Preliminary Assessment of Tunic Off-Gassing after Wildland Firefighting Exposure
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particpants and Recuitment
- Volunteer Bushfire Firefighters: These firefighters were volunteers from a brigade located in metropolitan Perth (WA), and they attended bushfire events.
- Forestry Firefighters: These participants were forestry firefighters from the Department of Biodiversity, Conservation and Attractions (DBCA), and they attended the prescribed burns.
2.2. Assessment of Potential Tunic Contamination
2.3. Tunic Analysis
3. Results
3.1. Fire Events
3.2. Off-Gassing Analysis
3.2.1. Acrolein
3.2.2. Benzene
3.2.3. Formaldehyde
3.2.4. Sulphur Dioxide
4. Discussion
4.1. Chemical Measurements and Associated Risks
4.1.1. Acrolein
4.1.2. Benzene
4.1.3. Formaldehyde
4.1.4. Sulphur Dioxide
4.2. A Potential Secondary Exposure Risk
4.3. Cumulative Effects
4.4. Strengths and Limitations
4.5. Recommendations and Future Research
- Conduct repeat analysis of multiple tunics from the same fire event.
- Investigate a larger array of chemicals.
- Investigate if other wildland chemical agents such as foam additives influence the off-gassing of tunics.
- Investigate the impact of laundering on the off-gassing phenomenon.
- Assess the potential breakthrough of chemical contamination to undergarments and the skin.
- Conduct biological monitoring pre and post event to determine if contaminants have been absorbed by individuals.
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Colin, C. Causes of Big Bushfires in Australia: Higher Temperatures and Rainfall or More Fuel? J. Geosci. Environ. Prot. 2020, 8, 79. [Google Scholar]
- Erin, S.; Holmes, L.; Larkin, B.; Mills, B.; Dobson, M. Supporting Volunteer Firefighter Well-Being: Lessons from the Australian “Black Summer” Bushfires. Prehospital Disaster Med. 2022, 37, 273–276. [Google Scholar]
- Filkov, A.I.; Ngo, T.; Matthews, S.; Telfer, S.; Penman, T.D. Impact of Australia’s Catastrophic 2019/20 Bushfire Season on Communities and Environment. Retrospective Analysis and Current Trends. J. Saf. Sci. Resil. 2020, 1, 44–56. [Google Scholar] [CrossRef]
- Department of Fire and Emergency Services. 2020/21 Annual Report. Available online: https://publications.dfes.wa.gov.au/publications/annual-report-2020-2021 (accessed on 30 March 2022).
- Kiam, P.; Wallace, R.; Liebenberg, A.; Cross, M.; Oosthuizen, J. Fighting Fire and Fumes: Risk Awareness and Protective Practices among Western Australian Firefighters. Int. J. Wildland Fire 2024, 33, WF23147. [Google Scholar]
- As/Nzs 4824:2021; Protective Clothing for Firefighters—Laboratory Test Methods and Performance Requirements for Wildland Firefighting Clothing. Standards Australia: Sydney, Australia, 2021.
- Department of Biodiversity Conservation and Attractions. Prescribed Burning. Available online: https://www.dpaw.wa.gov.au/management/fire/prescribed-burning (accessed on 19 December 2022).
