Confronting the Broken Phase of the N2HDM with Higgs Data
Abstract
:1. Introduction
2. The Higgs Sector
- , , and : mass-squared parameters for , , and .
- : soft-breaking mass-squared parameter.
- –: quartic couplings.
- Type 1 (T1): All fermions are exclusively coupled to .
- Type 2 (T2): Up-type quarks couple to , while down-type quarks and leptons couple to .
- Type X (TX): Quarks couple to , and leptons couple to .
- Type Y (TY): Up-type quarks and leptons couple to , and down-type quarks couple to .
3. Parameter Spaces: Scans and Constraints
- Boundedness: To ensure that the scalar potential is bounded from below as the fields approach infinity, the following conditions need to be met [2]:
- Perturbative unitarity: Ensure that the largest eigenvalue corresponding to scattering matrices is below the upper limit .
- Vacuum stability (by [54]): Ensure that the EW vacuum is stable or at least metastable and, in that case, long-lived.
- B Physics: Stringent constraints arise from the following processes (see Table 2 and Figure 9 in [55]):
- Electroweak precision measurements: Restrict the oblique parameters S, T, and U, where, for the simplified scenario , we have [55]
4. Results and Discussion
4.1. SM-like Higgs Signals
- [65],
4.2. Bounds on the Additional CP-Even Higgs Bosons
4.2.1. Class:
4.2.2. Class:
4.2.3. Class:
4.3. Constraints on Effective Couplings
4.4. Constraints on Pseudoscalar and Charged Higgs Bosons
4.5. Prospects for Future Searches
5. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix A.1. Effective Couplings in Type 1
Appendix A.2. Effective Couplings in Type 2
Appendix A.3. Effective Couplings in LS
Appendix A.4. Effective Couplings in FL
References
- Chen, C.Y.; Freid, M.; Sher, M. Next-to-minimal two Higgs doublet model. Phys. Rev. D 2014, 89, 075009. [Google Scholar] [CrossRef]
- Muhlleitner, M.; Sampaio, M.O.P.; Santos, R.; Wittbrodt, J. The N2HDM under Theoretical and Experimental Scrutiny. J. High Energy Phys. 2017, 3, 94. [Google Scholar] [CrossRef]
- Ivanov, I.P. Building and testing models with extended Higgs sectors. Prog. Part. Nucl. Phys. 2017, 95, 160–208. [Google Scholar] [CrossRef]
- The CMS Collaboration. A portrait of the Higgs boson by the CMS experiment ten years after the discovery. Nature 2022, 607, 60–68, Erratum in Nature 2023, 623, E4. [Google Scholar] [CrossRef]
- The ATLAS Collaboration. A detailed map of Higgs boson interactions by the ATLAS experiment ten years after the discovery. Nature 2022, 607, 52–59, Erratum in Nature 2022, 612, E24. [Google Scholar] [CrossRef]
- Barger, V.; Langacker, P.; McCaskey, M.; Ramsey-Musolf, M.; Shaughnessy, G. Complex Singlet Extension of the Standard Model. Phys. Rev. D 2009, 79, 015018. [Google Scholar] [CrossRef]
- Guo, W.L.; Wu, Y.L. The real singlet scalar dark matter model. J. High Energy Phys. 2010, 10, 83. [Google Scholar] [CrossRef]
- Biswas, A.; Majumdar, D. The Real Gauge Singlet Scalar Extension of Standard Model: A Possible Candidate of Cold Dark Matter. Pramana 2013, 80, 539–557. [Google Scholar] [CrossRef]
- Costa, R.; Mühlleitner, M.; Sampaio, M.O.P.; Santos, R. Singlet Extensions of the Standard Model at LHC Run 2: Benchmarks and Comparison with the NMSSM. J. High Energy Phys. 2016, 6, 34. [Google Scholar] [CrossRef]
