Exploration of Heart Rate Recovery After Maximal Treadmill and Three-Minute All-Out Shuttle Tests in Firefighters
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Procedures
2.2.1. Maximal Treadmill Test
2.2.2. Three-Minute All-Out Test
2.2.3. Heart Rate Recovery Measures
2.2.4. Blood Lactate Measurement
2.2.5. Statistical Analysis
3. Results
Correlation Results
4. Discussion
4.1. Post-Exercise ANS Recovery
4.2. CV as a Performance Measure
4.3. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Campbell, R.; Petrillo, J. Fatal Firefighter Injuries in the US in 2023; National Fire Protection Association: Quincy, MA, USA, 2024. [Google Scholar]
- National Fire Protection Association. NFPA 1582 Standard on Comprehensive Occupational Medical Programs for Fire Departments; National Fire Protection Association: Quincy, MA, USA, 2022. [Google Scholar]
- Gledhill, N.; Jamnik, V.K. Characterization of the Physical Demands of Firefighting. Can. J. Sport Sci. 1992, 17, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Ras, J.; Kengne, A.P.; Smith, D.L.; Soteriades, E.S.; Leach, L. Association between Cardiovascular Disease Risk Factors and Cardiorespiratory Fitness in Firefighters: A Systematic Review and Meta-Analysis. Int. J. Environ. Res. Public Health 2023, 20, 2816. [Google Scholar] [CrossRef] [PubMed]
- Windisch, S.; Seiberl, W.; Schwirtz, A.; Hahn, D. Relationships between Strength and Endurance Parameters and Air Depletion Rates in Professional Firefighters. Sci. Rep. 2017, 7, 44590. [Google Scholar] [CrossRef] [PubMed]
- Langford, E.L.; Bergstrom, H.C.; Lanham, S.; Eastman, A.Q.; Best, S.; Ma, X.; Mason, M.R.; Abel, M.G. Evaluation of Work Efficiency in Structural Firefighters. J. Strength Cond. Res. 2023, 37, 2457–2466. [Google Scholar] [CrossRef]
- Smith, D.L.; DeBlois, J.P.; Kales, S.N.; Horn, G.P. Cardiovascular Strain of Firefighting and the Risk of Sudden Cardiac Events. Exerc. Sport Sci. Rev. 2016, 44, 90–97. [Google Scholar] [CrossRef]
- Borresen, J.; Lambert, M.I. Autonomic Control of Heart Rate during and after Exercise Measurements and Implications for Monitoring Training Status. Sports Med. 2008, 38, 633–646. [Google Scholar] [CrossRef]
- Gaesser, G.A.; Poole, D.C. The Slow Component of Oxygen Uptake Kinetics in Humans. Exerc. Sport Sci. Rev. 1996, 24, 35–71. [Google Scholar] [CrossRef]
- Poole, D.C.; Burnley, M.; Vanhatalo, A.; Rossiter, H.B.; Jones, A.M. Critical Power: An Important Fatigue Threshold in Exercise Physiology. Med. Sci. Sports Exerc. 2016, 48, 2320–2334. [Google Scholar] [CrossRef]
- Burnley, M.; Jones, A.M. Oxygen Uptake Kinetics as a Determinant of Sports Performance. Eur. J. Sport Sci. 2007, 7, 63–79. [Google Scholar] [CrossRef]
- Saari, A.; Dicks, N.D.; Hartman, M.E.; Pettitt, R.W. Validation of the 3-Minute All-Out Exercise Test for Shuttle Running Prescription. J. Strength Cond. Res. 2017, 33, 1678–1684. [Google Scholar] [CrossRef]
- Pettitt, R.W. Applying the Critical Speed Concept to Racing Strategy and Interval Training Prescription. Int. J. Sports Physiol. Perform. 2016, 11, 842–847. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.; Du Randt, R.; Watson, M.; Pettitt, R.W. Bi-Exponential Modeling Derives Novel Parameters for the Critical Speed Concept. Physiol. Rep. 2019, 7, e13993. [Google Scholar] [CrossRef] [PubMed]
