Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission
Abstract
:1. Introduction
2. Photon–Lepton/Hadron Interactions in the Jet Frame
2.1. Black-Body Spectrum of the Accretion Disk
2.2. Annihilation of the Jet Photons
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Saikia, P.; Russell, D.M.; Bramich, D.M.; Miller-Jones, J.C.A.; Baglio, M.C.; Degenaar, N. Lorentz Factors of Compact Jets in Black Hole X-Ray Binaries. Astrophys. J. 2019, 887, 21. [Google Scholar] [CrossRef]
- Punsly, B. Models of the compact jet in GRS 1915+105. Mon. Not. R. Astron. Soc. 2011, 418, 2736–2743. [Google Scholar] [CrossRef]
- Papavasileiou, T.; Kosmas, O.; Sinatkas, I. Simulations of Neutrino and Gamma-Ray Production from Relativistic Black-Hole Microquasar Jets. Galaxies 2021, 9, 67. [Google Scholar] [CrossRef]
- Papavasileiou, T.; Kosmas, O.; Sinatkas, I. Studying the Spectral Energy Distributions Emanating from Regular Galactic XRBs. Universe 2023, 9, 312. [Google Scholar] [CrossRef]
- Aartsen, M.G.; Ackermann, M.; Adams, J.; Aguilar, J.A.; Ahlers, M.; Ahrens, M.; Alispach, C.; Andeen, K.; Anderson, T.; Ansseau, I.; et al. Neutrino astronomy with the next generation IceCube Neutrino Observatory. arXiv 2019, arXiv:1911.02561. [Google Scholar] [CrossRef]
- Cherenkov Telescope Array Consortium. Science with the Cherenkov Telescope Array; World Scientific Publishing Co. Pte. Ltd.: Singapore, 2019. [Google Scholar] [CrossRef]
- Papavasileiou, T.V.; Kosmas, O.T.; Sinatkas, I. Prediction of gamma-ray emission from Cygnus X-1, SS 433, and GRS 1915+105 after absorption. Astron. Astrophys. 2023, 673, A162. [Google Scholar] [CrossRef]
- Gierliński, M.; Zdziarski, A.A.; Poutanen, J.; Coppi, P.S.; Ebisawa, K.; Johnson, W.N. Radiation mechanisms and geometry of Cygnus X-1 in the soft state. Mon. Not. R. Astron. Soc. 1999, 309, 496–512. [Google Scholar] [CrossRef]
- Cerutti, B.; Dubus, G.; Malzac, J.; Szostek, A.; Belmont, R.; Zdziarski, A.A.; Henri, G. Absorption of high-energy gamma rays in Cygnus X-3. Astron. Astrophys. 2011, 529, A120. [Google Scholar] [CrossRef]
- van der Horst, A.J.; Curran, P.A.; Miller-Jones, J.C.A.; Linford, J.D.; Gorosabel, J.; Russell, D.M.; de Ugarte Postigo, A.; Lundgren, A.A.; Taylor, G.B.; Maitra, D.; et al. Broad-band monitoring tracing the evolution of the jet and disc in the black hole candidate X-ray binary MAXI J1659-152. Mon. Not. R. Astron. Soc. 2013, 436, 2625–2638. [Google Scholar] [CrossRef]
- Wu, F.; Hu, W.; Dai, B. The Nature of the High-energy Gamma-Ray Radiation Associated with the High-redshift Blazar B3 1343+451. arXiv 2024, arXiv:2407.04553. [Google Scholar] [CrossRef]
- Yoshioka, S.; Mineshige, S.; Ohsuga, K.; Kawashima, T.; Kitaki, T. Radiation and outflow properties of super-Eddington accretion flows around various mass classes of black holes: Dependence on the accretion rates. arXiv 2024, arXiv:2407.15927. [Google Scholar] [CrossRef]
- McClintock, J.E.; Shafee, R.; Narayan, R.; Remillard, R.A.; Davis, S.W.; Li, L.X. The Spin of the Near-Extreme Kerr Black Hole GRS 1915+105. ApJ 2006, 652, 518–539. [Google Scholar] [CrossRef]
- Stuchlík, Z.; Kološ, M. CONTROVERSY OF THE GRO J1655-40 BLACK HOLE MASS AND SPIN ESTIMATES AND ITS POSSIBLE SOLUTIONS. Astrophys. J. 2016, 825, 13. [Google Scholar] [CrossRef]
- Qin, Y.; Shu, X.; Yi, S.; Wang, Y.Z. Hypercritical Accretion for Black Hole High Spin in Cygnus X-1. Res. Astron. Astrophys. 2022, 22, 035023. [Google Scholar] [CrossRef]
- Shakura, N.I.; Sunyaev, R.A. Black holes in binary systems. Observational appearance. Astron. Astrophys. 1973, 24, 337–355. [Google Scholar]
- Artemova, I.V.; Bjoernsson, G.; Novikov, I.D. Modified Newtonian Potentials for the Description of Relativistic Effects in Accretion Disks around Black Holes. ApJ 1996, 461, 565. [Google Scholar] [CrossRef]
- Semerak, O.; Karas, V. Pseudo-Newtonian models of a rotating black hole field. Astron. Astrophys. 1999, 343, 325. [Google Scholar]
