Electron Screening in Laboratory Nuclear Reactions
Abstract
:1. Introduction
2. Electron Screening in the Laboratory
2.1. d(d,p)t and d(d,n)3He Reactions
2.2. 3He(d,p)4He Reaction
2.3. 6Li(p,α)3He, 6Li(d,α)4He, and 7Li(p,α)4He Reactions
2.4. 10B(p,α)7Be and 11B(p,α)8Be and 9Be(p,α)6Li and 9Be(p,d)8Be Reactions
2.5. Reactions with Heavier Targets or Incident Nuclei
Reaction | Uead | Ueexp | Remark | Reference | |
---|---|---|---|---|---|
1. | D(d,p)T | 20 eV | 15 ± 5 eV | molecular target | [8] |
2. | D(d,p)T | 20 eV | 19 ± 12 eV | Ti | [9] |
3. | D(d,p)T | 20 eV | 250 ± 15 eV 601 ± 23 eV | Pd Au/Pd/PdO heterostructure target | [10] |
4. | d(d,p)t | 39 eV | 309 ± 12 eV | Ta | [12] |
5. | d(d,p)t | 39 eV | 440 ± 40 eV ≤30 eV ≤30 eV 350 ± 30 eV 220 ± 20 eV 350 ± 40 eV 450 ± 50 eV 200 ± 20 eV 450 ± 80 eV 43 ± 20 eV 140 ± 20 eV 320 ± 40 eV 83 ± 20 eV 400 ± 40 eV 220 ± 20 eV 220 ± 30 eV 840 ± 70 eV 800 ± 70 eV 23 ± 10 eV 390 ± 60 eV 200 ± 20 eV 87 ± 20 eV 340 ± 14 eV 220 ± 20 eV 700 ± 70 eV 330 ± 30 eV 40 ± 50 eV 61 ± 20 eV 440 ± 50 eV ≤30 eV ≤30 eV 52 ± 20 eV 45 ± 20 eV 60 ± 20 eV | Mg Al Ti V Cr Mn Fe Co Ni Cu Zn Y Zr Nb Mo Ru Rh Pd Ag Cd Sn Hf Ta W Re Ir Pt Au Pb BeO B C Si Ge | [11] |
6. | d(d,p)t | 39 eV | 180 ± 40 eV 440 ± 40 eV 520 ± 50 eV 480 ± 60 eV 320 ± 70 eV 390 ± 50 eV 460 ± 60 eV 640 ± 70 eV 380 ± 40 eV 470 ± 50 eV 480 ± 50 eV 210 ± 30 eV 470 ± 60 eV 420 ± 50 eV 215 ± 30 eV 230 ± 40 eV 800 ± 90 eV 330 ± 40 eV 360 ± 40 eV 520 ± 50 eV 130 ± 20 eV 720 ± 70 eV 490 ± 70 eV 270 ± 30 eV 250 ± 30 eV 230 ± 30 eV 200 ± 40 eV 670 ± 50 eV 280 ± 50 eV 550 ± 90 eV 480 ± 50 eV 540 ± 60 eV ≤60 eV ≤60 eV ≤80 eV ≤30 eV ≤30 eV ≤30 eV ≤50 eV ≤30 eV ≤30 eV ≤70 eV ≤40 eV ≤40 eV ≤30 eV ≤60 eV ≤30 eV ≤70 eV ≤30 eV ≤30 eV ≤50 eV ≤50 eV ≤30 eV ≤30 eV ≤70 eV ≤50 eV ≤70 eV ≤40 eV | Be Mg Al V Cr Mn Fe Co Ni Cu Zn Sr Nb Mo Ru Rh Pd Ag Cd In Sn Sb Ba Ta W Re Ir Pt Au Tl Pb Bi C Si Ge BeO B Al2O3 CaO2 Sc Ti Y Zr Lu Hf La Ce Pr Nd Sm Eu Gd Tb Dy Ho Er Tm Yb | [13] |
7. | d(d,p)t | 39 eV | 675 ± 70 eV 530 ± 40 eV 530 ± 40 eV 465 ± 38 eV 480 ± 70 eV 640 ± 70 eV 480 ± 60 eV ≤30 eV ≤50 eV 250 ± 40 eV 295 ± 40 eV 290 ± 65 eV 320 ± 50 eV 270 ± 75 eV 205 ± 70 eV 265 ± 70 eV 370 ± 70 eV 245 ± 70 eV 200 ± 50 eV 190 ± 50 eV 314 ± 60 eV 120 ± 60 eV 340 ± 85 eV 340 ± 80 eV 340 ± 70 eV 165 ± 50 eV 360 ± 80 eV 260 ± 80 eV 110 ± 40 eV ≤50 eV | Pt 20 °C Pt 100 °C Pt 200 °C Pt 300 °C Pt 340 °C Co 20 °C Co 200 °C Ti −10 °C Ti 50 °C Ti 100 °C Ti 150 °C Ti 200 °C Sc 200 °C Y 200 °C Zr 200 °C Lu 200 °C Hf 200 °C La 200 °C Ce 200 °C Nd 200 °C Sm 200 °C Eu 200 °C Gd 200 °C Tb 200 °C Dy 200 °C Ho 200 °C Er 200 °C Tm 200 °C Yb 200 °C C 200 °C | [14] |
8. | 2H(d,p)3H | 80 eV | 191 ± 12 eV 295 ± 7 eV 302 ± 3 eV 296 ± 15 eV −20 ± 5 eV | AlD ZrD2 TaD PdD0.2 CD | [17] |
9. | d(d,p)t | 39 eV | 600 ± 20± 75 eV 310 ± 20± 50 eV 200 ± 15± 40 eV 70 ± 10± 40 eV 65 ± 10 ± 40 eV | PdO Pd Fe Au Ti | [18] |
10. | d(d,p)t, 2H(d,n)3He | 80 eV | 190 ± 15 eV 297 ± 8 eV 322 ± 15 eV | Al Zr Ta | [19] |
11. | 2H(d,p)3H | 80 eV | 105 ± 15 eV | [20,21] | |
12. | d(d,n)3He | 80 eV | 205 ± 35 eV 125 ± 34 eV 313 ± 58 eV | ZrD2 TiD2 TaD0.5 | [28] |
13. | D(3He,p)4He 3He(d,p)4He | 65 eV | 123 ± 9 eV 186 ± 9 eV | combined analysis, including [2,30] | [29] |