- Athron, P.; Balázs, C.; Bringmann, T.; Buckley, A.; Chrząszcz, M.; Conrad, J.; Cornell, J.M.; Dal, L.A.; Edsjö, J.; Farmer, B.; et al. Status of the scalar singlet dark matter model. Eur. Phys. J. C 2017, 77, 568. [Google Scholar] [CrossRef]
- Robens, T.; Stefaniak, T.; Wittbrodt, J. Two-real-scalar-singlet extension of the SM: LHC phenomenology and benchmark scenarios. Eur. Phys. J. C 2020, 80, 151. [Google Scholar] [CrossRef]
- Aali, J.O.; Manaut, B.; Rahili, L.; Semlali, S. Naturalness implications within the two-real-scalar-singlet beyond the SM. Eur. Phys. J. C 2021, 81, 1045. [Google Scholar] [CrossRef]
- Basak, T.; Coleppa, B.; Loho, K. An update on the two singlet Dark Matter model. J. High Energy Phys. 2021, 6, 104. [Google Scholar] [CrossRef]
- Coito, L.; Faubel, C.; Herrero-Garcia, J.; Santamaria, A. Dark matter from a complex scalar singlet: The role of dark CP and other discrete symmetries. J. High Energy Phys. 2021, 11, 202. [Google Scholar] [CrossRef]
- Ellis, J.; Lewicki, M.; Merchand, M.; No, J.M.; Zych, M. The scalar singlet extension of the Standard Model: Gravitational waves versus baryogenesis. J. High Energy Phys. 2023, 1, 93. [Google Scholar] [CrossRef]
- Drozd, A.; Grzadkowski, B.; Gunion, J.F.; Jiang, Y. Extending two-Higgs-doublet models by a singlet scalar field—The Case for Dark Matter. J. High Energy Phys. 2014, 11, 105. [Google Scholar] [CrossRef]
- Baum, S.; Shah, N.R. Two Higgs Doublets and a Complex Singlet: Disentangling the Decay Topologies and Associated Phenomenology. J. High Energy Phys. 2018, 12, 44. [Google Scholar] [CrossRef]
- Moortgat-Pick, G.; Dutta, J.; Li, C.; Schreiber, M.; Tabira, S.F.; Ziegler, J. Dark Matter Phenomenology in 2HDMS in light of the 95 GeV excess. Eur. Phys. J. C 2024, 84, 926. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Dey, A.; Lahiri, J.; Mukhopadhyaya, B. High scale validity of two-Higgs-doublet scenarios with a real scalar singlet dark matter. Phys. Rev. D 2024, 110, 055034. [Google Scholar] [CrossRef]
- Paasch, S. Phenomenology and Constraints in Singlet Extensions of Two Higgs Doublet Models. Ph.D. Thesis, University of Hamburg, Hamburg, Germany, 2023. [Google Scholar]
- Darvishi, N.; Grzadkowski, B. Pseudo-Goldstone dark matter model with CP violation. J. High Energy Phys. 2022, 6, 92. [Google Scholar] [CrossRef]
- Mühlleitner, M.; Müller, J.; Williamson, S.L.; Wittbrodt, J. The CN2HDM. arXiv 2021, arXiv:2110.06680. [Google Scholar]
- Engeln, I.; Ferreira, P.; Mühlleitner, M.M.; Santos, R.; Wittbrodt, J. The Dark Phases of the N2HDM. J. High Energy Phys. 2020, 8, 85. [Google Scholar] [CrossRef]
- Haber, H.E.; Kane, G.L.; Sterling, T. The Fermion Mass Scale and Possible Effects of Higgs Bosons on Experimental Observables. Nucl. Phys. B 1979, 161, 493–532. [Google Scholar] [CrossRef]
- Hall, L.J.; Wise, M.B. Flavor changing Higgs—Boson couplings. Nucl. Phys. B 1981, 187, 397–408. [Google Scholar] [CrossRef]
- Donoghue, J.F.; Li, L.F. Properties of Charged Higgs Bosons. Phys. Rev. D 1979, 19, 945. [Google Scholar] [CrossRef]
- Barger, V.D.; Hewett, J.L.; Phillips, R.J.N. New Constraints on the Charged Higgs Sector in Two Higgs Doublet Models. Phys. Rev. D 1990, 41, 3421–3441. [Google Scholar] [CrossRef]
- Grossman, Y. Phenomenology of models with more than two Higgs doublets. Nucl. Phys. B 1994, 426, 355–384. [Google Scholar] [CrossRef]
