Probing the Dark Matter Capture Rate in a Local Population of Brown Dwarfs with IceCube Gen 2 †
Abstract
:1. Introduction
2. DM Capture and Annihilation in BDs
2.1. DM Capture Rate
2.2. DM Annihilation Rate
2.3. Neutrino Spectrum
3. Source Selection
4. Results
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kumar, S.S. The Helmholtz-Kelvin Time Scale for Stars of Very Low Mass. Astrophys. J. 1963, 137, 1126. [Google Scholar] [CrossRef]
- Kumar, S.S. The Structure of Stars of Very Low Mass. Astrophys. J. 1963, 137, 1121. [Google Scholar] [CrossRef]
- Hayashi, C.; Nakano, T. Evolution of Stars of Small Masses in the Pre-Main-Sequence Stages. Prog. Theor. Phys. 1963, 30, 460–474. [Google Scholar] [CrossRef]
- Nakajima, T.; Oppenheimer, B.R.; Kulkarni, S.R.; Golimowski, D.A.; Matthews, K.; Durrance, S.T. Discovery of a cool brown dwarf. Nature 1995, 378, 463–465. [Google Scholar] [CrossRef]
- Rebolo, R.; Zapatero Osorio, M.R.; Martín, E.L. Discovery of a brown dwarf in the Pleiades star cluster. Nature 1995, 377, 129–131. [Google Scholar] [CrossRef]
- Berger, E.; Ball, S.; Becker, K.M.; Clarke, M.; Frail, D.A.; Fukuda, T.A.; Hoffman, I.M.; Mellon, R.; Momjian, E.; Murphy, N.W.; et al. Discovery of radio emission from the brown dwarf lp944-20. Nature 2001, 410, 338. [Google Scholar] [CrossRef]
- Rutledge, R.E.; Basri, G.; Martin, E.; Bildsten, L. Chandra detection of an X-ray flare from the brown dwarf lp 944-20. Astrophys. J. Lett. 2000, 538, L141. [Google Scholar] [CrossRef]
- Leane, R.K.; Smirnov, J. Exoplanets as new sub-GeV dark matter detectors. Phys. Rev. Lett. 2021, 126, 161101. [Google Scholar] [CrossRef]
- Leane, R.K.; Linden, T.; Mukhopadhyay, P.; Toro, N. Celestial-Body Focused Dark Matter Annihilation Throughout the Galaxy. Phys. Rev. D 2021, 103, 075030. [Google Scholar] [CrossRef]
- Bhattacharjee, P.; Calore, F.; Serpico, P.D. Gamma-ray flux limits from brown dwarfs: Implications for dark matter annihilating into long-lived mediators. Phys. Rev. D 2023, 107, 043012. [Google Scholar] [CrossRef]
- Garani, R.; Palomares-Ruiz, S. Evaporation of dark matter from celestial bodies. J. Cosmol. Astropart. Phys. 2022, 5, 42. [Google Scholar] [CrossRef]
- Haberl, F. The Magnificent Seven: Magnetic fields and surface temperature distributions. Astrophysics 2007, 308, 181. [Google Scholar] [CrossRef]
- Martin, S.P. A Supersymmetry primer. Adv. Ser. Direct. High Energy Phys. 1998, 18, 1–98. [Google Scholar] [CrossRef]
- Holdom, B. Two U(1)’s and ϵ Charge Shifts. Phys. Lett. B 1986, 166, 196–198. [Google Scholar] [CrossRef]
- Holdom, B. Searching for ϵ Charges and a New U(1). Phys. Lett. B 1986, 178, 65–70. [Google Scholar] [CrossRef]
- Okun, L.B. Limits of Electrodynamics: Paraphotons? Sov. Phys. JETP 1982, 56, 502. [Google Scholar]
- Kobzarev, I.Y.; Okun, L.B.; Pomeranchuk, I.Y. On the possibility of experimental observation of mirror particles. Sov. J. Nucl. Phys. 1966, 3, 837–841. [Google Scholar]
