Melaka, Malaysia, 31 March 2015; pp. 99–100. [Google Scholar]
- Kerdtongmee, P.; Saleh, A.; Eadkhong, T.; Danworaphong, S. Investigating Sound Absorption of Oil Palm Trunk Panels Using One-microphone Impedance Tube. BioResources 2016, 11, 8409–8418. [Google Scholar] [CrossRef]
- Kalaivani, R.; Ewe, L.S.; Chua, Y.L.; Ibrahim, Z. The Effects of Different Thickness of Oil Palm Trunk (Opt) Fiberboard on Acoustic Properties. Sci. Int. 2017, 29, 1105–1108. [Google Scholar]
- Kriker, A.; Bali, B.; Debicki, G.; Bouziane, M.; Chabannet, M. Durability of date palm fibres and their use as reinforcement in hot dry climates. Cem. Concr. Compos. 2008, 30, 639–648. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, A.; Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, M.T. Potential use of Phoenix canariensis biomass in binderless particleboards at low temperature and pressure. BioResources 2017, 12, 6698–6712. [Google Scholar] [CrossRef]
- Braiek, A.; Karkri, M.; Adili, A.; Ibos, L.; Nasrallah, S.B. Estimation of the thermophysical properties of date palm fibers/gypsum composite for use as insulating materials in building. Energy Build. 2017, 140, 268–279. [Google Scholar] [CrossRef]
- Boumhaout, M.; Boukhattem, L.; Hamdi, H.; Benhamou, B.; Nouh, F.A. Thermomechanical characterization of a bio-composite building material: Mortar reinforced with date palm fibers mesh. Constr. Build. Mater. 2017, 135, 241–250. [Google Scholar] [CrossRef]
- Bourmaud, A.; Dhakal, H.; Habrant, A.; Padovani, J.; Siniscalco, D.; Ramage, M.H.; Shah, D.U. Exploring the potential of waste leaf sheath date palm fibres for composite reinforcement through a structural and mechanical analysis. Compos. A Appl. Sci. Manuf. 2017, 103, 292–303. [Google Scholar] [CrossRef]
- Cogliano, V.J.; Grosse, Y.; Baan, R.A.; Straif, K.; Secretan, M.B.; El Ghissassi, F.; Working Group for Volume 88. Formaldehyde, 2-Butoxyethanol and 1-Tert-Butoxypropan-2-Ol. Meeting Report: Summary of IARC Monographs on Formaldehyde, 2-Butoxyethanol, and 1-tert-Butoxy-2-Propanol. Environ. Health Perspect. 2005, 113, 1205–1208. [Google Scholar] [CrossRef]
- European Commission Homepage. Available online: https://single-market-economy.ec.europa.eu/news/chemicals-eu-restricts-exposure-carcinogenic-substance-formaldehyde-consumer-products-2023-07-14_en (accessed on 19 February 2024).
- Imam, S.H.; Gordon, S.H.; Mao, L.; Chen, L. Environmentally friendly wood adhesive from a renewable plant polymer: Characteristics and optimization. Polym. Degrad. Stab. 2001, 73, 529–533. [Google Scholar] [CrossRef]
- El-Wakil, N.A.; Abou-Zeid, R.E.; Fahmy, Y.; Mohamed, A.Y. Modified wheat gluten as a binder in particleboard made from reed. J. Appl. Polym. Sci. 2007, 106, 3592–3599. [Google Scholar] [CrossRef]
- Ciannamea, E.M.; Stefani, P.M.; Ruseckaite, R.A. Medium-density particleboards from modified rice husks and soybean protein concentrate-based adhesives. Bioresour. Technol. 2010, 101, 818–825. [Google Scholar] [CrossRef] [PubMed]
- Moubarik, A.; Allal, A.; Pizzi, A.; Charrier, F.; Charrier, B. Preparation and mechanical characterization of particleboard made from maritime pine and glued with bio-adhesives based on cornstarch and tannins. Maderas-Cienc. Tecnol. 2010, 12, 189–197. [Google Scholar] [CrossRef]