- Fabienne, R.; Hansen, D.; Meyer, C.P.M. Exposure to Bushfire Smoke during Prescribed Burns and Wildfires: Firefighters’ Exposure Risks and Options. Environ. Int. 2011, 37, 314–321. [Google Scholar]
- Katrina, M.; Paton-Walsh, C.; Roulston, C.; Guérette, E.-A.; Edwards, G.; Reisen, F.; Desservettaz, M.; Cameron, M.; Young, E.; Kubistin, D. Cumulative Firefighter Exposure to Multiple Toxins Emitted during Prescribed Burns in Australia. Expo. Health 2020, 12, 721–733. [Google Scholar]
- Booze, T.F.; Reinhardt, T.E.; Quiring, S.J.; Ottmar, R.D. A Screening-Level Assessment of the Health Risks of Chronic Smoke Exposure for Wildland Firefighters. J. Occup. Environ. Hyg. 2004, 1, 296–305. [Google Scholar] [CrossRef]
- Demers, P.A.; DeMarini, D.M.; Fent, K.W.; Glass, D.C.; Hansen, J.; Adetona, O.; Andersen, M.H.G.; Freeman, L.E.B.; Caban-Martinez, A.J.; Daniels, R.D.; et al. Carcinogenicity of Occupational Exposure as a Firefighter. Lancet Oncol. 2022, 23, 985–986. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Occupational Exposure as a Firefighter. IIARC Monogr. Identif. Carcinog. Hazards Hum. 2023, 132, 1–730. [Google Scholar]
- Fent, K.W.; Evans, D.E.; Booher, D.; Pleil, J.D.; Stiegel, M.A.; Horn, G.P.; Dalton, J. Volatile Organic Compounds Off-Gassing from Firefighters’ Personal Protective Equipment Ensembles after Use. J. Occup. Environ. Hyg. 2015, 12, 404–414. [Google Scholar] [CrossRef]
- Banks, A.P.W.; Wang, X.; He, C.; Gallen, M.; Thomas, K.V.; Mueller, J.F. Off-Gassing of Semi-Volatile Organic Compounds from Fire-Fighters’ Uniforms in Private Vehicles—A Pilot Study. Int. J. Environ. Res. Public Health 2021, 18, 3030. [Google Scholar] [CrossRef] [PubMed]
- Groot, E.; Caturay, A.; Khan, Y.; Copes, R. A Systematic Review of the Health Impacts of Occupational Exposure to Wildland Fires. Int. J. Occup. Med. Environ. Health 2019, 32, 121–140. [Google Scholar] [CrossRef] [PubMed]
- Safe Work Australia. Workplace Exposure Standards for Airborne Contaminants. Available online: https://www.safeworkaustralia.gov.au/doc/workplace-exposure-standards-airborne-contaminants-2022 (accessed on 10 February 2022).
- The National Institute for Occupational Safety and Health. Acrolein. Available online: https://www.cdc.gov/niosh/npg/npgd0011.html (accessed on 20 January 2023).
- Liu, Q.; Lou, H.; Zhang, X.; Yang, Q. Association between Acrolein Exposure and Respiratory Hazards: A Systematic Review and Meta-Analysis. Atmos. Pollut. Res. 2023, 14, 101633. [Google Scholar] [CrossRef]
- Pradipta, A.R.; Tanaka, K. Application of Acrolein Imines to Organic Synthesis, Biofunctional Studies, and Clinical Practice. Chem. Rec. 2021, 21, 646–662. [Google Scholar] [CrossRef]
- Liu, J.-H.; Wang, T.-W.; Lin, Y.-Y.; Ho, W.-C.; Tsai, H.-C.; Chen, S.-P.; Lin, A.M.-Y.; Liu, T.-Y.; Wang, H.-T. Acrolein Is Involved in Ischemic Stroke-Induced Neurotoxicity through Spermidine/Spermine-N1-Acetyltransferase Activation. Exp. Neurol. 2020, 323, 113066. [Google Scholar] [CrossRef]
- Chen, C.; Lu, J.; Peng, W.; Mak, M.S.; Yang, Y.; Zhu, Z.; Wang, S.; Hou, J.; Zhou, X.; Xin, W. Acrolein, an Endogenous Aldehyde Induces Alzheimer’s Disease-Like Pathologies in Mice: A New Sporadic Ad Animal Model. Pharmacol. Res. 2022, 175, 106003. [Google Scholar] [CrossRef]
- Tulen, C.B.M.; Snow, S.J.; Leermakers, P.A.; Kodavanti, U.P.; van Schooten, F.J.; Opperhuizen, A.; Remels, A.H. Acrolein Inhalation Acutely Affects the Regulation of Mitochondrial Metabolism in Rat Lung. Toxicology 2022, 469, 153129. [Google Scholar] [CrossRef]
- Michiharu, M.; Yamano, S.; Senoh, H.; Umeda, Y.; Hirai, S.; Saito, A.; Kasai, T.; Aiso, S. Carcinogenicity and Chronic Toxicity of Acrolein in Rats and Mice by Two-Year Inhalation Study. Regul. Toxicol. Pharmacol. 2021, 121, 104863. [Google Scholar]
- Marques, M.M.; Beland, F.A.; Lachenmeier, D.W.; Phillips, D.H.; Chung, F.-L.; Dorman, D.C.; Elmore, S.E.; Hammond, S.K.; Krstev, S.; Linhart, I.; et al. Carcinogenicity of Acrolein, Crotonaldehyde, and Arecoline. Lancet Oncol. 2021, 22, 19–20. [Google Scholar] [CrossRef]
- The National Institute for Occupational Safety and Health. Benzene. Available online: https://www.cdc.gov/niosh/npg/npgd0049.html (accessed on 20 January 2023).
