Polarization-Sensitive Electro-Optic Sampling of Elliptically-Polarized Terahertz Pulses: Theoretical Description and Experimental Demonstration
Abstract
:1. Introduction
2. Theory
2.1. Multilayer Model
2.2. Frequency-Domain Description
2.3. Precise Polarization Spectroscopy with Aid of PS-EO Sampling
2.4. Retrival of Elliptically-Polarized Terahertz Time-Domain E-Field Waveforms
3. Experiment
3.1. Polarization Spectroscopy
3.2. Retrieval of the Elliptically-Polarized Terahertz Time-Domain Waveform
4. Conclusions
Funding
Conflicts of Interest
References
- Auston, D.H.; Cheung, K.P.; Smith, P.R. Picosecond photoconducting Hertzian dipoles. Appl. Phys. Lett. 1984, 45, 284–286. [Google Scholar] [CrossRef]
- Auston, D.H.; Nuss, M.C. Electrooptic generation and detection of femtosecond electrical transients. J. Quantum Electron. 1988, 24, 184–197. [Google Scholar] [CrossRef]
- Peiponen, K.-E.; Zeitler, J.A.; Kuwata-Gonokami, M. Terahertz Spectroscopy and Imaging; Springer: Berlin/Heidelberg, Germary, 2013. [Google Scholar]
- Grischkowsky, D.; Keiding, S.; van Exter, M.; Fattinger, C. Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors. J. Opt. Soc. Am. B 1990, 7, 2006–2015. [Google Scholar] [CrossRef]
- Mittleman, D.M.; Cunningham, J.; Nuss, M.C.; Geva, M. Noncontact semiconductor wafer characterization with the terahertz Hall effect. Appl. Phys. Lett. 1997, 71, 16–18. [Google Scholar] [CrossRef]
- Park, B.C.; Kim, T.-H.; Sim, K.I.; Kang, B.; Kim, J.W.; Cho, B.; Jeong, K.-H.; Cho, M.-H.; Kim, J.H. Terahertz single conductance quantum and topological phase transitions in topological insulator Bi2Se3 ultrathin films. Nat. Commun. 2015, 6, 6552. [Google Scholar] [CrossRef] [PubMed]
- Giorgianni, F.; Chiadroni, E.; Rovere, A.; Guidi, M.C.; Perucchi, A.; Bellaveglia, M.; Castellano, M.; di Giovenale, D.; Pirro, G.D.; Ferrario, M.; et al. Strong nonlinear terahertz response induced by Dirac surface states in Bi2Se3 topological insulator. Nat. Commun. 2016, 7, 11421. [Google Scholar] [CrossRef] [Green Version]
- Yamashita, G.; Matsubara, E.; Nagai, M.; Kim, C.; Akiyama, H.; Kanemitsu, Y.; Ashida, M. Sensitive monitoring of photocarrier densities in the active layer of a photovoltaic device with time-resolved terahertz reflection spectroscopy. Appl. Phys. Lett. 2017, 110, 071108. [Google Scholar] [CrossRef] [Green Version]
- Obraztsov, P.A.; Lyashenko, D.; Chizhov, P.A.; Konishi, K.; Nemoto, N.; Kuwata-Gonokami, M.; Welch, E.; Obraztsov, A.N.; Zakhidov, A. Ultrafast zero-bias photocurrent and terahertz emission in hybrid perovskites. Commun. Phys. 2018, 1, 14. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zhang, X.-C. Free-space electro-optic sampling of terahertz beams. Appl. Phys. Lett. 1995, 67, 3523–3525. [Google Scholar] [CrossRef]
- Wu, Q.; Litz, M.; Zhang, X.-C. Broadband detection capability of ZnTe electro-optic field detectors. Appl. Phys. Lett. 1996, 68, 2924–2926. [Google Scholar] [CrossRef]