14. | 3He(d,p)4He | 65 eV | 120 ± 10 eV | d2 gas target | [2] |
15. | 3He(d,p)4He | 120 eV | 66 ± 4 eV | [2] | |
16. | 3He(3He,2p)4He | 240 eV | 294 ± 47 eV | [31,32] | |
17. | 3He(d,p)4He | 120 eV | 177 ± 29 eV | [33] | |
18. | D(3He,p)4He | 65 eV | 132 ± 9 eV | [34] | |
19. | 3He(d,p)4He | 120 eV | 219 ± 7 eV | [36] | |
20. | D(3He,p)4He | 65 eV | 109 ± 9 eV | [36] | |
21. | 2H(d,p)3H | 14 eV | 13.4 ± 0.6 eV | THM | [38] |
22. | 2H(d,n)3He | 14 eV | 11.7 ± 1.6 eV | THM | [38] |
23. | 6Li(p,α)3He 7Li(p,α)4He | 240 eV | 300 eV 210 eV | LiF | [42] |
24. | 6Li(p,α)3He | 240 eV | 440 ± 150 eV 470 ± 150 eV | molecular target LiF | [30] |
25. | 6Li(d,α)4He | 240 eV | 330 ± 120 eV 380 ± 250 eV | molecular target LiF | [30] |
26. | 7Li(p,α)4He | 240 eV | 300 ± 160 eV 300 ± 280 eV | molecular target LiF | [30] |
27. | 6Li(p,α)3He | 240 eV | 470 ± 150 eV 440 ± 150 eV | atomic target molecular target | [43] |
28. | 6Li(d,α)4He | 240 eV | 380 ± 250 eV 330 ± 120 eV | atomic target molecular target | [43] |
29. | 7Li(p,α)4He | 240 eV | 300 ± 280 eV 300 ± 160 eV | atomic target molecular target | [43] |
30. | 2H(6Li,α)4He | 240 eV | 320 ± 50 eV | THM | [44] |
31. | 6Li(d,α)4He | 240 eV | 130 ± 20 eV | [45] | |
32. | 6,7Li(d,α)4,5He | 240 eV | 1500 ± 310 eV 60 ± 150 eV | PdLix AuLix | [46] |
33. | 7Li(p,α)4He | 240 eV | 1280 ± 60 eV 3790 ± 330 eV 185 ± 150 eV | Li PdLi1% Li2WO4 | [48] |
34. | 6Li(p,α)3He | 240 eV | 320 ± 110 1320 ± 70 3760 ± 260 | Li2WO4 Li PdLi1% | [48] |
35. | 7Li(p,α)4He, reanalysis | 240 eV | 3680 ± 330 eV 1180 ± 60 eV | Pd94.1%Li5.9%. Li | [47] |
36. | 6Li(p,α)3He, reanalysis | 240 eV | 3710 ± 185 eV 1280 ± 70 eV | Pd94.1%Li5.9% Li | [47] |
37. | 1H( 7Li,α)4He | 240 eV | <600 eV <300 eV 1900 ± 600 eV 2800 ± 700 eV | Kapton Pd (no tensile stress) Pd (tensile stress applied) Pd77Ag23(tensile stress applied) | [50] |
38. | 1H(7Li,α)4He | 240 eV | 4100 ± 1000 eV 2400 ± 1000 eV 2300 ± 500 eV 2800 ± 1300 eV | Ni Zn Pd Pt | [51] |
39. | 11B(p,α)8Be | 340 eV | 430 ± 80 eV | [52] | |
40. | 11B(p,α0)8Be | 340 eV | 472 ± 160 eV | THM | [53] |
41. | 10B(p,α0)7Be | 340 eV | 240 ± 200 eV | THM | [54] |
42. | 9Be(p,α)6Li, 9Be(p,d)8Be | 240 eV | 900 ± 50 eV | [49] | |
43. | 9Be(p,α)6Li | 240 eV | 545 ± 98 eV | [55] | |
44. | 9Be(p,α)6Li | 240 eV | 676 ± 86 eV | THM | [56,57] |
45. | 50V(p,n)50Cr | 11 ± 2 keV 17 ± 2 keV Debye model calculations | 27 ± 9 keV (relative to VO2) 34 ± 11 keV(relative to VO2) | V PdV10% | [58] |
46. | 176Lu(p,n)176Hf | A shift in Lewis peak was observed | 32 ± 2 keV (relative to VO2) 33 ± 2 keV (relative to VO2) | V PdV10% | [58] |
47. | 55Mn(p,γ)56Fe, 55Mn(p,n)55Fe, 113Cd(p,n)113In, 115In(p,n)115Sn 50V(p,n)50Cr 51V(p,γ)52Cr | No shift in resonance energy | / | [51] | |
48. | 1H( 7Li,α)4He | 240 eV | 2.86 ± 0.19 keV | hard Pd foil | [62] |
49. | 1H(19F,αγ)16O | 2.19 keV | 18.7 ± 1.5 keV | hard Pd foil | [62] |
50. | 2H(19F,p)20F | 2.19 keV | 18.2 ± 3.3 keV 3.2 ± 1.9 keV | hard Pd foil soft Pd foil | [62] |
3. Some Theoretical Investigations
4. Future Prospects
5. Conclusions
Funding
Conflicts of Interest
References