- Wang, Z.; Gu, Z.; Hong, Y.; Cheng, L.; Li, Z. Bonding strength and water resistance of starch-based wood adhesive improved by silica nanoparticles. Carbohydr. Polym. 2011, 86, 72–76. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, C.E.; Andreu-Rodríguez, J.; Ferrandez-Garcia, M.T.; Ferrandez-Villena, M.; Garcia-Ortuño, T. Panels made from giant reed bonded with non-modified starches. BioResources 2012, 7, 5904–5916. [Google Scholar] [CrossRef]
- Ferrandez-Garcia, M.T.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Villena, M. Experimental Evaluation of a New Giant Reed (Arundo Donax L.) Composite Using Citric Acid as a Natural Binder. Agronomy 2019, 9, 882. [Google Scholar] [CrossRef]
- Matsumae, T.; Horito, M.; Kurushima, N.; Yazaki, Y. Development of bark-based adhesives for plywood: Utilization of flavonoid compounds from bark and wood. II. J. Wood Sci. 2019, 65, 9. [Google Scholar] [CrossRef]
- Pintiaux, T.; Viet, D.; Vandenbossche, V.; Rigal, L.; Rouilly, A. Binderless Materials Obtained by Thermo-Compressive Processing of Lignocellulosic Fibers: A Comprehensive Review. BioResources 2015, 10, 1915–1963. [Google Scholar] [CrossRef]
- Chabriac, P.A.; Gourdon, E.; Glé, P.; Fabbri, A.; Lenormand, H. Agricultural by products for building construction and modeling to predict micro-structural parameters. Constr. Build. Mater. 2016, 112, 158–167. [Google Scholar] [CrossRef]
- Lui, F.H.Y.; Kurokochi, Y.; Narita, H.; Saito, Y.; Sato, M. The effects of chemical components and particle size on the mechanical properties of binderless boards made from oak (Quercus spp.) logs degraded by shiitake fungi (Lentinula edodes). J. Wood Sci. 2018, 64, 246–255. [Google Scholar] [CrossRef]
- Terzopoulou, P.; Kamperidou, V. Chemical characterization of Wood and Bark biomass of the invasive species of Tree-of-heaven (Ailanthus altissima (Mill.) Swingle), focusing on its chemical composition horizontal variability assessment. Mater. Sci. Eng. 2021, 17, 469–477. [Google Scholar] [CrossRef]
- Arufe, S.; Hellouin de Menibus, A.; Leblanc, N.; Lenormand, H. Physico-chemical characterisation of plant particles with potential to produce biobased building materials. Ind. Crops Prod. 2021, 171, 113901. [Google Scholar] [CrossRef]
- European Council. EU Construction Product Regulation No 305/2011; CPR. COST Action FP1404; European Council: Brussels, Belgium, 2014. [Google Scholar]
- Lazko, J.; Landercy, N.; Laoutid, F.; Dangreau, L.; Huguet, M.; Talon, O. Flame retardant treatments of insulating agro-materials from flax short fibres. Polym. Degrad. Stab. 2013, 98, 1043–1051. [Google Scholar] [CrossRef]
- Selamat, M.E.; Hui, T.Y.; Hashim, R.; Sulaiman, O.; Kassim, M.H.M.; Stalin, N.J. Division of Bioresource, Paper and Coatings Technology, School of Industrial Technology, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia. Properties of Particleboard Made from Oil Palm Trunks Added Magnesium Oxide as Fire Retardant. J. Phys. Sci. 2018, 29, 59–75. [Google Scholar] [CrossRef]
- Lee, C.H.; Sapuan, S.M.; Hassan, M.R. A Review of the Flammability Factors of Kenaf and Allied Fibre Reinforced Polymer Composites. Adv. Mater. Sci. Eng. 2014, 2014, 514036. [Google Scholar] [CrossRef]