- Bergstrom, H.C.; Housh, T.J.; Zuniga, J.M.; Traylor, D.A.; Camic, C.L.; Lewis, R.W.; Schmidt, R.J.; Johnson, G.O. The Relationships among Critical Power Determined from a 3-Min All-out Test, Respiratory Compensation Point, Gas Exchange Threshold, and Ventilatory Threshold. Res. Q. Exerc. Sport 2013, 84, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Vanhatalo, A.; Doust, J.H.; Burnley, M. Determination of Critical Power Using a 3-Min All-out Cycling Test. Med. Sci. Sports Exerc. 2007, 39, 548–555. [Google Scholar] [CrossRef]
- Bull, A.J.; Housh, T.J.; Johnson, G.O.; Rana, S.R. Physiological Responses at Five Estimates of Critical Velocity. Eur. J. Appl. Physiol. 2008, 102, 711–720. [Google Scholar] [CrossRef]
- Hoffman, M.W.; Stout, J.R.; Hoffman, J.R.; Landua, G.; Fukuda, D.H.; Sharvit, N.; Moran, D.S.; Carmon, E.; Ostfeld, I. Critical Velocity Is Associated with Combat-Specific Performance Measures in a Special Forces Unit. J. Strength Cond. Res. 2016, 30, 446–453. [Google Scholar] [CrossRef]
- Sutterfield, S.L.; Alexander, A.M.; Hammer, S.M.; DIdier, K.D.; Caldwell, J.T.; Barstow, T.J.; Ade, C.J. Prediction of Planetary Mission Task Performance for Long-Duration Spaceflight. Med. Sci. Sports Exerc. 2019, 51, 1662–1670. [Google Scholar] [CrossRef]
- Moritani, T.; Ata, A.N.; Devries, H.A.; Muro, M. Critical Power as a Measure of Physical Work Capacity and Anaerobic Threshold. Ergonomics 1981, 24, 339–350. [Google Scholar] [CrossRef]
- Pettitt, R.W.; Jamnick, N.; Clark, I.E. 3-Min All-out Exercise Test for Running. Int. J. Sports Med. 2012, 33, 426–431. [Google Scholar] [CrossRef]
- Podlogar, T.; Leo, P.; Spragg, J. Using VO2max as a Marker of Training Status in Athletes-Can We Do Better? J. Appl. Physiol. 1985 2022, 133, 144–147. [Google Scholar] [CrossRef]
- Dicks, N.D.; Pettitt, R.W. Optimization of the Critical Speed Concept for Tactical Professionals: A Brief Review. Sports 2021, 9, 106. [Google Scholar] [CrossRef] [PubMed]
- Dexheimer, J.D.; Brinson, S.J.; Pettitt, R.W.; Todd Schroeder, E.; Sawyer, B.J.; Jo, E. Predicting Maximal Oxygen Uptake Using the 3-Minute All-Out Test in High-Intensity Functional Training Athletes. Sports 2020, 8, 155. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, R.A.; Tesch, C.J.; Ebersole, K.T. Heart Rate Response to Alarm Tones in Firefighters. Int. Arch. Occup. Environ. Health 2021, 94, 783–789. [Google Scholar] [CrossRef] [PubMed]
- Marciniak, R.A.; Cornell, D.J.; Meyer, B.B.; Azen, R.; Laiosa, M.D.; Ebersole, K.T. Workloads of Emergency Call Types in Active-Duty Firefighters. Merits 2024, 4, 1–18. [Google Scholar] [CrossRef]
- Smith, D.L. Firefighter Fitness: Improving Performance and Preventing Injuries and Fatalities. Curr. Sports Med. Rep. 2011, 10, 167–172. [Google Scholar] [CrossRef]
- Jackson, A.S.; Pollock, M.L. Practical Assessment of Body Composition. Phys. Sportsmed. 1985, 13, 76–90. [Google Scholar] [CrossRef]
- Dolezal, B.A.; Barr, D.; Boland, D.M.; Smith, D.L.; Cooper, C.B. Validation of the Firefighter WFI Treadmill Protocol for Predicting VO2 Max. Occup. Med. 2015, 65, 143–146. [Google Scholar] [CrossRef]
- Foster, C.; Florhaug, J.A.; Franklin, J.; Gottschall, L.; Hrovatin, L.A.; Parker, S.; Doleshal, P.; Dodge, C. A New Approach to Monitoring Exercise Training. J. Strength Cond. Res. 2001, 15, 109–115. [Google Scholar]