- Assenbaum, H.J.; Langanke, K.; Rolfs, C. Effects of Electron Screening on Low-Energy Fusion Cross Sections. Z. Phys. A At. Nucl. 1987, 327, 461–468. [Google Scholar] [CrossRef]
- Engstler, S.; Krauss, A.; Neldner, K.; Rolfs, C.; Schröder, U.; Langanke, K. Effects of Electron Screening on the 3He(d, p)4He Low-Energy Cross Sections. Phys. Lett. B 1988, 202, 179–184. [Google Scholar] [CrossRef]
- Bracci, L.; Fiorentini, G.; Mezzorani, G. A Dynamical Calculation of the Electron Shielding for D-d Fusion. Phys. Lett. A 1990, 146, 128–133. [Google Scholar] [CrossRef]
- Rolfs, C.E.; Rodney, W.S. Cauldrons in the Cosmos: Nuclear Astrophysics, 1st ed.; University of Chicago Press: Chicago, IL, USA, 1988. [Google Scholar]
- Aliotta, M.; Langanke, K. Screening Effects in Stars and in the Laboratory. Front. Phys. 2022, 10, 942726. [Google Scholar] [CrossRef]
- Salpeter, E.-E. Electrons Screening and Thermonuclear Reactions. Aust. J. Phys. 1954, 7, 373. [Google Scholar] [CrossRef]
- Adelberger, E.G.; García, A.; Robertson, R.G.H.; Snover, K.A.; Balantekin, A.B.; Heeger, K.; Ramsey-Musolf, M.J.; Bemmerer, D.; Junghans, A.; Bertulani, C.A.; et al. Solar Fusion Cross Sections. II. The $pp$ Chain and CNO Cycles. Rev. Mod. Phys. 2011, 83, 195–245. [Google Scholar] [CrossRef]
- Greife, U.; Gorris, F.; Junker, M.; Rolfs, C.; Zahnow, D. Oppenheimer-Phillips Effect and Electron Screening in D+ d Fusion Reactions. Z. Phys. A Hadron. Nucl. 1995, 351, 107–112. [Google Scholar] [CrossRef]
- Yuki, H.; Sato, T.; Ohtsuki, T.; Yorita, T.; Aoki, Y.; Yamazaki, H.; Kasagi, J.; Ishii, K. Measurement of the D(d, p)T Reaction in Ti for 2.5 < Ed < 6.5 KeV and Electron Screening in Metal. J. Phys. Soc. Jpn. 1997, 66, 73–78. [Google Scholar]
- Yuki, H.; Kasagi, J.; Lipson, A.G.; Ohtsuki, T.; Baba, T.; Noda, T.; Lyakhov, B.F.; Asami, N. Anomalous Enhancement of DD Reaction in Pd and Au/Pd/PdO Heterostructure Targets under Low-Energy Deuteron Bombardment. JETP Lett. 1998, 68, 823–829. [Google Scholar] [CrossRef]
- Raiola, F.; Migliardi, P.; Gang, L.; Bonomo, C.; Gyürky, G.; Bonetti, R.; Broggini, C.; Christensen, N.E.; Corvisiero, P.; Cruz, J.; et al. Electron Screening in d(d,p)t for Deuterated Metals and the Periodic Table. Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 2002, 547, 193–199. [Google Scholar] [CrossRef]
- Raiola, F.; Migliardi, P.; Gyürky, G.; Aliotta, M.; Formicola, A.; Bonetti, R.; Broggini, C.; Campajola, L.; Corvisiero, P.; Costantini, H.; et al. Enhanced Electron Screening in d(d,p)t for Deuterated Ta. Eur. Phys. J. A 2002, 13, 377–382. [Google Scholar] [CrossRef]
- Raiola, F.; Gang, L.; Bonomo, C.; Gyürky, G.; Aliotta, M.; Becker, H.W.; Bonetti, R.; Broggini, C.; Corvisiero, P.; D’Onofrio, A.; et al. Enhanced Electron Screening in d(d,p)t for Deuterated Metals. Eur. Phys. J. A 2004, 19, 283–287. [Google Scholar] [CrossRef]
- Raiola, F.; Burchard, B.; Fülöp, Z.; Gyürky, G.; Zeng, S.; Cruz, J.; Di Leva, A.; Limata, B.; Fonseca, M.; Luis, H.; et al. Electron Screening in d(d, p)t for Deuterated Metals: Temperature Effects. J. Phys. G Nucl. Part. Phys. 2005, 31, 1141. [Google Scholar] [CrossRef]
- Ziegler, J.F.; Ziegler, M.D.; Biersack, J.P. SRIM – The Stopping and Range of Ions in Matter (2010). Nucl. Instrum. Methods Phys. Res. B 2010, 268, 1818–1823. [Google Scholar] [CrossRef]