- Safe Work Australia. Exposure Standard Details: Benzene. Available online: https://hcis.safeworkaustralia.gov.au/ExposureStandards/Details?exposureStandardID=1065 (accessed on 8 April 2024).
- Loomis, D.; Guyton, K.Z.; Grosse, Y.; El Ghissassi, F.; Bouvard, V.; Benbrahim-Tallaa, L.; Guha, N.; Vilahur, N.; Mattock, H.; Straif, K. Carcinogenicity of Benzene. Lancet Oncol. 2017, 18, 1574–1575. [Google Scholar] [CrossRef]
- Smith, M.T.; Guyton, K.Z.; Gibbons, C.F.; Fritz, J.M.; Portier, C.J.; Rusyn, I.; DeMarini, D.M.; Caldwell, J.C.; Kavlock, R.J.; Lambert, P.F.; et al. Key Characteristics of Carcinogens as a Basis for Organizing Data on Mechanisms of Carcinogenesis. Environ. Health Perspect. 2016, 124, 713–721. [Google Scholar] [CrossRef] [PubMed]
- Vainio, H.; Hemminki, K.; Wilbourn, J. Data on the Carcinogenicity of Chemicals in the Iarc Monographs Programme. Carcinogenesis 1985, 6, 1653–1665. [Google Scholar] [CrossRef] [PubMed]
- Linet, M.S.; Yin, S.-N.; Gilbert, E.S.; Dores, G.M.; Hayes, R.B.; Vermeulen, R.; Tian, H.-Y.; Lan, Q.; Portengen, L.; Ji, B.-T. A Retrospective Cohort Study of Cause-Specific Mortality and Incidence of Hematopoietic Malignancies in C Hinese Benzene-Exposed Workers. Int. J. Cancer 2015, 137, 2184–2197. [Google Scholar] [CrossRef]
- Schnatter, A.R.; Glass, D.C.; Tang, G.; Irons, R.D.; Rushton, L. Myelodysplastic Syndrome and Benzene Exposure among Petroleum Workers: An International Pooled Analysis. J. Natl. Cancer Inst. 2012, 104, 1724–1737. [Google Scholar] [CrossRef]
- Stenehjem, J.S.; Kjærheim, K.; Bråtveit, M.; Samuelsen, S.O.; Barone-Adesi, F.; Rothman, N.; Lan, Q.; Grimsrud, T.K. Benzene Exposure and Risk of Lymphohaematopoietic Cancers in 25 000 Offshore Oil Industry Workers. Br. J. Cancer 2015, 112, 1603–1612. [Google Scholar] [CrossRef]
- Reinhardt, T.E.; Ottmar, R.D. Baseline Measurements of Smoke Exposure among Wildland Firefighters. J. Occup. Environ. Hyg. 2004, 1, 593–606. [Google Scholar] [CrossRef]
- Collins, J.J.; Lineker, G.A. A Review and Meta-Analysis of Formaldehyde Exposure and Leukemia. Regul. Toxicol. Pharmacol. 2004, 40, 81–91. [Google Scholar] [CrossRef]
- The National Institute for Occupational Safety and Health. Formalin (as Formaldehyde). Available online: https://www.cdc.gov/niosh/npg/npgd0294.html (accessed on 20 January 2023).