- Dasgupta, B.; Gupta, A.; Ray, A. Dark matter capture in celestial objects: Light mediators, self-interactions, and complementarity with direct detection. J. Cosmol. Astropart. Phys. 2020, 10, 23. [Google Scholar] [CrossRef]
- Nguyen, T.T.Q.; Tait, T.M.P. Bounds on long-lived dark matter mediators from neutron stars. Phys. Rev. D 2023, 107, 115016. [Google Scholar] [CrossRef]
- Abdallah, J.; Araujo, H.; Arbey, A.; Ashkenazi, A.; Belyaev, A.; Berger, J.; Boehm, C.; Boveia, A.; Brennan, A.; Brooke, J.; et al. Simplified Models for Dark Matter Searches at the LHC. Phys. Dark Univ. 2015, 9–10, 8–23. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alves, A.A., Jr.; Amin, N.M.; et al. Search for GeV-scale dark matter annihilation in the Sun with IceCube DeepCore. Phys. Rev. D 2022, 105, 062004. [Google Scholar] [CrossRef]
- Miranda, L.S.; Basegmez du Pree, S.; Ng, K.C.Y.; Cheek, A.; Arina, C. Towards detecting super-GeV dark matter via annihilation to neutrinos. J. Cosmol. Astropart. Phys. 2023, 8, 6. [Google Scholar] [CrossRef]
- Bose, D.; Sarkar, S. Impact of galactic distributions in celestial capture of dark matter. Phys. Rev. D 2023, 107, 063010. [Google Scholar] [CrossRef]
- Klangburam, T.; Pongkitivanichkul, C. Bounds on ALP-Mediated Dark Matter Models from Celestial Objects. arXiv 2023, arXiv:2311.15681. [Google Scholar]
- Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; et al. Constraining Dark Matter Models from a Combined Analysis of Milky Way Satellites with the Fermi Large Area Telescope. Phys. Rev. Lett. 2011, 107, 241302. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W.B.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bechtol, K.; Bellazzini, R.; et al. Fermi LAT Search for Photon Lines from 30 to 200 GeV and Dark Matter Implications. Phys. Rev. Lett. 2010, 104, 091302. [Google Scholar] [CrossRef]
- Abramowski, A.; Acero, F.; Aharonian, F.; Akhoerjanian, A.G.; Anton, G.; Barnacka, A.; Barres de Almeida, U.; Bazer-Bachi, A.R.; Becherini, Y.; Becker, J.; et al. H.E.S.S. constraints on Dark Matter annihilations towards the Sculptor and Carina Dwarf Galaxies. Astropart. Phys. 2011, 34, 608–616. [Google Scholar] [CrossRef]
- Abdo, A.A.; Ackermann, M.; Ajello, M.; Baldini, L.; Ballet, J.; Barbiellini, G.; Bastieri, D.; Bechtol, K.; Bellazzini, R.; Berenji, B.; et al. Constraints on Cosmological Dark Matter Annihilation from the Fermi-LAT Isotropic Diffuse Gamma-Ray Measurement. J. Cosmol. Astropart. Phys. 2010, 04, 014. [Google Scholar] [CrossRef]
- Aleksić, J.; Alvarez, E.A.; Antonelli, L.A.; Antoranz, P.; Asensio, M.; Backes, M.; Barrio, J.A.; Bastieri, D.; Becerra González, J.; Bednarek, W.; et al. Searches for Dark Matter annihilation signatures in the Segue 1 satellite galaxy with the MAGIC-I telescope. J. Cosmol. Astropart. Phys. 2011, 06, 035. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Neutrino astronomy with the next generation IceCube Neutrino Observatory. arXiv 2019, arXiv:1911.02561. [Google Scholar]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Altman, D.