- Nahata, A.; Weling, A.S.; Heinz, T.F. A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling. Appl. Phys. Lett. 1996, 69, 2321–2323. [Google Scholar] [CrossRef]
- Winnewisser, C.; Jepsen, P.U.; Schall, M.; Schyja, V.; Helm, H. Electro-optic detection of THz radiation in LiTaO3, LiNbO3 and ZnTe. Appl. Phys. Lett. 1997, 70, 3069–3071. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.-C. 7 terahertz broadband GaP electro-optic sensor. Appl. Phys. Lett. 1997, 70, 1784–1786. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.-C. Free-space electro-optics sampling of mid-infrared pulses. Appl. Phys. Lett. 1997, 71, 1285–1286. [Google Scholar] [CrossRef]
- Huber, R.; Brodschelm, A.; Tauser, F.; Leitenstorfer, A. Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz. Appl. Phys. Lett. 2000, 76, 3191–3193. [Google Scholar] [CrossRef]
- Han, P.Y.; Zhang, X.-C. Free-space coherent broadband terahertz time-domain spectroscopy. Meas. Sci. Technol. 2001, 12, 1747–1756. [Google Scholar] [CrossRef]
- Liu, K.; Xu, J.; Zhang, X.-C. GaSe crystals for broadband terahertz wave detection. Appl. Phys. Lett. 2004, 85, 863–865. [Google Scholar] [CrossRef]
- Kübler, C.; Huber, R.; Tübel, S.; Leitenstorfer, A. Ultrabroadband detection of multi-terahertz field transients with GaSe electro-optic sensors: Approaching the near infrared. Appl. Phys. Lett. 2004, 85, 3360–3362. [Google Scholar] [CrossRef]
- Kampfrath, T.; Nötzold, J.; Wolf, M. Sampling of broadband terahertz pulses with thick electro-optic crystals. Appl. Phys. Lett. 2007, 90, 231113. [Google Scholar] [CrossRef]
- Sell, A.; Scheu, R.; Leitenstorfer, A.; Huber, R. Field-resolved detection of phase-locked infrared transients from a compact Er:fiber system tunable between 55 and 107 THz. Appl. Phys. Lett. 2008, 93, 251107. [Google Scholar] [CrossRef]
- Porer, M.; Ménard, J.-M.; Huber, R. Shot noise reduced terahertz detection via spectrally postfiltered electro-optic sampling. Opt. Lett. 2014, 39, 2435–2438. [Google Scholar] [CrossRef] [PubMed]
- Riek, C.; Sulzer, P.; Seeger, M.; Moskalenko, A.S.; Burkard, G.; Seletskiy, D.V.; Leitenstorfer, A. Subcycle quantum electrodynamics. Nature 2017, 541, 376–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Keiber, S.; Sederberg, S.; Schwarz, A.; Trubetskov, M.; Pervak, V.; Krausz, F.; Karpowicz, N. Electro-optic sampling of near-infrared waveforms. Nat. Photonics 2016, 10, 159–162. [Google Scholar] [CrossRef]
- Nagai, M.; Tanaka, K. Generation and detection of terahertz radiation by electro-optical process in GaAs using 1.56μm fiber laser pulses. Appl. Phys. Lett. 2004, 85, 3974–3976. [Google Scholar] [CrossRef]
- Pradarutti, B.; Matthäus, G.; Riehemann, S.; Notni, G.; Limpert, J.; Nolte, S.; Tünnermann, A. Electro-optical sampling of ultrashort THz pulses by fs-laser pulses at 530 nm with BaTiO3. J. Appl. Phys. 2007, 102, 093105. [Google Scholar] [CrossRef]
- Han, P.Y.; Tani, M.; Pan, F.; Zhang, X.-C. Use of the organic crystal DAST for terahertz beam applications. Opt. Lett. 2000, 25, 675–677. [Google Scholar] [CrossRef]