- Kulle, T.J. Acute Odor and Irritation Response in Healthy Nonsmokers with Formaldehyde Exposure. Inhal. Toxicol. 1993, 5, 323–332. [Google Scholar] [CrossRef]
- Kim, K.-H.; Jahan, S.A.; Lee, J.-T. Exposure to Formaldehyde and Its Potential Human Health Hazards. J. Environ. Sci. Health Part C 2011, 29, 277–299. [Google Scholar] [CrossRef]
- International Agency for Research on Cancer. Formaldehyde, 2-Butoxyethanol and 1-Tert-Butoxypropan-2-Ol. In Formaldehyde, 2-Butoxyethanol and 1-Tert-Butoxypropan-2-Ol; International Agency for Research on Cancer: Lyon, France, 2006; p. 478. [Google Scholar]
- Bachand, A.M.; Mundt, K.A.; Mundt, D.J.; Montgomery, R.R. Epidemiological Studies of Formaldehyde Exposure and Risk of Leukemia and Nasopharyngeal Cancer: A Meta-Analysis. Crit. Rev. Toxicol. 2010, 40, 85–100. [Google Scholar] [CrossRef]
- United States Environmental Protection Agency. Sulfur Dioxide Basics. Available online: https://www.epa.gov/so2-pollution/sulfur-dioxide-basics (accessed on 20 January 2023).
- The National Institute for Occupational Safety and Health. Sulfur Dioxide. Available online: https://www.cdc.gov/niosh/npg/npgd0575.html (accessed on 20 January 2023).
- Abdo, W.; Hirata, A.; Sakai, H.; El-Sawak, A.; Nikami, H.; Yanai, T. Combined Effects of Organochlorine Pesticides Heptachlor and Hexachlorobenzene on the Promotion Stage of Hepatocarcinogenesis in Rats. Food Chem. Toxicol. 2013, 55, 578–585. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Wang, A.; Morello-Frosch, R.; Lam, J.; Sirota, M.; Padula, A.; Woodruff, T.J. Cumulative Risk and Impact Modeling on Environmental Chemical and Social Stressors. Curr. Environ. Health Rep. 2018, 5, 88–99. [Google Scholar] [CrossRef]
- Goodson, W.H., III; Lowe, L.; Carpenter, D.O.; Gilbertson, M.; Ali, A.M.; de Cerain Salsamendi, A.L.; Lasfar, A.; Carnero, A.; Azqueta, A.; Amedei, A. Assessing the Carcinogenic Potential of Low-Dose Exposures to Chemical Mixtures in the Environment: The Challenge Ahead. Carcinogenesis 2015, 36 (Suppl. S1), S254–S296. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Padamsey, K.; Liebenberg, A.; Wallace, R.; Oosthuizen, J. Preliminary Assessment of Tunic Off-Gassing after Wildland Firefighting Exposure. Fire 2024, 7, 321. https://doi.org/10.3390/fire7090321
Padamsey K, Liebenberg A, Wallace R, Oosthuizen J. Preliminary Assessment of Tunic Off-Gassing after Wildland Firefighting Exposure. Fire. 2024; 7(9):321. https://doi.org/10.3390/fire7090321
Chicago/Turabian StylePadamsey, Kiam, Adelle Liebenberg, Ruth Wallace, and Jacques Oosthuizen. 2024. "Preliminary Assessment of Tunic Off-Gassing after Wildland Firefighting Exposure" Fire 7, no. 9: 321. https://doi.org/10.3390/fire7090321
APA StylePadamsey, K., Liebenberg, A., Wallace, R., & Oosthuizen, J. (2024). Preliminary Assessment of Tunic Off-Gassing after Wildland Firefighting Exposure. Fire, 7(9), 321. https://doi.org/10.3390/fire7090321