Multiparameter Detection of Summer Open Fire Emissions: The Case Study of GAW Regional Observatory of Lamezia Terme (Southern Italy)
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Site
2.2. The WMO/GAW Site of Lamezia Terme
2.3. Satellite Products
2.3.1. Fire Location (MODIS–GFED4)
2.3.2. CO Total Column—Level-2 Data Analysis
2.3.3. Mesoscale Atmospheric Modeling Products
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Costa, H. European wildfire danger and vulnerability in a changing climate: Towards integrating risk dimensions. In Technical Report by the Joint Research Centre: JRC PESETA IV Project: Task 9 Forest Fires; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Bowman, D.M.J.S. Fire in the earth system. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Keeley, J.E. Fire as an evolutionary pressure shaping plant traits. Trends Plant Sci. 2011, 16, 406–411. [Google Scholar] [CrossRef] [PubMed]
- Pausas, J.G. A burning story: The role of fire in the history of life. Bioscience 2009, 59, 593–601. [Google Scholar] [CrossRef]
- Lambers, H. Plant Physiological Ecology; Springer: Cham, Switzerland, 2008; Volume 2, pp. 4–6. [Google Scholar]
- Ruffault, J. Increased likelihood of heat-induced large wildfires in the Mediterranean Basin. Sci. Rep. 2020, 10, 13790. [Google Scholar] [CrossRef] [PubMed]
- Belcher, C.M. Baseline intrinsic flammability of Earth’s ecosystems estimated from paleoatmospheric oxygen over the past 350 million years. Proc. Natl. Acad. Sci. USA 2010, 107, 22448–22453. [Google Scholar] [CrossRef] [PubMed]
- Dupuy, J. Climate change impact on future wildfire danger and activity in southern Europe: A review. Ann. Forest Sci. 2020, 77, 35. [Google Scholar] [CrossRef]
- Turco, M. Exacerbated fires in Mediterranean Europe due to anthropogenic warming projected with non-stationary climate-fire models. Nat. Commun. 2018, 9, 3821. [Google Scholar] [CrossRef] [PubMed]
- Field, C.B. White, Climate Change 2014: Impacts, Adaptation and Vulnerability. Renewable and Sustainable Energy Reviews. 2014. Available online: https://www.ipcc.ch/report/ar5/wg2/ (accessed on 26 March 2024).
- Singh, S. Forest fire emissions: A contribution to global climate change. Front. For. Glob. Chang. 2022, 5, 925480. [Google Scholar] [CrossRef]
- Andrea, M.O. Transport of biomass burning smoke to the upper troposphere by deep convection in the equatorial region. Geophys. Res. Lett. 2001, 28, 951–954. [Google Scholar] [CrossRef]
- Andrea, M.O. Emission of trace gases and aerosols from biomass burning—An updated assessment. Atmos. Chem. Phys. 2019, 19, 8523–8546. [Google Scholar] [CrossRef]
- Ribeiro-Kumara, C. How do forest fires affect soil greenhouse gas emissions in upland boreal forests? A review. Environ. Res. 2020, 184, 109328. [Google Scholar] [CrossRef] [PubMed]
- Van der Werf, G.R. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef]
- Zheng, B. Increasing forest fire emissions despite the decline in global burned area. Sci. Adv. 2021, 7, eabh2646. [Google Scholar] [CrossRef] [PubMed]
- Chatfield, R.B. Emissions relationships in western forest fire plumes—Part 1: Reducing the effect of mixing errors on emission factors. Atmos. Meas. Tech. 2020, 13, 7069–7096. [Google Scholar] [CrossRef]
- Liang, Y. Emissions of organic compounds from western US wildfires and their near-fire transformations. Atmos. Chem. Phys. 2022, 22, 9877–9893. [Google Scholar] [CrossRef]
- Akagi, S.K. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 4039–4072. [Google Scholar] [CrossRef]
- Algeri, A. The potential of agricultural residues for energy production in Calabria (Southern Italy). Renew. Sustain. Energy Rev. 2019, 104, 1–14. [Google Scholar] [CrossRef]
- Available online: https://www.regione.calabria.it/website/portaltemplates/view/view_provvedimenti.cfm?63819 (accessed on 26 March 2024).
- Available online: https://www.regione.calabria.it/website/portalmedia/decreti/2023-05/Piano-AIB-2023_CV_rev05.pdf (accessed on 26 March 2024).
- Available online: https://www.regione.calabria.it/website/portalmedia/decreti/2024-05/PIANO-AIB-2024.pdf (accessed on 26 March 2024).