- Delisle, A.T.; Piazza-Gardner, A.K.; Cowen, T.L.; Huq, M.B.S.; Delisle, A.D.; Stopka, C.B.; Tillman, M.D. Validation of a Cardiorespiratory Fitness Assessment for Firefighters. J. Strength Cond. Res. 2014, 28, 2717–2723. [Google Scholar] [CrossRef]
- Cornell, D.J.; Flees, R.J.; Shemelya, C.M.; Ebersole, K.T. Influence of Cardiorespiratory Fitness on Cardiac Autonomic Recovery Among Active-Duty Firefighters. J. Strength Cond. Res. 2024, 38, 66–73. [Google Scholar] [CrossRef]
- Schabenberger, O.; Pierce, F.J. Contemporary Statistical Models for the Plant and Soil Sciences; CRC Press: Boca Raton, FL, USA, 2001; ISBN 9780429120657. [Google Scholar]
- American College of Sports Medicine. ACSM’s Guidelines for Exercise Testing and Prescription, 11th ed.; Ligouri, G., Feito, Y., Fountaine, C., Roy, B.A., Eds.; Wolters Kluwer: Philadelphia, PA, USA, 2022. [Google Scholar]
- Schober, P.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Buchheit, M.; Laursen, P.B.; Ahmaidi, S.S. Parasympathetic Reactivation after Repeated Sprint Exercise. Am. J. Physiol. Heart Circ. Physiol. 2007, 293, 133–141. [Google Scholar] [CrossRef]
- Sothmann, M.S.; Saupe, K.; Jasenof, D.; Blaney, J. Heart Rate Response of Firefighters to Actual Emergencies: Implications for Cardiorespiratory Fitness. J. Occup. Med. 1992, 34, 797–800. [Google Scholar] [CrossRef]
- Darr, K.C.; Bassett, D.R.; Morgan, B.J.; Thomas, D.P. Effects of Age and Training Status on Heart Rate Recovery after Peak Exercise. Am. J. Physiol. 1988, 254, H340–H343. [Google Scholar] [CrossRef]
- Williford, H.N.; Duey, W.J.; Olson, M.S.; Howard, R.; Wang, N. Relationship Between Fire Fighting Suppression Tasks and Physical Fitness. Ergonomics 1999, 42, 1179–1186. [Google Scholar] [CrossRef]
- Michaelides, M.A.; Parpa, K.M.; Thompson, J.; Brown, B. Predicting Performance on a Firefighter’s Ability Test from Fitness Parameters. Res. Q. Exerc. Sport 2008, 79, 468–475. [Google Scholar] [CrossRef]
- Norris, M.S.; McAllister, M.; Gonzalez, A.E.; Best, S.A.; Pettitt, R.; Keeler, J.M.; Abel, M.G. Predictors of Work Efficiency in Structural Firefighters. J. Occup. Environ. Med. 2021, 63, 622–628. [Google Scholar] [CrossRef]
- Peçanha, T.; Silva-Júnior, N.D.; Forjaz, C.L. de M. Heart Rate Recovery: Autonomic Determinants, Methods of Assessment and Association with Mortality and Cardiovascular Diseases. Clin. Physiol. Funct. Imaging 2014, 34, 327–339. [Google Scholar] [CrossRef]
- Vanhatalo, A.; Poole, D.C.; Dimenna, F.J.; Bailey, S.J.; Jones, A.M. Muscle Fiber Recruitment and the Slow Component of O2 Uptake: Constant Work Rate vs. All-Out Sprint Exercise. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2011, 300, 700–707. [Google Scholar] [CrossRef]
- Ducrocq, G.; Blain, G.M. Relationship between Neuromuscular Fatigue, Muscle Activation and the Work Done above the Critical Power during Severe Intensity Exercise. Exp. Physiol. 2022, 107, 312–325. [Google Scholar] [CrossRef]
- Gladwell, V.F.; Sandercock, G.R.H.; Birch, S.L. Cardiac Vagal Activity Following Three Intensities of Exercise in Humans. Clin. Physiol. Funct. Imaging 2010, 30, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Ebersole, K.T.; Cornell, D.J.; Flees, R.J.; Shemelya, C.M.; Noel, S.E. Contribution of the Autonomic Nervous System to Recovery in Firefighters. J. Athl. Train. 2020, 55, 1001–1008. [Google Scholar] [CrossRef] [PubMed]