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Search for steady point-like sources in the astrophysical muon neutrino flux with 8 years of IceCube data. Eur. Phys. J. C 2019, 79, 234. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Amin, N.M.; Andeen, K.; Anderson, T.; et al. IceCube Data for Neutrino Point-Source Searches Years 2008–2018. arXiv 2021, arXiv:2101.09836. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alameddine, J.M.; Alispach, C.; Alves, A.A., Jr.; Amin, N.M.; et al. Improved Characterization of the Astrophysical Muon–neutrino Flux with 9.5 Years of IceCube Data. Astrophys. J. 2022, 928, 50. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Agarwalla, S.K.; Aguilar, J.; Ahlers, M.; Alameddine, J.M.; Amin, N.M.B.; Andeen, K.; Anton, G.; et al. The next generation neutrino telescope: IceCube-Gen2. Proc. Sci. 2023, 444, 994. [Google Scholar] [CrossRef]
- Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Alves, A.A., Jr.; Amin, N.M.; An, R.; et al. A muon-track reconstruction exploiting stochastic losses for large-scale Cherenkov detectors. J. Instrum. 2021, 16, P08034. [Google Scholar] [CrossRef]
- Ishihara, A. The IceCube Upgrade—Design and Science Goals. Proc. Sci. 2021, 358, 1031. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Time-Integrated Neutrino Source Searches with 10 Years of IceCube Data. Phys. Rev. Lett. 2020, 124, 051103. [Google Scholar] [CrossRef]
- Navarro, J.F.; Frenk, C.S.; White, S.D.M. A Universal density profile from hierarchical clustering. Astrophys. J. 1997, 490, 493–508. [Google Scholar] [CrossRef]
- Calore, F.; Cirelli, M.; Derome, L.; Genolini, Y.; Maurin, D.; Salati, P.; Serpico, P.D. AMS-02 antiprotons and dark matter: Trimmed hints and robust bounds. SciPost Phys. 2022, 12, 163. [Google Scholar] [CrossRef]
- Bramante, J.; Delgado, A.; Martin, A. Multiscatter stellar capture of dark matter. Phys. Rev. 2017, D96, 063002. [Google Scholar] [CrossRef]
- Ilie, C.; Pilawa, J.; Zhang, S. Comment on “Multiscatter stellar capture of dark matter”. Phys. Rev. D 2020, 102, 048301. [Google Scholar] [CrossRef]
- Sofue, Y. Rotation Curve and Mass Distribution in the Galactic Center—From Black Hole to Entire Galaxy. Publ. Astron. Soc. Japan 2013, 65, 118. [Google Scholar] [CrossRef]
- Dasgupta, B.; Laha, R. Neutrinos in IceCube/KM3NeT as probes of Dark Matter Substructures in Galaxy Clusters. Phys. Rev. D 2012, 86, 093001. [Google Scholar] [CrossRef]
- Pospelov, M.; Ritz, A.; Voloshin, M.B. Secluded WIMP Dark Matter. Phys. Lett. B 2008, 662, 53–61. [Google Scholar] [CrossRef]
- Pospelov, M.; Ritz, A. Astrophysical Signatures of Secluded Dark Matter. Phys. Lett. B 2009, 671, 391–397. [Google Scholar] [CrossRef]
- Batell, B.; Pospelov, M.; Ritz, A.; Shang, Y. Solar Gamma Rays Powered by Secluded Dark Matter. Phys. Rev. D 2010, 81, 075004. [Google Scholar] [CrossRef]
- Dedes, A.; Giomataris, I.; Suxho, K.; Vergados, J.D. Searching for Secluded Dark Matter via Direct Detection of Recoiling Nuclei as well as Low Energy Electrons. Nucl. Phys. B 2010, 826, 148–173. [Google Scholar] [CrossRef]