- Pradarutti, B.; Matthäus, G.; Riehemann, S.; Notni, G.; Nolte, S.; Tünnermann, A. Highly efficient terahertz electro-optic sampling by material optimization at 1060 nm. Opt. Commn. 2008, 281, 5031–5035. [Google Scholar] [CrossRef]
- Cunningham, P.D.; Hayden, L.M. Optical properties of DAST in the THz range. Opt. Express 2010, 18, 23620–23625. [Google Scholar] [CrossRef]
- Carnio, B.N.; Greig, S.R.; Firby, C.J.; Zawilski, K.T.; Schunemann, P.G.; Elezzabi, A.Y. Terahertz electro-optic detection using a 〈012〉-cut chalcopyrite ZnGeP2 crystal. Appl. Phys. Lett. 2016, 108, 261109. [Google Scholar] [CrossRef]
- Hendry, E.; Koeberg, M.; Wang, F.; Zhang, H.; Donega, C.d.; Vanmaekelbergh, D.; Bonn, M. Direct Observation of Electron-to-Hole Energy Transfer in CdSe Quantum Dots. Phys. Rev. Lett. 2006, 96, 057408. [Google Scholar] [CrossRef]
- Müller, T.; Parz, W.; Unterrainer, K.; Sauvage, S.; Houel, J.; Boucaud, P.; Miard, A.; Lemaître, A. Ultrafast resonant terahertz response of excitons in semiconductor quantum dots. Phys. Rev. B 2008, 77, 035314. [Google Scholar] [CrossRef]
- Bowlan, P.; Martinez-Moreno, E.; Reimann, K.; Elsaesser, T.; Woerner, M. Ultrafast terahertz response of multilayer graphene in the nonperturbative regime. Phys. Rev. B 2014, 89, 041408(R). [Google Scholar] [CrossRef]
- Riek, C.; Seletskiy, D.V.; Moskalenko, A.S.; Schmidt, J.F.; Krauspe, P.; Eckart, S.; Eggert, S.; Burkard, G.; Leitenstorfer, A. Direct sampling of electric-field vacuum fluctuations. Science 2015, 350, 420–423. [Google Scholar] [CrossRef] [Green Version]
- Moskalenko, A.; Riek, C.; Seletskiy, D.; Burkard, G.; Leitenstorfer, A. Paraxial Theory of Direct Electro-optic Sampling of the Quantum Vacuum. Phys. Rev. Lett. 2015, 115, 263601. [Google Scholar] [CrossRef] [PubMed]
- Watanabe, S.; Yasumatsu, N.; Oguchi, K.; Takeda, M.; Suzuki, T.; Tachizaki, T. A Real-Time Terahertz Time-Domain Polarization Analyzer with 80-MHz Repetition-Rate Femtosecond Laser Pulses. Sensors 2013, 13, 3299–3312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wiesauer, K.; Jördens, C. Recent Advances in Birefringence Studies at THz Frequencies. J. Infrared Millim. Terahertz Waves 2013, 34, 663–681. [Google Scholar] [CrossRef] [Green Version]
- Nagashima, T.; Tani, M.; Hangyo, M. Polarization-sensitive THz-TDS and its Application to Anisotropy Sensing. J. Infrared Millim. Terahertz Waves 2013, 34, 740–775. [Google Scholar] [CrossRef]
- Philip, E.; Güngördü, M.Z.; Pal, S.; Kung, P.; Kim, S.M. Review on Polarization Selective Terahertz Metamaterials: From Chiral Metamaterials to Stereometamaterials. J. Infrared Millim. Terahertz Waves 2017, 38, 1047–1066. [Google Scholar] [CrossRef]
- Rutz, F.; Hasek, T.; Koch, M. Terahertz birefringence of liquid crystal polymers. Appl. Phys. Lett. 2006, 89, 221911. [Google Scholar] [CrossRef]
- Jördens, C.; Scheller, M.; Wichmann, M.; Mikulics, M.; Wiesauer, K.; Koch, M. Terahertz birefringence for orientation analysis. Appl. Opt. 2009, 48, 2037–2044. [Google Scholar] [CrossRef]