- Bonomo, C.; Fiorentini, G.; Fülöp, Z.; Gang, L.; Gyürky, G.; Langanke, K.; Raiola, F.; Rolfs, C.; Somorjai, E.; Strieder, F.; et al. Enhanced Electron Screening in d(d,p)t for Deuterated Metals: A Possible Classical Explanation. Nucl. Phys. A 2003, 719, C37–C42. [Google Scholar] [CrossRef]
- Czerski, K.; Huke, A.; Heide, P.; Ruprecht, G. The 2H(d, p)3H Reaction in Metallic Media at Very Low Energies. Europhys. Lett. 2004, 68, 363. [Google Scholar] [CrossRef]
- Kasagi, J.; Yuki, H.; Baba, T.; Noda, T.; Ohtsuki, T.; Lipson, A.G. Strongly Enhanced DD Fusion Reaction in Metals Observed for KeV D + Bombardment. J. Phys. Soc. Jpn. 2002, 71, 2881–2885. [Google Scholar] [CrossRef]
- Czerski, K.; Huke, A.; Biller, A.; Heide, P.; Hoeft, M.; Ruprecht, G. Enhancement of the Electron Screening Effect for d + d Fusion Reactions in Metallic Environments. Europhys. Lett. 2001, 54, 449. [Google Scholar] [CrossRef]
- Kaczmarski, M.; Czerski, K.; Weissbach, D.; Kilic, A.I.; Ruprecht, G.; Huke, A. Threshold Resonance Contribution to the Thick Target $^2$H$(d,p)^3$H Reaction Yield. Acta Phys. Pol. B 2017, 48, 489. [Google Scholar] [CrossRef]
- Targosz-Sleczka, N.; Czerski, K.; Kaczmarski, M.; Weissbach, D.; Kiliç, A.I.; Ruprecht, G.; Huke, A.; Policastro, S. Electron Screening Effect in Nuclear Reactions in Metallic and Gaseous Targets. Acta Phys. Pol. B 2018, 49, 675. [Google Scholar] [CrossRef]
- Czerski, K.; Weissbach, D.; Kilic, A.I.; Ruprecht, G.; Huke, A.; Kaczmarski, M.; Targosz-Ślȩczka, N.; Maass, K. Screening and Resonance Enhancements of the 2H(d, p)3H Reaction Yield in Metallic Environments. EPL 2016, 113, 22001. [Google Scholar] [CrossRef]
- Czerski, K.; Targosz-Sleczka, N.; Kaczmarski, M. Deuteron-Deuteron Reaction Cross Sections at Very Low Energies. Acta Phys. Pol. B 2020, 51, 649. [Google Scholar] [CrossRef]
- Czerski, K.; Huke, A.; Martin, L.; Targosz, N.; Blauth, D.; Górska, A.; Heide, P.; Winter, H. Measurements of Enhanced Electron Screening in D+d Reactions under UHV Conditions. J. Phys. G Nucl. Part. Phys. 2008, 35, 014012. [Google Scholar] [CrossRef]
- Kowalska, A.; Czerski, K.; Horodek, P.; Siemek, K.; Kaczmarski, M.; Targosz-Ślęczka, N.; Valat, M.; Dubey, R.; Pyszniak, K.; Turek, M.; et al. Crystal Lattice Defects in Deuterated Zr in Presence of O and C Impurities Studied by PAS and XRD for Electron Screening Effect. Materials 2023, 16, 6255. [Google Scholar] [CrossRef]
- Czerski, K. Deuteron-Deuteron Nuclear Reactions at Extremely Low Energies. Phys. Rev. C 2022, 106, L011601. [Google Scholar] [CrossRef]
- Czerski, K.; Dubey, R.; Kaczmarski, M.; Kowalska, A.; Targosz-Ślęczka, N.; Das Haridas, G.; Valat, M. Indications of Electron Emission from the Deuteron-Deuteron Threshold Resonance. Phys. Rev. C 2024, 109, L021601. [Google Scholar] [CrossRef]
- Bystritsky, V.M.; Bystritskii, V.M.; Dudkin, G.N.; Filipowicz, M.; Gazi, S.; Huran, J.; Kobzev, A.P.; Mesyats, G.A.; Nechaev, B.A.; Padalko, V.N.; et al. Measurement of Astrophysical S-Factors and Electron Screening Potentials for d(d,n)He3 Reaction in ZrD2, TiD2 and TaD0.5 Targets in the Ultralow Energy Region Using Plasma Accelerator. Nucl. Phys. A 2012, 889, 93–104. [Google Scholar] [CrossRef]