- Fortes, E.C.F.S.; Pleitez, V.; Stecker, F.W. Secluded WIMPs, dark QED with massive photons, and the galactic center gamma-ray excess. Astropart. Phys. 2016, 74, 87–95. [Google Scholar] [CrossRef]
- Okawa, S.; Tanabashi, M.; Yamanaka, M. Relic Abundance in a Secluded Dark Matter Scenario with a Massive Mediator. Phys. Rev. D 2017, 95, 023006. [Google Scholar] [CrossRef]
- Yamamoto, Y. Atomki anomaly and the Secluded Dark Sector. EPJ Web Conf. 2018, 168, 06007. [Google Scholar] [CrossRef]
- Chen, F.; Cline, J.M.; Frey, A.R. Nonabelian dark matter: Models and constraints. Phys. Rev. D 2009, 80, 083516. [Google Scholar] [CrossRef]
- Rothstein, I.Z.; Schwetz, T.; Zupan, J. Phenomenology of Dark Matter annihilation into a long-lived intermediate state. J. Cosmol. Astropart. Phys. 2009, 7, 18. [Google Scholar] [CrossRef]
- Berlin, A.; Hooper, D.; Krnjaic, G. Thermal Dark Matter From A Highly Decoupled Sector. Phys. Rev. D 2016, 94, 095019. [Google Scholar] [CrossRef]
- Cirelli, M.; Panci, P.; Petraki, K.; Sala, F.; Taoso, M. Dark Matter’s secret liaisons: Phenomenology of a dark U(1) sector with bound states. J. Cosmol. Astropart. Phys. 2017, 5, 36. [Google Scholar] [CrossRef]
- Cirelli, M.; Gouttenoire, Y.; Petraki, K.; Sala, F. Homeopathic Dark Matter, or how diluted heavy substances produce high energy cosmic rays. J. Cosmol. Astropart. Phys. 2019, 2, 14. [Google Scholar] [CrossRef]
- Silk, J.; Olive, K.A.; Srednicki, M. The Photino, the Sun and High-Energy Neutrinos. Phys. Rev. Lett. 1985, 55, 257–259. [Google Scholar] [CrossRef] [PubMed]
- Krauss, L.M.; Srednicki, M.; Wilczek, F. Solar System Constraints and Signatures for Dark Matter Candidates. Phys. Rev. D 1986, 33, 2079–2083. [Google Scholar] [CrossRef] [PubMed]
- Jungman, G.; Kamionkowski, M. Neutrinos from particle decay in the sun and earth. Phys. Rev. D 1995, 51, 328–340. [Google Scholar] [CrossRef]
- Bell, N.F.; Petraki, K. Enhanced neutrino signals from dark matter annihilation in the Sun via metastable mediators. J. Cosmol. Astropart. Phys. 2011, 4, 3. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Altmann, D.; Auffenberg, J.; Bai, X.; et al. Search for dark matter annihilations in the Sun with the 79-string IceCube detector. Phys. Rev. Lett. 2013, 110, 131302. [Google Scholar] [CrossRef]
- Baratella, P.; Cirelli, M.; Hektor, A.; Pata, J.; Piibeleht, M.; Strumia, A. PPPC 4 DMν: A Poor Particle Physicist Cookbook for Neutrinos from Dark Matter annihilations in the Sun. JCAP 2014, 03, 053. [Google Scholar] [CrossRef]
- Danninger, M.; Rott, C. Solar WIMPs unravelled: Experiments, astrophysical uncertainties, and interactive tools. Phys. Dark Univ. 2014, 5–6, 35–44. [Google Scholar] [CrossRef]
- Smolinsky, J.; Tanedo, P. Dark Photons from Captured Inelastic Dark Matter Annihilation: Charged Particle Signatures. Phys. Rev. D 2017, 95, 075015, Erratum in Phys. Rev. D 2017, 96, 099902. [Google Scholar] [CrossRef]
- Leane, R.K.; Ng, K.C.Y.; Beacom, J.F. Powerful Solar Signatures of Long-Lived Dark Mediators. Phys. Rev. D 2017, 95, 123016. [Google Scholar] [CrossRef]