- Katletz, S.; Pfleger, M.; Pühringer, H.; Mikulics, M.; Vieweg, N.; Peters, O.; Scherger, B.; Scheller, M.; Koch, M.; Wiesauer, K. Polarization sensitive terahertz imaging: Detection of birefringence and optical axis. Opt. Express 2012, 20, 23025–23035. [Google Scholar] [CrossRef] [PubMed]
- Unuma, T.; Umemoto, A.; Kishida, H. Anisotropic terahertz complex conductivities in oriented polythiophene films. Appl. Phys. Lett. 2013, 103, 213305. [Google Scholar] [CrossRef]
- Iwasaki, H.; Nakamura, M.; Komatsubara, N.; Okano, M.; Nakasako, M.; Sato, H.; Watanabe, S. Controlled Terahertz Birefringence in Stretched Poly(lactic acid) Films Investigated by Terahertz Time-Domain Spectroscopy and Wide-Angle X-ray Scattering. J. Phys. Chem. B 2017, 121, 6951–6957. [Google Scholar] [CrossRef] [PubMed]
- Okano, M.; Fujii, M.; Watanabe, S. Anisotropic percolation conduction in elastomer-carbon black composites investigated by polarization-sensitive terahertz time-domain spectroscopy. Appl. Phys. Lett. 2017, 111, 221902. [Google Scholar] [CrossRef]
- Matsunaga, R.; Tsuji, N.; Makise, K.; Terai, H.; Aoki, H.; Shimano, R. Polarization-resolved terahertz third-harmonic generation in a single-crystal superconductor NbN: Dominance of the Higgs mode beyond the BCS approximation. Phys. Rev. B 2017, 96, 020505(R). [Google Scholar] [CrossRef]
- Katsumi, K.; Tsuji, N.; Hamada, Y.I.; Matsunaga, R.; Schneeloch, J.; Zhong, R.D.; Gu, G.D.; Aoki, H.; Gallais, Y.; Shimano, R. Higgs Mode in the d-Wave Superconductor Bi2Sr2CaCu2O8+x Driven by an Intense Terahertz Pulse. Phys. Rev. Lett. 2018, 120, 117001. [Google Scholar] [CrossRef] [PubMed]
- Stephens, P.J. Theory of vibrational circular dichroism. J. Phys. Chem. 1985, 89, 748–752. [Google Scholar] [CrossRef]
- Nafie, L.A. Vibrational Optical Activity: Principles and Applications; Wiley: Hoboken, NJ, USA, 2011. [Google Scholar]
- Nagashima, T.; Hangyo, M. Measurement of complex optical constants of a highly doped Si wafer using terahertz ellipsometry. Appl. Phys. Lett. 2001, 79, 3917–3919. [Google Scholar] [CrossRef]
- Neshat, M.; Armitage, N.P. Terahertz time-domain spectroscopic ellipsometry: Instrumentation and calibration. Opt. Express 2012, 20, 29063–29075. [Google Scholar] [CrossRef]
- Marsik, P.; Sen, K.; Khmaladze, J.; Yazdi-Rizi, M.; Mallett, B.P.P.; Bernhard, C. Terahertz ellipsometry study of the soft mode behavior in ultrathin SrTiO3 films. Appl. Phys. Lett. 2016, 108, 052901. [Google Scholar] [CrossRef]
- Rubano, A.; Braun, L.; Wolf, M.; Kampfrath, T. Mid-infrared time-domain ellipsometry: Application to Nb-doped SrTiO3. Appl. Phys. Lett. 2012, 101, 081103. [Google Scholar] [CrossRef]
- Deng, L.Y.; Teng, J.H.; Zhang, L.; Wu, Q.Y.; Liu, H.; Zhang, X.H.; Chua, S.J. Extremely high extinction ratio terahertz broadband polarizer using bilayer subwavelength metal wire-grid structure. Appl. Phys. Lett. 2012, 101, 011101. [Google Scholar] [CrossRef]