- Prati, P.; Arpesella, C.; Bartolucci, F.; Becker, H.W.; Bellotti, E.; Broggini, C.; Corvisiero, P.; Fiorentini, G.; Fubini, A.; Gervino, G.; et al. Electron Screening in the D+3He Fusion Reaction. Z. Phys. A Hadron. Nucl. 1994, 350, 171–176. [Google Scholar] [CrossRef]
- Engstler, S.; Raimann, G.; Angulo, C.; Greife, U.; Rolfs, C.; Schröder, U.; Somorjai, E.; Kirch, B.; Langanke, K. Test for Isotopic Dependence of Electron Screening in Fusion Reactions. Phys. Lett. B 1992, 279, 20–24. [Google Scholar] [CrossRef]
- Junker, M.; Arpesella, C.; Bellotti, E.; Broggini, C.; Corvisiero, P.; D’Alessandro, A.; Fiorentini, G.; Fubini, A.; Gervino, G.; Greife, U.; et al. The Cross Section of 3He(3He,2p)4He Measured at Solar Energies. Nucl. Phys. B Proc. Suppl. 1999, 70, 382–385. [Google Scholar] [CrossRef]
- Bonetti, R.; Broggini, C.; Campajola, L.; Corvisiero, P.; D’alessandro, A.; Dessalvi, M.; D’onofrio, A.; Fubini, A.; Gervino, G.; Gialanella, L.; et al. First Measurement of the 3He(3He,2p)4He Cross Section down to the Lower Edge of the Solar Gamow Peak. Phys. Rev. Lett. 1999, 82, 5205. [Google Scholar] [CrossRef]
- Geist, W.H.; Brune, C.R.; Karwowski, H.J.; Ludwig, E.J.; Veal, K.D.; Hale, G.M. The 3He(d→,p)4He Reaction at Low Energies. Phys. Rev. C 1999, 60, 54003. [Google Scholar] [CrossRef]
- Zavatarelli, S.; Corvisiero, P.; Costantini, H.; Moroni, P.G.P.; Prati, P.; Bonetti, R.; Guglielmetti, A.; Broggini, C.; Campajol, L.; Formicola, A.; et al. The D(3He,p)4He Fusion Reaction: Electron Screening Effect and Astrophysical S(E) Factor at Low Energies. Nucl. Phys. A 2001, 688, 514–517. [Google Scholar] [CrossRef]
- Costantini, H.; Formicola, A.; Junker, M.; Bonetti, R.; Broggini, C.; Campajola, L.; Corvisiero, P.; D’Onofrio, A.; Fubini, A.; Gervino, G.; et al. Stopping Power, Electron Screening and the Astrophysical S(E) Factor of d(3He,p)4He Supported in Part by BMBF (06BO812) and Social European Fund.1. Phys. Lett. B 2000, 482, 43–49. [Google Scholar] [CrossRef]
- Aliotta, M.; Raiola, F.; Gyürky, G.; Formicola, A.; Bonetti, R.; Broggini, C.; Campajola, L.; Corvisiero, P.; Costantini, H.; D’Onofrio, A.; et al. Electron Screening Effect in the Reactions 3He(d,p)4He and d(3He,p)4He☆☆Supported in Part by INFN, BMBF (06BO812), DFG (436UNG113-146) and OTKA (T025465). Nucl. Phys. A 2001, 690, 790–800. [Google Scholar] [CrossRef]
- Typel, S.; Baur, G. Theory of the Trojan–Horse Method. Ann. Phys. 2003, 305, 228–265. [Google Scholar] [CrossRef]
- Tumino, A.; Spartà, R.; Spitaleri, C.; Mukhamedzhanov, A.M.; Typel, S.; Pizzone, R.G.; Tognelli, E.; Degl’Innocenti, S.; Burjan, V.; Kroha, V.; et al. NEW DETERMINATION OF THE 2H(d,p)3H AND 2H(d,n)3He REACTION RATES AT ASTROPHYSICAL ENERGIES. Astrophys. J. 2014, 785, 96. [Google Scholar] [CrossRef]
- Lipoglavšek, M.; Markelj, S.; Mihovilovič, M.; Petrovič, T.; Štajner, S.; Vencelj, M.; Vesić, J. Observation of Electron Emission in the Nuclear Reaction between Protons and Deuterons. Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 2017, 773, 553–556. [Google Scholar] [CrossRef]