- Kramer, M.; Thomas, E.J.; Pettitt, R.W. Critical Speed and Finite Distance Capacity: Norms for Athletic and Non-Athletic Groups. Eur. J. Appl. Physiol. 2020, 120, 861–872. [Google Scholar] [CrossRef]
- Jagim, A.R.; Luedke, J.A.; Dobbs, W.C.; Almonroeder, T.; Markert, A.; Zapp, A.; Askow, A.T.; Kesler, R.M.; Fields, J.B.; Jones, M.T.; et al. Physiological Demands of a Self-Paced Firefighter Air-Management Course and Determination of Work Efficiency. J. Funct. Morphol. Kinesiol. 2023, 8, 21. [Google Scholar] [CrossRef]
- Michaelides, M.A.; Parpa, K.M.; Henry, L.J.; Thompson, G.B.; Brown, B.S. Assessment of Physical Fitness Aspects and Their Relationship to Firefighters’ Job Abilities. J. Strength Cond. Res. 2011, 25, 956–965. [Google Scholar] [CrossRef]
- Rhea, M.R.; Alvar, B.A.; Gray, R. Physical Fitness and Job Performance of Firefighters. J. Strength Cond. Res. 2004, 18, 348–352. [Google Scholar] [CrossRef]
- Elsner, K.L.; Kolkhorst, F.W. Metabolic Demands of Simulated Firefighting Tasks. Ergonomics 2008, 51, 1418–1425. [Google Scholar] [CrossRef]
- Gendron, P.; Freiberger, E.; Laurencelle, L.; Trudeau, F.; Lajoie, C. Greater Physical Fitness Is Associated with Better Air Ventilation Efficiency in Firefighters. Appl. Ergon. 2015, 47, 229–235. [Google Scholar] [CrossRef]
- Skinner, T.L.; Kelly, V.G.; Boytar, A.N.; Peeters, G. (Geeske); Rynne, S.B. Aviation Rescue Firefighters Physical Fitness and Predictors of Task Performance. J. Sci. Med. Sport 2020, 23, 1228–1233. [Google Scholar] [CrossRef]
- Kiss, P.; De Meester, M.; Maes, C.; De Vriese, S.; Kruse, A.; Braeckman, L. Cardiorespiratory Fitness in a Representative Sample of Belgian Firefighters. Occup. Med. 2014, 64, 589–594. [Google Scholar] [CrossRef]
- McKinney, Z.J.; Bovard, R.S.; Starchook-Moore, M.N.; Ronneberg, K.; Xi, M.; Bredeson, D.M.; Schwartz, E.C.; Thelen, S.L.; Nash, T.L.; Dickinson, M.; et al. Cardiorespiratory Fitness of Firefighters Initial Results of a Multi-Phased Study. J. Occup. Environ. Med. 2021, 63, 57–63. [Google Scholar] [CrossRef] [PubMed]
- Mendelson, B.J.; Marciniak, R.A.; Wahl, C.A.; Ebersole, K.T. Body Composition Is Related to Maximal Effort Treadmill Test Time in Firefighters. Healthcare 2023, 11, 1607. [Google Scholar] [CrossRef] [PubMed]
- Lyons, J.; Allsopp, A.; Bilzon, J. Influences of Body Composition upon the Relative Metabolic and Cardiovascular Demands of Load-Carriage. Occup. Med. 2005, 55, 380–384. [Google Scholar] [CrossRef] [PubMed]
- Ryan, E.D.; Laffan, M.R.; Trivisonno, A.J.; Gerstner, G.R.; Mota, J.A.; Giuliani, H.K.; Pietrosimone, B.G. Neuromuscular Determinants of Simulated Occupational Performance in Career Firefighters. Appl. Ergon. 2022, 98, 103555. [Google Scholar] [CrossRef]
- Cornell, D.J.; Noel, S.E.; Zhang, X.; Ebersole, K.T. Influence of Body Composition on Post-Exercise Parasympathetic Reactivation of Firefighter Recruits. Int. J. Environ. Res. Public Health 2021, 18, 339. [Google Scholar] [CrossRef]
- Collins, J.; Leach, O.; Dorff, A.; Linde, J.; Kofoed, J.; Sherman, M.; Proffit, M.; Gifford, J.R. Critical Power and Work-Prime Account for Variability in Endurance Training Adaptations Not Captured by VO2max. J. Appl. Physiol. 2022, 133, 986–1000. [Google Scholar] [CrossRef]
- Clark, I.E.; West, B.M.; Reynolds, S.K.; Murray, S.R.; Pettitt, R.W. Applying the Critical Velocity Model for an Off-Season Interval Training Program. J. Strength Cond. Res. 2013, 27, 3335–3341. [Google Scholar] [CrossRef]