- Bychanok, D.S.; Shuba, M.V.; Kuzhir, P.P.; Maksimenko, S.A.; Kubarev, V.V.; Kanygin, M.A.; Sedelnikova, O.V.; Bulusheva, L.G.; Okotrub, A.V. Anisotropic electromagnetic properties of polymer composites containing oriented multiwall carbon nanotubes in respect to terahertz polarizer applications. J. Appl. Phys. 2013, 114, 114304. [Google Scholar] [CrossRef]
- Lu, B.; Wang, H.; Shen, J.; Yang, J.; Mao, H.; Xia, L.; Zhang, W.; Wang, G.; Peng, X.-Y.; Wang, D. A high extinction ratio THz polarizer fabricated by double-bilayer wire grid structure. AIP Adv. 2016, 6, 025215. [Google Scholar] [CrossRef] [Green Version]
- Masson, J.-B.; Gallot, G. Terahertz achromatic quarter-wave plate. Opt. Lett. 2006, 31, 265–267. [Google Scholar] [CrossRef]
- Li, S.; Yang, Z.; Wang, J.; Zhao, M. Broadband terahertz circular polarizers with single- and double-helical array metamaterials. J. Opt. Soc. Am. A 2011, 28, 19–23. [Google Scholar] [CrossRef] [PubMed]
- Nagai, M.; Mukai, N.; Minowa, Y.; Ashida, M.; Suzuki, T.; Takayanagi, J.; Ohtake, H. Achromatic wave plate in THz frequency region based on parallel metal plate waveguides with a pillar array. Opt. Express 2015, 23, 4641–4649. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Gong, Y. Achromatic terahertz quarter waveplate based on silicon grating. Opt. Express 2015, 23, 14897–14902. [Google Scholar] [CrossRef] [PubMed]
- Nouman, M.T.; Hwang, J.H.; Jang, J.-H. Ultrathin Terahertz Quarter-wave plate based on Split Ring Resonator and Wire Grating hybrid Metasurface. Sci. Rep. 2016, 6, 39062. [Google Scholar] [CrossRef] [Green Version]
- Chiang, S.-P.; Wang, C.-T.; Lai, J.-Y.; Tsai, C.-L.; Li, C.-C.; Jau, H.-C.; Hou, C.-T.; Yang, S.-D.; Lin, T.-H. Broadband mid-infrared polarization rotator based on optically addressable LCs. Opt. Express 2017, 25, 16123–16129. [Google Scholar] [CrossRef]
- Notake, T.; Zhang, B.; Gong, Y.; Minamide, H. Development of a Stokes polarimeter system for high terahertz frequency region. Jpn. J. Appl. Phys. 2014, 53, 092601. [Google Scholar] [CrossRef]
- Dong, H.; Gong, Y.; Paulose, V.; Hong, M. Polarization state and Mueller matrix measurements in terahertz-time domain spectroscopy. Opt. Commun. 2009, 282, 3671–3675. [Google Scholar] [CrossRef]
- Morris, C.M.; Aguilar, R.V.; Stier, A.V.; Armitage, N.P. Polarization modulation time-domain terahertz polarimetry. Opt. Express 2012, 20, 12303–12317. [Google Scholar] [CrossRef] [PubMed]
- Planken, P.C.M.; Nienhuys, H.-K.; Bakker, H.J.; Wenckebach, T. Measurement and calculation of the orientation dependence of terahertz pulse detection in ZnTe. J. Opt. Soc. Am. B 2001, 18, 313–317. [Google Scholar] [CrossRef]
- van der Valk, N.C.J.; Wenckebach, T.; Planken, P.C.M. Full mathematical description of electro-optic detection in optically isotropic crystals. J. Opt. Soc. Am. B 2004, 21, 622–631. [Google Scholar] [CrossRef]
- Yasumatsu, N.; Watanabe, S. Precise real-time polarization measurement of terahertz electromagnetic waves by a spinning electro-optic sensor. Rev. Sci. Instrum. 2012, 83, 023104. [Google Scholar] [CrossRef] [PubMed]