- Bystritsky, V.M.; Chumakov, D.K.; Dudkin, G.N.; Filipowicz, M.; Krylov, A.R.; Nechaev, B.A.; Nurkin, A.; Padalko, V.N.; Pen’kov, F.M.; Philippov, A.V.; et al. Determination of the Enhancement Factor and the Electron Screening Potential in the D(3He,p)4He Reaction Using TiD Targets. Eur. Phys. J. A 2020, 56, 60. [Google Scholar] [CrossRef]
- Bystritsky, V.M.; Dudkin, G.N.; Krylov, A.R.; Nechaev, B.A.; Nurkin, A.; Padalko, V.N.; Varlachev, V.A.; Shuvalov, E.N.; Pen’kov, F.M.; Tuleushev, Y.Z.; et al. Investigation of the D(3He, p)4He Reaction on ZrD Targets in the Energy Region of 16–34 KeV. Nucl. Phys. A 2019, 990, 29–46. [Google Scholar] [CrossRef]
- Schröder, U.; Engstler, S.; Krauss, A.; Neldner, K.; Rolfs, C.; Somorjai, E.; Langanke, K. Search for Electron Screening of Nuclear Reactions at Sub-Coulomb Energies. Nucl. Inst. Methods Phys. Res. B 1989, 40–41, 466–469. [Google Scholar] [CrossRef]
- Engstler, S.; Raimann, G.; Angulo, C.; Greife, U.; Rolfs, C.; Schröder, U.; Somorjai, E.; Kirch, B.; Langanke, K. Isotopic Dependence of Electron Screening in Fusion Reactions. Z. Phys. A Hadron. Nucl. 1992, 342, 471–482. [Google Scholar] [CrossRef]
- Musumarra, A.; Pizzone, R.G.; Blagus, S.; Bogovac, M.; Figuera, P.; Lattuada, M.; Milin, M.; Miljanić, Ð.; Pellegriti, M.G.; Rendić, D.; et al. Improved Information on the 2H(6Li,α)4He Reaction Extracted via the “Trojan Horse” Method. Phys. Rev. C 2001, 64, 68801. [Google Scholar] [CrossRef]
- Czerski, K.; Huke, A.; Bucka, H.; Heide, P.; Ruprecht, G.; Unrau, B. Subthreshold Resonance in 6Li(d,α)4He Reaction and Its Astrophysical Implications. Phys. Rev. C 1997, 55, 1517–1522. [Google Scholar] [CrossRef]
- Kasagi, J.; Yuki, H.; Baba, T.; Noda, T.; Taguchi, J.; Shimokawa, M.; Galster, W. Strongly Enhanced Li + D Reaction in Pd Observed in Deuteron Bombardment on PdLix with Energies between 30 and 75 KeV. J. Phys. Soc. Jpn. 2004, 73, 608. [Google Scholar] [CrossRef]
- Cruz, J.; Luis, H.; Fonseca, M.; Fülöp, Z.; Gyürky, G.; Raiola, F.; Aliotta, M.; Kettner, K.U.; Jesus, A.P.; Ribeiro, J.P.; et al. Experimental Study of Proton-Induced Nuclear Reactions in 6,7Li. J. Phys. G Nucl. Part. Phys. 2008, 35, 014004. [Google Scholar] [CrossRef]
- Cruz, J.; Fülöp, Z.; Gyürky, G.; Raiola, F.; Di Leva, A.; Limata, B.; Fonseca, M.; Luis, H.; Schürmann, D.; Aliotta, M.; et al. Electron Screening in 7Li(p,α)α and 6Li(p,α)3He for Different Environments. Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 2005, 624, 181–185. [Google Scholar] [CrossRef]
- Zahnow, D.; Rolfs, C.; Schmidt, S.; Trautvetter, H.P. Low-Energy S(E) Factor of 9Be(p,α)6Li and 9Be(p,d)8Be. Z. Für Phys. A Hadron. Nucl. 1997, 359, 211–218. [Google Scholar] [CrossRef]
- Lipoglavšek, M.; Čadež, I.; Markelj, S.; Pelicon, P.; Vavpetič, P. Electron Screening in the 1H(7Li,α)4He Reaction. Eur. Phys. J. A 2010, 44, 71–75. [Google Scholar] [CrossRef]
- Vesic, J.; Cvetinovic, A.; Lipoglavsek, M.; Petrovic, T. Influence of Electronic Environment on Nuclear Reaction Rates. Eur. Phys. J. A 2014, 50, 153. [Google Scholar] [CrossRef]
- Angulo, C.; Engstler, S.; Raimann, G.; Rolfs, C.; Schulte, W.H.; Somorjai, E. The Effects of Electron Screening and Resonances in (p, α) Reactions On10B And11B at Thermal Energies. Z. Phys. A Hadron. Nucl. 1993, 345, 231–242. [Google Scholar] [CrossRef]