- Albert, A.; Alfaro, R.; Alvarez, C.; Arceo, R.; Arteaga-Velázquez, J.C.; Rojas, D.A.; Ayala Solares, H.A.; Belmont-Moreno, E.; BenZvi, S.Y.; Brisbois, C.; et al. Constraints on Spin-Dependent Dark Matter Scattering with Long-Lived Mediators from TeV Observations of the Sun with HAWC. Phys. Rev. D 2018, 98, 123012. [Google Scholar] [CrossRef]
- Nisa, M.U.; Beacom, J.F.; BenZvi, S.Y.; Leane, R.K.; Linden, T.; Ng, K.C.Y.; Peter, A.H.G.; Zhou, B. The Sun at GeV–TeV Energies: A New Laboratory for Astroparticle Physics. arXiv 2019, arXiv:1903.06349. [Google Scholar]
- Niblaeus, C.; Beniwal, A.; Edsjo, J. Neutrinos and gamma rays from long-lived mediator decays in the Sun. J. Cosmol. Astropart. Phys. 2019, 11, 11. [Google Scholar] [CrossRef]
- Xu, Y. Measurement of TeV dark particles due to decay of heavy dark matter in the earth core at IceCube. Phys. Dark Univ. 2021, 32, 100809. [Google Scholar] [CrossRef]
- Bell, N.F.; Dent, J.B.; Sanderson, I.W. Solar gamma ray constraints on dark matter annihilation to secluded mediators. Phys. Rev. D 2021, 104, 023024. [Google Scholar] [CrossRef]
- Leane, R.K.; Linden, T. First Analysis of Jupiter in Gamma Rays and a New Search for Dark Matter. Phys. Rev. Lett. 2023, 131, 071001. [Google Scholar] [CrossRef]
- Xu, Y. Measurement of high energy dark matter from the Sun at IceCube. J. High Energy Phys. 2021, 12, 035. [Google Scholar] [CrossRef]
- Bell, N.F.; Dolan, M.J.; Robles, S. Searching for dark matter in the Sun using Hyper-Kamiokande. J. Cosmol. Astropart. Phys. 2021, 11, 4. [Google Scholar] [CrossRef]
- Arkani-Hamed, N.; Finkbeiner, D.P.; Slatyer, T.R.; Weiner, N. A Theory of Dark Matter. Phys. Rev. D 2009, 79, 015014. [Google Scholar] [CrossRef]
- Ibarra, A.; Lopez Gehler, S.; Pato, M. Dark matter constraints from box-shaped gamma-ray features. J. Cosmol. Astropart. Phys. 2012, 7, 43. [Google Scholar] [CrossRef]
- Skrutskie, M.F.; Cutri, R.M.; Stiening, R.; Weinberg, M.D.; Schneider, S.; Carpenter, J.M.; Beichman, C.; Capps, R.; Chester, T.; Elias, J.; et al. The Two Micron All Sky Survey (2MASS). Astron. J. 2006, 131, 1163–1183. [Google Scholar] [CrossRef]
- York, D.G.; Adelman, J.; Anderson, J.E., Jr.; Anderson, S.F.; Annis, J.; Bahcall, N.A.; Bakken, J.; Barkhouser, R.; Bastian, S.; Berman, E.; et al. The sloan digital sky survey: Technical summary. Astron. J. 2000, 120, 1579. [Google Scholar] [CrossRef]
- Lawrence, A.; Warren, S.J.; Almaini, O.; Edge, A.C.; Hambly, N.C.; Jameson, R.F.; Lucas, P.; Casali, M.; Adamson, A.; Dye, S.; et al. The UKIRT Infrared Deep Sky Survey (UKIDSS). Mon. Not. Roy. Astron. Soc. 2007, 379, 1599–1617. [Google Scholar] [CrossRef]
- Delorme, P.; Willott, C.J.; Forveille, T.; Delfosse, X.; Reylé, C.; Bertin, E.; Albert, L.; Artigau, E.; Robin, A.C.; Allard, F.; et al. Finding ultracool brown dwarfs with MegaCam on CFHT: Method and first results. Astron. Astrophys. 2008, 484, 469–478. [Google Scholar] [CrossRef]
- Johnston, R. List of Brown Dwarfs. 2015. Available online: http://www.johnstonsarchive.net/astro/browndwarflist.html (accessed on 27 December 2015).