- Hirota, Y.; Hattori, R.; Tani, M.; Hangyo, M. Polarization modulation of terahertz electromagnetic radiation by four-contact photoconductive antenna. Opt. Express 2006, 14, 4486–4493. [Google Scholar] [CrossRef]
- Makabe, H.; Hirota, Y.; Tani, M.; Hangyo, M. Polarization state measurement of terahertz electromagnetic radiation by three-contact photoconductive antenna. Opt. Express 2007, 15, 11650–11657. [Google Scholar] [CrossRef]
- Hussain, A.; Andrews, S.R. Ultrabroadband polarization analysis of terahertz pulses. Opt. Express 2008, 16, 7251–7257. [Google Scholar] [CrossRef]
- Bulgarevich, D.S.; Watanabe, M.; Shiwa, M.; Niehues, G.; Nishizawa, S.; Tani, M. A polarization-sensitive 4-contact detector for terahertz time-domain spectroscopy. Opt. Express 2014, 22, 10332–10340. [Google Scholar] [CrossRef]
- Castro-Camus, E.; Lloyd-Hughes, J.; Johnston, M.B. Polarization-sensitive terahertz detection by multicontact photoconductive receivers. Appl. Phys. Lett. 2015, 86, 254102. [Google Scholar] [CrossRef]
- Mosley, C.D.W.; Failla, M.; Lloyd-Hughes, D.P.J. Terahertz spectroscopy of anisotropic materials using beams with rotatable polarization. Sci. Rep. 2017, 7, 12337. [Google Scholar] [CrossRef] [Green Version]
- Lü, Z.; Zhang, D.; Meng, C.; Sun, L.; Zhou, Z.; Zhao, Z.; Yuan, J. Polarization-sensitive air-biased-coherent-detection for terahertz wave. Appl. Phys. Lett. 2012, 101, 081119. [Google Scholar] [CrossRef]
- Xiaofei, L.U.; Zhang, X.-C. Investigation of ultra-broadband terahertz time-domain spectroscopy with terahertz wave gas photonics. Front. Optoelectron. 2014, 7, 121–155. [Google Scholar]
- van der Valk, N.C.J.; van der Marel, W.A.M.; Planken, P.C.M. Terahertz polarization imaging. Opt. Lett. 2005, 30, 2802–2804. [Google Scholar] [CrossRef] [PubMed]
- Sanjuan, F.; Gaborit, G.; Coutanz, J.-L. Full electro-optic terahertz time-domain spectrometer for polarimetric studies. Appl. Opt. 2018, 57, 6055–6060. [Google Scholar] [CrossRef] [PubMed]
- Nemoto, N.; Higuchi, T.; Kanda, N.; Konishi, K.; Kuwata-Gonokami, M. Highly precise and accurate terahertz polarization measurements based on electro-optic sampling with polarization modulation of probe pulse. Opt. Express 2014, 22, 17915–17929. [Google Scholar] [CrossRef] [PubMed]
- Yasumatsu, N.; Kasatani, A.; Oguchi, K.; Watanabe, S. High-speed terahertz time-domain polarimeter based on an electro-optic modulation technique. Appl. Phys. Express 2014, 7, 092401. [Google Scholar] [CrossRef] [Green Version]
- Bakker, H.J.; Cho, G.C.; Kurz, H.; Wu, Q.; Zhang, X.-C. Distortion of terahertz pulses in electro-optic sampling. J. Opt. Soc. Am. B 1998, 15, 1795–1801. [Google Scholar] [CrossRef]
- Leitenstorfer, A.; Hunsche, S.; Shah, J.; Nuss, M.C.; Knox, W.H. Detectors and sources for ultrabroadband electro-optic sampling: Experiment and theory. Appl. Phys. Lett. 1999, 74, 1516–1518. [Google Scholar] [CrossRef]
- Gallot, G.; Grischkowsky, D. Electro-optic detection of terahertz radiation. J. Opt. Soc. Am. B 1999, 16, 1204–1212. [Google Scholar] [CrossRef]