- Lamia, L.; Spitaleri, C.; Burjan, V.; Carlin, N.; Cherubini, S.; Crucillà, V.; Munhoz, M.G.; Santo, M.G.D.; Gulino, M.; Hons, Z.; et al. New Measurement of the 11B(p,α0)8Be Bare-Nucleus S(E) Factor via the Trojan Horse Method. J. Phys. G Nucl. Part. Phys. 2012, 39, 015106. [Google Scholar] [CrossRef]
- Spitaleri, C.; Lamia, L.; Puglia, S.M.R.; Romano, S.; La Cognata, M.; Crucillà, V.; Pizzone, R.G.; Rapisarda, G.G.; Sergi, M.L.; Del Santo, M.G.; et al. Measurement of the 10 KeV Resonance in the B 10 (p,A0) Be 7 Reaction via the Trojan Horse Method. Phys. Rev. C Nucl. Phys. 2014, 90, 035801. [Google Scholar] [CrossRef]
- Fang, K.; Zhang, Q.; Chen, B.; Zhang, Z.; Wang, Q.; Wang, T.; Kasagi, J.; Hu, J.; Xu, S. Direct Measurement of Astrophysical Factor S(E) and Screening Potential for Be9(p,α)6Li Reaction at Low Energy. Phys. Lett. B 2018, 785, 262–267. [Google Scholar] [CrossRef]
- Romano, S.; Lamia, L.; Spitaleri, C.; Li, C.; Cherubini, S.; Gulino, M.; La Cognata, M.; Pizzone, R.G.; Tumino, A. Study of The9Be(p, α)6Li Reaction via the Trojan Horse Method. Eur. Phys. J. A 2006, 27, 221–225. [Google Scholar] [CrossRef]
- Wen, Q.-G.; Li, C.-B.; Zhou, S.-H.; Meng, Q.-Y.; Zhou, J.; Li, X.-M.; Hu, S.-Y.; Fu, Y.-Y.; Spitaleri, C.; Tumino, A.; et al. Trojan Horse Method Applied to 9Be(p,α)6Li at Astrophysical Energies. Phys. Rev. C 2008, 78, 35805. [Google Scholar] [CrossRef]
- Kettner, K.U.; Becker, H.W.; Strieder, F.; Rolfs, C. High-Z Electron Screening: The Cases 50V(p,n)50Cr and 176Lu(p,n)176Hf. J. Phys. G Nucl. Part. Phys. 2006, 32, 489. [Google Scholar] [CrossRef]
- Muir, H. Half-life heresy. New Sci. 2006, 192, 2574. [Google Scholar] [CrossRef]
- Ujić, P.; de Oliveira Santos, F.; Lewitowicz, M.; Achouri, N.L.; Assié, M.; Bastin, B.; Borcea, C.; Borcea, R.; Buta, A.; Coc, A.; et al. Search for Superscreening Effects in a Superconductor. Phys. Rev. Lett. 2013, 110, 32501. [Google Scholar] [CrossRef]
- Cvetinovic, A.; Lipoglavsek, M.; Markelj, S.; Vesic, J. Molecular Screening in Nuclear Reactions. Phys. Rev. C Nucl. Phys. 2015, 92, 065801. [Google Scholar] [CrossRef]
- Cvetinović, A.; Đeorđić, D.; Guardo, G.L.; Kelemen, M.; La Cognata, M.; Lamia, L.; Markelj, S.; Mikac, U.; Pizzone, R.G.; Schwarz-Selinger, T.; et al. Electron Screening in Palladium. Phys. Lett. Sect. B Nucl. Elem. Part. High-Energy Phys. 2023, 838, 137684. [Google Scholar] [CrossRef]
- Bencze, G. Electron Screening Effects in Low-Energy Fusion Reactions. Nucl. Phys. 1989, 492, 459–472. [Google Scholar] [CrossRef]
- Salzmann, D.; Hass, M. Deuterium-Deuterium Nuclear Cross-Sections in Insulator and Metallic Environments. Eur. Phys. J. A 2008, 36, 359–364. [Google Scholar] [CrossRef]
- Shoppa, T.D.; Koonin, S.E.; Langanke, K.; Seki, R. One- and Two-Electron Atomic Screening in Fusion Reactions. Phys. Rev. C 1993, 48, 837–840. [Google Scholar] [CrossRef]
- Shoppa, T.D.; Jeng, M.; Koonin, S.E.; Langanke, K.; Seki, R. Electron Screening in Molecular Fusion Reactions. Nucl. Phys. A 1996, 605, 387–402. [Google Scholar] [CrossRef]
- Huke, A.; Czerski, K.; Chun, S.M.; Biller, A.; Heide, P. Quantum Mechanical Ab Initio Simulation of the Electron Screening Effect in Metal Deuteride Crystals. Eur. Phys. J. A 2008, 35, 243–252. [Google Scholar] [CrossRef]