- Rönkkö, T. Review of black carbon emission factors from different anthropogenic sources. Environ. Res. Lett. 2023, 18, 033004. [Google Scholar] [CrossRef]
- Donateo, A. Long-term observations of aerosol optical properties at three GAW regional sites in the Central Mediterranean. Atmos. Res. 2020, 241, 104976. [Google Scholar] [CrossRef]
- Cristofanelli, P. Significant variations of trace gas composition and aerosol properties at Mt. Cimone during air mass transport from North Africa—Contributions from wildfire emissions and mineral dust. Atmos. Chem. Phys. 2009, 9, 4603–4619. [Google Scholar] [CrossRef]
- Schultz, M.G. The Global Atmosphere Watch reactive gases measurement network. Elem. Sci. Anthr. 2015, 3, 000067. [Google Scholar] [CrossRef]
- Lo Feudo, T. Study of the vertical structure of the coastal boundary layer integrating surface measurements and ground-based remote sensing. Sensors 2020, 20, 6516. [Google Scholar] [CrossRef]
- Calidonna, C.R. Five years of dust episodes at the Southern Italy GAW Regional Coastal Mediterranean Observatory: Multisensors and modeling analysis. Atmosphere 2020, 11, 456. [Google Scholar] [CrossRef]
- Crotwell, A. GAW Report N 255, Jeju Island, Republic of Korea; World Meteorological Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Petzold, A. Multi-angle absorption photometry—A new method for the measurement of aerosol light absorption and atmospheric black carbon. J. Aerosol Sci. 2004, 35, 421–441. [Google Scholar] [CrossRef]
- Randerson, J.T. Global Fire Emissions Database; Version 4, (GFEDv4); ORNL DAAC: Oak Ridge, TN, USA, 2018. [CrossRef]
- Veefkind, J. TROPOMI on the ESA Sentinel-5 Precursor: A GMES mission for global observations of the atmospheric composition for climate, air quality and ozone layer applications. Remote Sens. Environ. 2012, 120, 70–83. [Google Scholar] [CrossRef]
- European and Space and Agency, (ESA). Sentinel-5 Precursor/TROPOMI Level 2 Product User Manual Carbon Monoxide Document Number. 2021. Available online: https://sentinel.esa.int/documents/247904/2474726/Sentinel-5P-Level-2-Product-User-Manual-Carbon-Monoxide.pdf (accessed on 26 March 2024).
- Skamarock, W.C. A Description of the Advanced Research WRF Version 4. NCAR Tech. Note NCAR/TN-556+STR. 2019, Volume 145. Available online: http://dx.doi.org/10.5065/1dfh-6p97 (accessed on 26 March 2024).
- Avolio, E. Tornadoes in the Tyrrhenian regions of the Italian peninsula: The case study of 28 July 2019. Atmos. Res. 2022, 278, 106285. [Google Scholar] [CrossRef]
- Avolio, E. Multiple tornadoes in the Italian Ionian regions: Observations, sensitivity tests and mesoscale analysis of convective storm environmental parameters. Atmos. Res. 2021, 263, 105800. [Google Scholar] [CrossRef]
- Available online: https://www2.mmm.ucar.edu/wrf/users/physics/phys_references.html (accessed on 26 March 2024).
- Khalil, M.A. Carbon Monoxide in the Earth’s Atmosphere: Increasing Trend. Science 1984, 224, 54–56. [Google Scholar] [CrossRef]
Instruments | Analysis Results—Spatial Resolution | Temporal Resolution |
---|---|---|
CRDS analyzer, Model G2401, Picarro | CO (ppb), CH4 (ppb), CO2 (ppm), H2O (ppm) | Every 5 s |
MAAP, Model 5012, Thermo Scientific | Equivalent Black Carbon, eBC (µg/m3) | Every 1 min |
SWAM, Model 5a-Dual Channel Monitor, FAI Instrument | PM10 and PM2.5 (µg/m3) | Every 24 h |
Weather Transmitter, Model WTX520, Vaisala | Temperature (°C), wind speed (m/s), wind direction (°) | Every 1 min |
MODIS-GFED4 | The main fire events; count fires 1 km × 1 km | Daily |
Weather Research and Forecasting model (WRF) version 4.2, NCAR, NOAA, and AFWA | Temperature (°C), wind speed (m/s), | |
wind direction (°); 2 km × 2 km | Every 3 h | |
SP5 Copernicus | Tropospheric column of CO (mol/m2); 3.5 km × 5.5 km | Daily |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Malacaria, L.; Parise, D.; Lo Feudo, T.; Avolio, E.; Ammoscato, I.; Gullì, D.; Sinopoli, S.; Cristofanelli, P.; De Pino, M.; D’Amico, F.; et al. Multiparameter Detection of Summer Open Fire Emissions: The Case Study of GAW Regional Observatory of Lamezia Terme (Southern Italy). Fire 2024, 7, 198. https://doi.org/10.3390/fire7060198
Malacaria L, Parise D, Lo Feudo T, Avolio E, Ammoscato I, Gullì D, Sinopoli S, Cristofanelli P, De Pino M, D’Amico F, et al. Multiparameter Detection of Summer Open Fire Emissions: The Case Study of GAW Regional Observatory of Lamezia Terme (Southern Italy). Fire. 2024; 7(6):198. https://doi.org/10.3390/fire7060198
Chicago/Turabian StyleMalacaria, Luana, Domenico Parise, Teresa Lo Feudo, Elenio Avolio, Ivano Ammoscato, Daniel Gullì, Salvatore Sinopoli, Paolo Cristofanelli, Mariafrancesca De Pino, Francesco D’Amico, and et al. 2024. "Multiparameter Detection of Summer Open Fire Emissions: The Case Study of GAW Regional Observatory of Lamezia Terme (Southern Italy)" Fire 7, no. 6: 198. https://doi.org/10.3390/fire7060198
APA StyleMalacaria, L., Parise, D., Lo Feudo, T., Avolio, E., Ammoscato, I., Gullì, D., Sinopoli, S., Cristofanelli, P., De Pino, M., D’Amico, F., & Calidonna, C. R. (2024). Multiparameter Detection of Summer Open Fire Emissions: The Case Study of GAW Regional Observatory of Lamezia Terme (Southern Italy). Fire, 7(6), 198. https://doi.org/10.3390/fire7060198