- Faure, J.; Tilborg, J.V.; Kaindl, R.A.; Leemans, W.P. Modelling Laser-Based Table-Top THz Sources: Optical Rectification, Propagation and Electro-Optic Sampling. Opt. Quantum Electron. 2004, 36, 681–697. [Google Scholar] [CrossRef]
- Jamison, S.P.; MacLeod, A.M.; Berden, G.; Jaroszynski, D.A.; Gillespie, W.A. Temporally resolved electro-optic effect. Opt. Lett. 2006, 31, 1753–1755. [Google Scholar] [CrossRef] [PubMed]
- Tomasino, A.; Parisi, A.; Stivala, S.; Livreri, P.; Cino, A.C.; Busacca, A.C.; Peccianti, M.; Morandotti, R. Wideband THz Time Domain Spectroscopy based on Optical Rectification and Electro-Optic Sampling. Sci. Rep. 2013, 3, 3116. [Google Scholar] [CrossRef] [Green Version]
- Van Tilborg, J.; Schroeder, C.B. Terahertz radiation as a bunch diagnostic for laser-wakefield-accelerated electron bunches. Phys. Plasmas 2006, 13, 056704. [Google Scholar] [CrossRef] [Green Version]
- Yellampalle, B.; Kim, K.Y.; Rodriguez, G.; Glownia, J.H.; Taylor, A.J. Details of electro-optic terahertz detection with a chirped probe pulse. Opt. Express 2007, 15, 1376–1383. [Google Scholar] [CrossRef] [PubMed]
- Teo, S.M.; -Okai, B.K.O.; Werleya, C.A.; Nelson, K.A. Invited Article: Single-shot THz detection techniques optimized for multidimensional THz spectroscopy. Rev. Sci. Instrum. 2015, 86, 051301. [Google Scholar] [CrossRef]
- Bakunov, M.I.; Gorelov, S.D.; Tani, M. Nonellipsometric Noncollinear Electrooptic Sampling of Terahertz Waves: A Comprehensive Theory. IEEE Trans. Terahertz Sci. Technol. 2016, 6, 473–479. [Google Scholar] [CrossRef]
- Tani, M.; Bakunov, M.I.; Yamamoto, K.; Horita, K.; Kinoshita, T.; Nagase, T. Detection of Terahertz Pulsed Radiation by Using Heterodyne Electro-Optic Sampling Scheme. Electron. Commn. Jpn. 2014, 97, 8–15. [Google Scholar] [CrossRef]
- Kovalev, S.P.; Kitaeva, G.K. Terahertz electro-optical detection: Optical phase or energy measurements. J. Opt. Soc. Am. B 2013, 30, 2650–2656. [Google Scholar] [CrossRef]
- Oguchi, K.; Yasumatsu, N.; Watanabe, S. Polarization detection of terahertz radiation via the electro-optic effect using zinc-blende crystal symmetry. J. Opt. Soc. Am. B 2014, 31, 3170–3180. [Google Scholar] [CrossRef]
- Oguchi, K.; Iwasaki, H.; Okano, M.; Watanabe, S. Polarization-sensitive electro-optic detection of terahertz wave using three different types of crystal symmetry: Toward broadband polarization spectroscopy. Appl. Phys. Lett. 2016, 108, 011105. [Google Scholar] [CrossRef]
- Oguchi, K.; Okano, M.; Watanabe, S. Retrieving the undistorted terahertz time-domain electric-field vector from the electro-optic effect. J. Opt. Soc. Am. B 2017, 34, 1946–1956. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, X.-C. Ultrafast electro-optic field sensors. Appl. Phys. Lett. 1996, 68, 1604–1606. [Google Scholar] [CrossRef]
- Brunken, M.; Genz, H.; Göttlicher, P.; Hessler, C.; Hüning, M.; Loos, H.; Richter, A.; Schlarb, H.; Schmüser, P.; Simrock, S.; et al. Electro-Optic Sampling at the TESLA Test Accelerator: Experimental Setup and First Results, TESLA Report 2003-11. 2003.