- Ferrández-Garcia, C.C.; Garcia-Ortuño, T.; Ferrández-Garcia, M.T.; Ferrández-Villena, M.; Ferrández-García, C.E. Fire-resistance, Physical, and Mechanical Characterization of Binderless Rice Straw Particleboards. BioResources 2017, 12, 8539–8549. [Google Scholar] [CrossRef]
- Popescu, C.M.; Pfriem, A. Treatments and modification to improve the reaction to fire of wood and wood based products. An overview. Fire Mater. 2020, 44, 100–111. [Google Scholar] [CrossRef]
- Wang, J.; Wei, Y.; Wang, Z.; He, X.; Wang, C.; Lin, H.; Deng, Y. MOFs-derived self-sacrificing template strategy to double-shelled metal oxides nanocages as hierarchical interfacial catalyst for suppressing smoke and toxic gases releases of epoxy resin. Chem. Eng. J. 2022, 432, 134328. [Google Scholar] [CrossRef]
- Zhi, M.; Yang, X.; Fan, R.; Yue, S.; Zheng, L.; Liu, Q.; He, Y. A comprehensive review of reactive flame-retardant epoxy resin: Fundamentals, recent developments, and perspectives. Polym. Degrad. Stab. 2022, 201, 109976. [Google Scholar] [CrossRef]
- Attia, N.F.; Elashery, S.E.; Zakria, A.M.; Eltaweil, A.S.; Oh, H. Recent advances in graphene sheets as new generation of flame retardant materials. Mater. Sci. Eng. B. 2021, 274, 115460. [Google Scholar] [CrossRef]
- EN 312; Particleboards. Specifications. European Committee for Standardization: Brussels, Belgium, 2010.
- EN 309; Particleboards. Definitions and Classification. European Committee for Standardization: Brussels, Belgium, 2005.
- EN 13986:2004+A1; Wood-Based Panels for Use in Construction. Characteristics, Evaluation of Conformity and Marking. European Committee for Standardization: Brussels, Belgium, 2015.
- EN 326-1; Wood-Based Panels. In Sampling, Cutting and Inspection. Part 1: Sampling and Cutting of Test Pieces and Expression of Test. European Committee for Standardization: Brussels, Belgium, 1994.
- EN 323; Wood-Based Panels. Determination of Density. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 317; Particleboards and Fiberboards. Determination of Swelling in Thickness after Immersion in Water. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 310; Wood-Based Panels. Determination of Modulus of Elasticity in Bending and of Bending Strength. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 319; Particleboards and Fiberboards. Determination of Tensile Strength Perpendicular to the Plane of de Board. European Committee for Standardization: Brussels, Belgium, 1993.
- EN 12667; Thermal Performance of Building Materials and Products: Determination of Thermal Resistance by Means of Guarded Hot Plate and Heat Flow Meter Methods: Products of High and Medium Thermal Resistance. European Committee for Standardization: Brussels, Belgium, 2001.
- EN ISO 11925-2; Reaction to Fire Tests—Ignitability of Products Subjected to Direct Impingement of Flame—Part 2: Single-Flame Source Test. European Committee for Standardization: Brussels, Belgium, 2020.
- EN 13501-1; Fire Classification of Construction Products and Building Elements—Part 1: Classification Using Data from Reaction to Fire Tests. European Committee for Standardization: Brussels, Belgium, 2018.
- EN 13823:2020+A1; Reaction to Fire Tests for Building Products. Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item. European Committee for Standardization: Brussels, Belgium, 2022.
- Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Garcia, M.T. The Influence of Processing and Particle Size on Binderless Particleboards Made from Arundo donax L. Rhizome. Polymers 2020, 12, 696. [Google Scholar] [CrossRef] [PubMed]
- Hashim, R.; Nadhari, W.N.A.W.; Sulaiman, O.; Hiziroglu, S.; Sato, M.; Kawamura, F.; Tanaka, R. Evaluations of some properties of exterior particleboard made from oil palm biomass. J. Compos. Mater. 2011, 45, 1659–1665. [Google Scholar] [CrossRef]
- Liang, S.; Neisius, N.M.; Gaan, S. Recent developments in flame retardant polymeric coatings. Prog. Org. Coat. 2013, 76, 1642–1665. [Google Scholar] [CrossRef]
- Giudice, C.A.; Pereyra, A.M. Silica nanoparticles in high silica/alkali molar ratio solutions as fire-retardant impregnants for woods. Fire Mater. 2010, 34, 177–187. [Google Scholar] [CrossRef]
- Gardelle, B.; Duquesne, S.; Rerat, V.; Bourbigot, S. Thermal degradation and fire performance of intumescent silicone-based coatings. Polym. Adv. Technol. 2013, 24, 62–69. [Google Scholar] [CrossRef]
- Kashiwagi, T.; Gilman, J.W.; Butler, K.M.; Harris, R.H.; Shields, J.R.; Asano, A. Flame retardant mechanism of silica gel/silica. Fire Mater. 2000, 24, 277–289. [Google Scholar] [CrossRef]
- Ferrandez-Villena, M.; Ferrandez-Garcia, C.E.; Garcia-Ortuño, T.; Ferrandez-Garcia, A.; Ferrandez-Garcia, M.T. Analysis of the thermal insulation and fire-resistance capacity of particleboards made from vine (Vitis vinifera L.) prunings. Polymers 2020, 12, 1147. [Google Scholar] [CrossRef] [PubMed]
- Benhamou, A.A.; Boussetta, A.; Kassab, Z.; Nadifiyine, M.; Sehaqui, H.; El Achaby, M.; Moubarik, A. Application of UF adhesives containing unmodified and phosphate-modified cellulose microfibers in the manufacturing of particleboard composites. Ind. Crops Prod. 2022, 176, 114318. [Google Scholar] [CrossRef]
- El-Sayed, G.H.; Atallah, M.M.; Ahmad, M.I.M. Production of Fire-Resistant Particle Boards from some Agricultural Residues. J. Soil Sci. Agric. Eng. 2021, 12, 145–151. [Google Scholar] [CrossRef]
- Tureková, I.; Ivanovičová, M.; Harangózo, J.; Gašpercová, S.; Marková, I. Experimental Study of the Influence of Selected Factors on the Particle Board Ignition by Radiant Heat Flux. Polymers 2022, 14, 1648. [Google Scholar] [CrossRef] [PubMed]
Type of Board | No. of Boards | Particle Size (mm) | Time (min) | Pressing Cycle | Temperature (°C) | Pressure (MPa) |
---|---|---|---|---|---|---|
A1 | 4 | <0.25 | 7 | 1 | 110 | 2.6 |
A2 | 4 | <0.25 | 7 + 7 | 2 | 110 | 2.6 |
A3 | 4 | <0.25 | 7 + 7 + 7 | 3 | 110 | 2.6 |
A4 | 4 | <0.25 | 7 + 7 + 7 + 7 | 4 | 110 | 2.6 |
B1 | 4 | 0.25 to 1.00 | 7 | 1 | 110 | 2.6 |
B2 | 4 | 0.25 to 1.00 | 7 + 7 | 2 | 110 | 2.6 |
B3 | 4 | 0.25 to 1.00 | 7 + 7 + 7 | 3 | 110 | 2.6 |
B4 | 4 | 0.25 to 1.00 | 7 + 7 + 7 + 7 | 4 | 110 | 2.6 |
C1 | 4 | 1.00 to 2.00 | 7 | 1 | 110 | 2.6 |
C2 | 4 | 1.00 to 2.00 | 7 + 7 | 2 | 110 | 2.6 |