- Ye, Z.P.; Hu, F.; Tian, W.; Chang, Q.C.; Chang, Y.L.; Cheng, Z.S.; Gao, J.; Ge, T.; Gong, G.H.; Guo, J.; et al. Proposal for a neutrino telescope in South China Sea. arXiv 2022, arXiv:2207.04519. [Google Scholar]
- Omeliukh, A.; Abbasi, R.; Ackermann, M.; Adams, J.; Aguilar, J.; Ahlers, M.; Ahrens, M.; Alispach, C.M.; Allison, P.; Alves, A.A., Jr.; et al. Optimization of the optical array geometry for IceCube-Gen2. Proc. Sci. 2021, 395, 1184. [Google Scholar] [CrossRef]
- Jiang, H.; Jia, L.P.; Yue, Q.; Kang, K.J.; Cheng, J.P.; Li, Y.J.; Wong, H.T.; Agartioglu, M.; An, H.P.; Chang, J.; et al. Limits on Light Weakly Interacting Massive Particles from the First 102.8 kg × day Data of the CDEX-10 Experiment. Phys. Rev. Lett. 2018, 120, 241301. [Google Scholar] [CrossRef] [PubMed]
- Amole, C.; Ardid, M.; Arnquist, I.J.; Asner, D.M.; Baxter, D.; Behnke, E.; Bressler, M.; Broerman, B.; Cao, G.; Chen, C.J.; et al. Dark Matter Search Results from the Complete Exposure of the PICO-60 C3F8 Bubble Chamber. Phys. Rev. D 2019, 100, 022001. [Google Scholar] [CrossRef]
- Aprile, E.; Aalbers, J.; Agostini, F.; Alfonsi, M.; Althueser, L.; Amaro, F.D.; Antochi, V.C.; Angelino, E.; Arneodo, F.; Barg, D.; et al. Search for Light Dark Matter Interactions Enhanced by the Migdal Effect or Bremsstrahlung in XENON1T. Phys. Rev. Lett. 2019, 123, 241803. [Google Scholar] [CrossRef] [PubMed]
- Aguilar Sánchez, J.A. Indirect Searches for Dark Matter with IceCube. EPJ Web Conf. 2019, 207, 04006. [Google Scholar] [CrossRef]
- Bose, D.; Maity, T.N.; Ray, T.S. Neutrinos from captured dark matter annihilation in a galactic population of neutron stars. J. Cosmol. Astropart. Phys. 2022, 5, 1. [Google Scholar] [CrossRef]
- Maity, T.N.; Saha, A.K.; Mondal, S.; Laha, R. Neutrinos from the Sun can discover dark matter-electron scattering. arXiv 2023, arXiv:2308.12336. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhattacharjee, P.; Calore, F. Probing the Dark Matter Capture Rate in a Local Population of Brown Dwarfs with IceCube Gen 2. Particles 2024, 7, 489-501. https://doi.org/10.3390/particles7020028
Bhattacharjee P, Calore F. Probing the Dark Matter Capture Rate in a Local Population of Brown Dwarfs with IceCube Gen 2. Particles. 2024; 7(2):489-501. https://doi.org/10.3390/particles7020028
Chicago/Turabian StyleBhattacharjee, Pooja, and Francesca Calore. 2024. "Probing the Dark Matter Capture Rate in a Local Population of Brown Dwarfs with IceCube Gen 2" Particles 7, no. 2: 489-501. https://doi.org/10.3390/particles7020028
APA StyleBhattacharjee, P., & Calore, F. (2024). Probing the Dark Matter Capture Rate in a Local Population of Brown Dwarfs with IceCube Gen 2. Particles, 7(2), 489-501. https://doi.org/10.3390/particles7020028