- Mukhopadhyay, B. Description of Pseudo-Newtonian Potential for the Relativistic Accretion Disks around Kerr Black Holes. Astrophys. J. 2002, 581, 427. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Mondal, S. Studies of accretion flows around rotating black holes—I. Particle dynamics in a pseudo-Kerr potential. Mon. Not. R. Astron. Soc. 2006, 369, 976–984. [Google Scholar] [CrossRef]
- Dihingia, I.K.; Das, S.; Maity, D.; Chakrabarti, S. Limitations of the pseudo-Newtonian approach in studying the accretion flow around a Kerr black hole. Phys. Rev. D 2018, 98, 083004. [Google Scholar] [CrossRef]
- Novikov, I.D.; Thorne, K.S. Astrophysics of Black Holes; Gordon and Breach, Science Publishers, Inc.: New York, NY, USA, 1973; pp. 343–550. [Google Scholar]
- Li, L.X.; Zimmerman, E.R.; Narayan, R.; McClintock, J.E. Multitemperature Blackbody Spectrum of a Thin Accretion Disk around a Kerr Black Hole: Model Computations and Comparison with Observations. Astrophys. J. Suppl. Ser. 2005, 157, 335. [Google Scholar] [CrossRef]
- Romero, G.E.; Okazaki, A.T.; Orellana, M.; Owocki, S.P. Accretion vs. colliding wind models for the gamma-ray binary LS I +61 303: An assessment. Astron. Astrophys. 2007, 474, 15–22. [Google Scholar] [CrossRef]
- Reynoso, M.M.; Romero, G.E. Magnetic field effects on neutrino production in microquasars. Astron. Astrophys. 2009, 493, 1–11. [Google Scholar] [CrossRef]
- Kelner, S.R.; Aharonian, F.A.; Bugayov, V.V. Energy spectra of gamma rays, electrons, and neutrinos produced at proton-proton interactions in the very high energy regime. Phys. Rev. D 2006, 74, 034018. [Google Scholar] [CrossRef]
- Merloni, A.; Fabian, A.C.; Ross, R.R. On the interpretation of the multicolour disc model for black hole candidates. Mon. Not. R. Astron. Soc. 2000, 313, 193–197. [Google Scholar] [CrossRef]
- Miller-Jones, J.C.A.; Bahramian, A.; Orosz, J.A.; Mandel, I.; Gou, L.; Maccarone, T.J.; Neijssel, C.J.; Zhao, X.; Ziółkowski, J.; Reid, M.J.; et al. Cygnus X-1 contains a 21–solar mass black hole—Implications for massive star winds. Science 2021, 371, 1046–1049. [Google Scholar] [CrossRef]
- Ziółkowski, J. Evolutionary constraints on the masses of the components of the HDE 226868/Cyg X-1 binary system. Mon. Not. R. Astron. Soc. 2005, 358, 851–859. [Google Scholar] [CrossRef]
- Malyshev, D.; Zdziarski, A.A.; Chernyakova, M. High-energy gamma-ray emission from Cyg X-1 measured by Fermi and its theoretical implications. Mon. Not. R. Astron. Soc. 2013, 434, 2380–2389. [Google Scholar] [CrossRef]
- Ahnen, M.; Ansoldi, S.; Antonelli, L.; Arcaro, C.; Babić, A.; Banerjee, B.; Bangale, P.; de Almeida, U.B.; Barrio, J.A.; González, J.B.; et al. Search for very high-energy gamma-ray emission from the microquasar Cygnus X-1 with the MAGIC telescopes. Mon. Not. R. Astron. Soc. 2017, 472, 3474–3485. [Google Scholar] [CrossRef]
XRB Parameter | Symbol | Value | Units |
---|---|---|---|
Black hole mass | 20 | ||
Secondary stellar mass | 15 | ||
Distance to Earth | d | 2 | kpc |
XRB inclination | i | 30 | ° |
Jet Lorentz factor | - | ||
Mass accretion rate | 0.07 | ||
Dimensionless spin parameter | ±0, 0.6, 0.9 | - | |
Jet’s emitting region height | z0 | cm |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Papavasileiou, T.; Kosmas, O.; Kosmas, T. Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission. Particles 2024, 7, 879-886. https://doi.org/10.3390/particles7040052
Papavasileiou T, Kosmas O, Kosmas T. Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission. Particles. 2024; 7(4):879-886. https://doi.org/10.3390/particles7040052
Chicago/Turabian StylePapavasileiou, Theodora, Odysseas Kosmas, and Theocharis Kosmas. 2024. "Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission" Particles 7, no. 4: 879-886. https://doi.org/10.3390/particles7040052
APA StylePapavasileiou, T., Kosmas, O., & Kosmas, T. (2024). Implications of the Spin-Induced Accretion Disk Truncation on the X-ray Binary Broadband Emission. Particles, 7(4), 879-886. https://doi.org/10.3390/particles7040052