C3 | 4 | 1.00 to 2.00 | 7 + 7 + 7 | 3 | 110 | 2.6 |
C4 | 4 | 1.00 to 2.00 | 7 + 7 + 7 + 7 | 4 | 110 | 2.6 |
Type of Board | Density (kg/m3) | TS 2 h (%) | TS 24 h (%) | WA 24 h (%) | WA 2 h (%) | Thermal Conductivity (W/m·K) |
---|---|---|---|---|---|---|
A1 | 882.32 (11.16) | 45.65 (1.89) | 58.78 (2.27) | 63.57 (0.12) | 84.10 (4.87) | 0.075 (0.003) |
A2 | 873.70 (28.63) | 29.21 (2.28) | 41.78 (1.27) | 51.54 (4.70) | 67.31 (0.64) | 0.068 (0.004) |
A3 | 1102.27 (26.07) | 20.07 (1.94) | 28.47 (2.49) | 39.72 (1.27) | 59.09 (1.29) | 0.068 (0.003) |
A4 | 1093.41 (61.32) | 15.63 (3.61) | 20.69 (0.62) | 37.43 (13.75) | 54.50 (8.69) | 0.067 (0.004) |
B1 | 840.98 (37.73) | 19.13 (1.92) | 38.73 (1.48) | 61.57 (5.92) | 94.48 (5.38) | 0.070 (0.002) |
B2 | 852.29 (68.66) | 25.37 (10.30) | 39.68 (9.61) | 55.30 (10.69) | 74.98 (7.75) | 0.070 (0.001) |
B3 | 935.46 (16.60) | 16.02 (1.65) | 29.05 (3.61) | 37.52 (8.11) | 75.46 (10.71) | 0.060 (0.003) |
B4 | 999.01 (53.90) | 20.95 (10.42) | 34.37 (20.90) | 37.32 (7.91) | 66.10 (11.19) | 0.061 (0.002) |
C1 | 750.94 (36.08) | 16.70 (1.69) | 21.60 (1.84) | 63.96 (4.51) | 89.20 (5.19) | 0.064 (0.004) |
C2 | 822.18 (62.91) | 34.98 (6.24) | 43.21 (4.89) | 59.30 (13.72) | 81.53 (3.88) | 0.062 (0.004) |
C3 | 1056.08 (40.64) | 20.33 (4.53) | 27.69 (6.41) | 39.52 (7.78) | 52.82 (7.73) | 0.060 (0.003) |
C4 | 1031.50 (37.97) | 21.31 (3.32) | 30.85 (1.43) | 38.39 (5.73) | 54.57 (2.49) | 0.061 (0.002) |
Factor | Properties | Sum of Squares | d.f. | Half Quadratic | F | Sig. |
---|---|---|---|---|---|---|
Particle size | Density | 48,068.923 | 2 | 24,034.4 | 1.979 | 0.152 |
MOR | 182.076 | 2 | 91.038 | 5.718 | 0.007 | |
MOE | 890,667.25 | 2 | 445,333.627 | 1.176 | 0.319 | |
IB | 0.935 | 2 | 0.467 | 27.595 | 0.000 | |
TS—2 h | 150.696 | 2 | 75.348 | 0.913 | 0.410 | |
TS—24 h | 118.200 | 2 | 59.100 | 0.390 | 0.680 | |
WA—2 h | 8.275 | 2 | 4.137 | 0.023 | 0.977 | |
WA—24 h | 1204.024 | 2 | 602.012 | 2.980 | 0.063 | |
Thermal conductivity (λ) | 0.000 | 2 | 0.000 | 0.218 | 0.808 | |
Weight loss | 0.056 | 2 | 0.028 | 11.754 | <0.001 | |
Flame height | 123.111 | 2 | 61.556 | 8.878 | 0.003 | |
Flame depth | 5.422 | 2 | 2.711 | 0.664 | 0.529 | |
No. of cycles | Density | 354,021.437 | 3 | 118,007.146 | 28.088 | 0.000 |
MOR | 387.790 | 3 | 129.263 | 11.978 | 0.000 | |
MOE | 10,260,552.869 | 3 | 3,420,184.290 | 25.220 | 0.000 | |
IB | 0.325 | 3 | 0.108 | 3.202 | 0.034 | |
TS—2 h | 794.738 | 3 | 264.913 | 3.933 | 0.016 | |
TS—24 h | 1304.015 | 3 | 434.672 | 3.516 | 0.024 | |
WA—2 h | 4398.009 | 3 | 1466.003 | 23.378 | 0.000 | |
WA—24 h | 5259.819 | 3 | 1753.273 | 17.922 | 0.000 | |
Thermal conductivity (λ) | 0.000 | 3 | 0.000 | 11.470 | 0.003 | |
Weight loss | 0.012 | 1 | 0.012 | 2.314 | 0.148 | |
Flame height (Fs) | 0.222 | 1 | 0.222 | 0.016 | 0.902 | |
Flame depth | 14.942 | 1 | 14.942 | 4.620 | 0.047 |