- Kramer, M.; Thomas, E.J.; Pretorius, C. Application of the Force-Velocity-Power Concept to the 3-Min All-out Running Test. Int. J. Sports Med. 2022, 43, 1196–1205. [Google Scholar] [CrossRef]
- Fahy, R.; Evarts, B.; Stein, G.P. US Fire Department Profile 2020: Key Findings Background and Objectives; National Fire Protection Association: Quincy, MA, USA, 2022. [Google Scholar]
- Storer, T.W.; Dolezal, B.A.; Abrazado, M.L.; Smith, D.L.; Batalin, M.A.; Tseng, C.-H.; Cooper, C.B.; Phaser, T.; Group, S. Firefighter Health and Fitness Assessment: A Call to Action. J. Strength Cond. Res. 2014, 28, 661–671. [Google Scholar] [CrossRef]
- Poston, W.S.C.; Haddock, C.K.; Jahnke, S.A.; Jitnarin, N.; Tuley, B.C.; Kales, S.N. The Prevalence of Overweight, Obesity, and Substandard Fitness in a Population-Based Firefighter Cohort. J. Occup. Environ. Med. 2011, 53, 266–273. [Google Scholar] [CrossRef]
FF | CON | |
---|---|---|
Age (yrs) | 34.00 ± 7.43 a | 24.56 ± 4.48 |
Height (m) | 1.79 ± 0.02 | 1.78 ± 0.14 |
Weight (kg) | 91.62 ± 16.81 | 83.57 ± 14.94 |
Percent Body Fat (%) | 16.27 ± 7.25 | 13.07 ± 4.33 |
VO2PEAK (mL/kg/min) | 46.27 ± 8.96 | 49.27 ± 4.72 |
GRIPNORM (kg/kg) | 1.13 ± 0.25 | 1.36 ± 0.29 |
CV (m/s) | 3.05 ± 0.46 | 3.20 ± 0.51 |
D′ (m) | 103.75 ± 44.23 | 127.65 ± 51.76 |
MAX-TM | 3MT | |||
---|---|---|---|---|
FF | CON | FF | CON | |
HRREST (bpm) | 75.56 ± 12.03 | 71.56 ± 9.76 | 82.56 ± 11.16 | 82.00 ± 13.32 |
HRPEAK (bpm) | 183.22 ± 9.30 | 193.00 ± 6.42 | 181.89 ± 4.62 | 189.00 ± 8.23 |
LA−PRE (mmol/L) | 1.37 ± 0.53 | 3.32 ± 3.81 | 4.47 ± 1.29 | 6.05 ± 2.38 |
LA−POST (mmol/L) | 9.86 ± 2.82 | 12.44 ± 2.03 | 12.37 ± 2.18 * | 14.94 ± 2.90 * |
MAX-TM | 3MT | |||
---|---|---|---|---|
FF | CON | FF | CON | |
HR Decay (HRRτ, % MHR) | 139.46 ± 54.76 | 143.84 ± 29.75 | 126.08 ± 38.63 | 165.57 ± 62.33 |
HR Asymptote (HR∞, % MHR) | 48.39 ± 5.71 | 49.97 ± 8.19 | 52.39 ± 4.57 | 48.57 ± 9.04 |
HR Amplitude (HRamp, % MHR) ‡ | 50.56 ± 5.04 | 49.05 ± 8.19 | 43.56 ± 4.81 | 46.91 ± 8.74 |
HF | LF | HF | LF | |
HR Decay (HRRτ, % MHR) | 151.16 ± 64.31 | 132.14 ± 26.66 | 133.46 ± 42.11 | 158.20 ± 64.31 |
HR Asymptote (HR∞, % MHR) | 45.16 ± 7.54 | 53.20 ± 2.80 | 49.49 ± 6.88 | 51.47 ± 7.83 |
HR Amplitude (HRamp, % MHR) ‡ | 53.67 ± 7.18 | 45.92 ± 2.85 | 45.97 ± 4.92 | 44.51 ± 8.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mendelson, B.J.; Ebersole, K.T.; Brau, S.D.; Ebersole, N.T. Exploration of Heart Rate Recovery After Maximal Treadmill and Three-Minute All-Out Shuttle Tests in Firefighters. Fire 2025, 8, 20. https://doi.org/10.3390/fire8010020
Mendelson BJ, Ebersole KT, Brau SD, Ebersole NT. Exploration of Heart Rate Recovery After Maximal Treadmill and Three-Minute All-Out Shuttle Tests in Firefighters. Fire. 2025; 8(1):20. https://doi.org/10.3390/fire8010020
Chicago/Turabian StyleMendelson, Benjamin J., Kyle T. Ebersole, Scott D. Brau, and Nathan T. Ebersole. 2025. "Exploration of Heart Rate Recovery After Maximal Treadmill and Three-Minute All-Out Shuttle Tests in Firefighters" Fire 8, no. 1: 20. https://doi.org/10.3390/fire8010020
APA StyleMendelson, B. J., Ebersole, K. T., Brau, S. D., & Ebersole, N. T. (2025). Exploration of Heart Rate Recovery After Maximal Treadmill and Three-Minute All-Out Shuttle Tests in Firefighters. Fire, 8(1), 20. https://doi.org/10.3390/fire8010020