- Czerski, K.; Huke, A.; Heide, P.; Ruprecht, G. Experimental and Theoretical Screening Energies for the 2H(d, p) 3H Reaction in Metallic Environments. Eur. Phys. J. A 2006, 27, 83–88. [Google Scholar] [CrossRef]
- Carraro, C.; Schafer, A.; Koonin, S.-E. Dynamic Screening of Thermonuclear Reactions. Astrophys. J. 1988, 331, 565. [Google Scholar] [CrossRef]
- Iliadis, C. Laboratory Electron Screening in Nuclear Resonance Reactions. Phys. Rev. C 2023, 107, 44610. [Google Scholar] [CrossRef]
- Langanke, K.; Shoppa, T.D.; Barnes, C.A.; Rolfs, C. Energy Loss, Electron Screening and the Astrophysical 3He(d, p)4He Cross Section. Phys. Lett. B 1996, 369, 211–214. [Google Scholar] [CrossRef]
- Bertulani, C.A. Electronic Stopping in Astrophysical Fusion Reactions. Phys. Lett. B 2004, 585, 35–41. [Google Scholar] [CrossRef]
- Zylstra, A.B.; Herrmann, H.W.; Johnson, M.G.; Kim, Y.H.; Frenje, J.A.; Hale, G.; Li, C.K.; Rubery, M.; Paris, M.; Bacher, A.; et al. Using Inertial Fusion Implosions to Measure the T+3He Fusion Cross Section at Nucleosynthesis-Relevant Energies. Phys. Rev. Lett. 2016, 117, 35002. [Google Scholar] [CrossRef] [PubMed]
- Zylstra, A.B.; Herrmann, H.W.; Kim, Y.H.; McEvoy, A.; Frenje, J.A.; Johnson, M.G.; Petrasso, R.D.; Glebov, V.Y.; Forrest, C.; Delettrez, J.; et al. 2H(p,γ)3He Cross Section Measurement Using High-Energy-Density Plasmas. Phys. Rev. C 2020, 101, 42802. [Google Scholar] [CrossRef]
- Zamfir, V.; Tanaka, K.; Ur, C. Extreme Light Infrastructure Nuclear Physics (ELI-NP). Europhys. News 2019, 50, 23–25. [Google Scholar] [CrossRef]
- Schury, D.; Méry, A.; Ramillon, J.M.; Adoui, L.; Chesnel, J.-Y.; Lévy, A.; Macé, S.; Prigent, C.; Rangama, J.; Rousseau, P.; et al. The Low Energy Beamline of the FISIC Experiment: Current Status of Construction and Performance. J. Phys. Conf. Ser. 2020, 1412, 162011. [Google Scholar] [CrossRef]
- Bruno, C.G.; Marsh, J.J.; Davinson, T.; Woods, P.J.; Black, P.; Bräuning-Demian, A.; Glorius, J.; Grant, A.; Hall, O.; Headspith, A.; et al. CARME—The CRYRING Array for Reaction MEasurements: A New Approach to Study Nuclear Reactions Using Storage Rings. Nucl. Instrum. Methods Phys. Res. A 2023, 1048, 168007. [Google Scholar] [CrossRef]
- Bertulani, C.A.; Spitaleri, C. Nuclear Clustering and the Electron Screening Puzzle. EPJ Web Conf. 2017, 165, 02002. [Google Scholar] [CrossRef]
- Spitaleri, C.; Bertulani, C.A.; Fortunato, L.; Vitturi, A. The Electron Screening Puzzle and Nuclear Clustering. Phys. Lett. B 2016, 755, 275–278. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vesić, J. Electron Screening in Laboratory Nuclear Reactions. Particles 2024, 7, 834-855. https://doi.org/10.3390/particles7030050
Vesić J. Electron Screening in Laboratory Nuclear Reactions. Particles. 2024; 7(3):834-855. https://doi.org/10.3390/particles7030050
Chicago/Turabian StyleVesić, Jelena. 2024. "Electron Screening in Laboratory Nuclear Reactions" Particles 7, no. 3: 834-855. https://doi.org/10.3390/particles7030050
APA StyleVesić, J. (2024). Electron Screening in Laboratory Nuclear Reactions. Particles, 7(3), 834-855. https://doi.org/10.3390/particles7030050