Factor | Density | TS—24 h | WA—24 h | λ | MOR | MOE | IB | Fs | |
---|---|---|---|---|---|---|---|---|---|
Particle size | PCC | −0.160 | −0.100 | −0.017 | −0.190 | −0.319 * | −0.089 | −0.670 ** | −0.728 ** |
Sig. | 0.317 | 0.534 | 0.917 | 0.555 | 0.042 | 0.582 | 0.000 | <0.001 | |
No. of cycles | PCC | 0.780 ** | −0.393 * | −0.747 ** | −0.823 ** | −0.376 * | 0.784 ** | 0.404 ** | 0.031 |
Sig. | 0.000 | 0.011 | 0.000 | 0.001 | 0.015 | 0.000 | 0.009 | 0.902 |
Material | Pressure (MPa) | Temp. (°C) | Time (min) | Density (kg/m3) | TS—24 h (%) | MOR (N/mm2) | MOE (N/mm2) | IB (N/mm2) | Source |
---|---|---|---|---|---|---|---|---|---|
Oil palm+10% UF | 40 | 160 | 8 | 810 | 41.5 | 5.80 | 1149.6 | 1.16 | [40] |
Oil palm | 12 | 180 | 20 | 800 | 20 | 13.37 | 0.71 | [61] | |
Canary palm | 2.6 | 120 | 30 | 838.5 | 27.56 | 13 | 1467.8 | 0.40 | [20] |
Canary palm | 2.6 | 110 | 7 + 7 + 7 + 7 | 1093.4 | 20.69 | 20 | 2589.8 | 0.74 | This study |
Type P2 | - | ≥11 | ≥1800 | ≥0.40 | [47] | ||||
Type P3 | ≤17 | ≥15 | ≥2050 | ≥0.45 | [47] |
Particleboard Material | Binder | Board Thickness (mm) | Flame Retardant | Flame Height (mm) | Source |
---|---|---|---|---|---|
Vine prunings | 9% UF | 7.5 | - | 41–67.78 | [66] |
Wood | 10% UF | 14 | Phosphate-modified cellulose microfibers | 132 | [67] |
Cotton stalks | 10% UF | 14 | Diammonium phosphate (NH4)2HPO4 and boric acid | 85.7 | [68] |
Corn stalks | 10% UF | 14 | Diammonium phosphate (NH4)2HPO4 and boric acid | 88.4 | [68] |
Sawdust | 10% UF | 14 | Diammonium phosphate (NH4)2HPO4 and boric acid | 91.1 | [68] |
Rice straw | 10% UF | 14 | Diammonium phosphate (NH4)2HPO4 and boric acid | 92 | [68] |
Canary Island palm trunks | - | 7 | - | 60.3–70.4 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ferrandez-Garcia, B.E.; Garcia-Ortuño, T.; Ferrandez-Villena, M.; Ferrandez-Garcia, M.T. Evaluation of the Properties and Reaction-to-Fire Performance of Binderless Particleboards Made from Canary Island Palm Trunks. Fire 2024, 7, 193. https://doi.org/10.3390/fire7060193
Ferrandez-Garcia BE, Garcia-Ortuño T, Ferrandez-Villena M, Ferrandez-Garcia MT. Evaluation of the Properties and Reaction-to-Fire Performance of Binderless Particleboards Made from Canary Island Palm Trunks. Fire. 2024; 7(6):193. https://doi.org/10.3390/fire7060193
Chicago/Turabian StyleFerrandez-Garcia, Berta Elena, Teresa Garcia-Ortuño, Manuel Ferrandez-Villena, and Maria Teresa Ferrandez-Garcia. 2024. "Evaluation of the Properties and Reaction-to-Fire Performance of Binderless Particleboards Made from Canary Island Palm Trunks" Fire 7, no. 6: 193. https://doi.org/10.3390/fire7060193
APA StyleFerrandez-Garcia, B. E., Garcia-Ortuño, T., Ferrandez-Villena, M., & Ferrandez-Garcia, M. T. (2024). Evaluation of the Properties and Reaction-to-Fire Performance of Binderless Particleboards Made from Canary Island Palm Trunks. Fire, 7(6), 193. https://doi.org/10.3390/fire7060193