- Oguchi, K.; Yasumatsu, N.; Watanabe, S. Time-domain picture of the terahertz vector waveform measured by the electro-optic sampling method using the crystal symmetry. In Proceedings of the 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014. [Google Scholar]
- Shen, Y.R. The Principles of Nonlinear Optics; Wiley: Hoboken, NJ, USA, 1984. [Google Scholar]
- Boyd, R.W. Nonlinear Optics, Academic. 1992.
- Yariv, A.; Yeh, P. Optical Waves in Crystals; Wiley: Hoboken, NJ, USA, 2003. [Google Scholar]
- Kampfrath, T.; Sell, A.; Klatt, G.; Pashkin, A.; Mährlein, S.; Dekorsy, T.; Wolf, M.; Fiebig, M.; Leitenstorfer, A.; Huber, R. Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 2011, 5, 31–34. [Google Scholar] [CrossRef]
- Vicario, C.; Ruchert, C.; Ardana-Lamas, F.; Derlet, P.M.; Tudu, B.; Luning, J.; Hauri, C.P. Off-resonant magnetization dynamics phase-locked to an intense phase-stable terahertz transient. Nat. Photonics 2013, 7, 720–723. [Google Scholar] [CrossRef]
- Gallot, G.; Zhang, J.; McGowan, R.W.; Jeon, T.; Grischkowsky, D. Measurements of the THz absorption and dispersion of ZnTe and their relevance to the electro-optic detection of THz radiation. Appl. Phys. Lett. 1999, 74, 3450–3452. [Google Scholar] [CrossRef] [Green Version]
- Tripathi, S.R.; Aoki, M.; Takeda, M.; Asahi, T.; Hosako, I.; Hiromoto, N. Accurate complex refractive index with standard deviation of ZnTe measured by terahertz time domain spectroscopy. Jpn. J. Appl. Phys. 2013, 52, 042401. [Google Scholar] [CrossRef]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oguchi, K.; Okano, M.; Watanabe, S. Polarization-Sensitive Electro-Optic Sampling of Elliptically-Polarized Terahertz Pulses: Theoretical Description and Experimental Demonstration. Particles 2019, 2, 70-89. https://doi.org/10.3390/particles2010006
Oguchi K, Okano M, Watanabe S. Polarization-Sensitive Electro-Optic Sampling of Elliptically-Polarized Terahertz Pulses: Theoretical Description and Experimental Demonstration. Particles. 2019; 2(1):70-89. https://doi.org/10.3390/particles2010006
Chicago/Turabian StyleOguchi, Kenichi, Makoto Okano, and Shinichi Watanabe. 2019. "Polarization-Sensitive Electro-Optic Sampling of Elliptically-Polarized Terahertz Pulses: Theoretical Description and Experimental Demonstration" Particles 2, no. 1: 70-89. https://doi.org/10.3390/particles2010006
APA StyleOguchi, K., Okano, M., & Watanabe, S. (2019). Polarization-Sensitive Electro-Optic Sampling of Elliptically-Polarized Terahertz Pulses: Theoretical Description and Experimental Demonstration. Particles, 2(1), 70-89. https://doi.org/10.3390/particles2010006