- Akeroyd, A.G.; Stirling, W.J. Light charged Higgs scalars at high-energy e+e- colliders. Nucl. Phys. B 1995, 447, 3–17. [Google Scholar] [CrossRef]
- Akeroyd, A.G. Nonminimal neutral Higgs bosons at LEP-2. Phys. Lett. B 1996, 377, 95–101. [Google Scholar] [CrossRef]
- Akeroyd, A.G. Fermiophobic and other nonminimal neutral Higgs bosons at the LHC. J. Phys. G 1998, 24, 1983–1994. [Google Scholar] [CrossRef]
- Pich, A.; Tuzon, P. Yukawa Alignment in the Two-Higgs-Doublet Model. Phys. Rev. D 2009, 80, 091702. [Google Scholar] [CrossRef]
- Branco, G.C.; Ferreira, P.M.; Lavoura, L.; Rebelo, M.N.; Sher, M.; Silva, J.P. Theory and phenomenology of two-Higgs-doublet models. Phys. Rept. 2012, 516, 1–102. [Google Scholar] [CrossRef]
- Grzadkowski, B.; Haber, H.E.; Ogreid, O.M.; Osland, P. Heavy Higgs boson decays in the alignment limit of the 2HDM. J. High Energy Phys. 2018, 12, 056. [Google Scholar] [CrossRef]
- Krause, M.; Lopez-Val, D.; Muhlleitner, M.; Santos, R. Gauge-independent Renormalization of the N2HDM. J. High Energy Phys. 2017, 12, 77. [Google Scholar] [CrossRef]
- Krause, M.; Mühlleitner, M. ewN2HDECAY—A program for the Calculation of Electroweak One-Loop Corrections to Higgs Decays in the Next-to-Minimal Two-Higgs-Doublet Model Including State-of-the-Art QCD Corrections. Comput. Phys. Commun. 2019, 247, 106924. [Google Scholar] [CrossRef]
- Krause, M.; Mühlleitner, M. Impact of Electroweak Corrections on Neutral Higgs Boson Decays in Extended Higgs Sectors. J. High Energy Phys. 2020, 4, 83. [Google Scholar] [CrossRef]
- Biekötter, T.; Heinemeyer, S.; No, J.M.; Olea, M.O.; Weiglein, G. Fate of electroweak symmetry in the early Universe: Non-restoration and trapped vacua in the N2HDM. J. Cosmol. Astropart. Phys. 2021, 6, 18. [Google Scholar] [CrossRef]
- Ferreira, P.M.; Mühlleitner, M.; Santos, R.; Weiglein, G.; Wittbrodt, J. Vacuum Instabilities in the N2HDM. J. High Energy Phys. 2019, 9, 6. [Google Scholar] [CrossRef]
- Arhrib, A.; Benbrik, R.; Rahili, L.; Semlali, S.; Taki, B. Echoes of Veltman criteria on the next-two-Higgs-doublet model. Eur. Phys. J. C 2024, 84, 799. [Google Scholar] [CrossRef]
- Sirunyan, A.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Erö, J.; Valle, A.E.D.; Frühwirth, R.; CMS Collaboration; et al. Search for resonant pair production of Higgs bosons in the bbZZ channel in proton-proton collisions at s= 13 TeV. Phys. Rev. D 2020, 102, 032003. [Google Scholar] [CrossRef]
- Arhrib, A.; Benbrik, R.; El Kacimi, M.; Rahili, L.; Semlali, S. Extended Higgs sector of 2HDM with real singlet facing LHC data. Eur. Phys. J. C 2020, 80, 13. [Google Scholar] [CrossRef]
- Abouabid, H.; Arhrib, A.; Azevedo, D.; Falaki, J.E.; Ferreira, P.M.; Mühlleitner, M.; Santos, R. Benchmarking di-Higgs production in various extended Higgs sector models. J. High Energy Phys. 2022, 9, 11. [Google Scholar] [CrossRef]
- Biekötter, T.; Chakraborti, M.; Heinemeyer, S. A 96 GeV Higgs boson in the N2HDM. Eur. Phys. J. C 2020, 80, 2. [Google Scholar] [CrossRef]
- Biekötter, T.; Chakraborti, M.; Heinemeyer, S. The “96 GeV excess” at the LHC. Int. J. Mod. Phys. A 2021, 36, 2142018. [Google Scholar] [CrossRef]
- Biekötter, T.; Heinemeyer, S.; Weiglein, G. Excesses in the low-mass Higgs-boson search and the W-boson mass measurement. Eur. Phys. J. C 2023, 83, 450. [Google Scholar] [CrossRef]
- Azevedo, D.; Ferreira, P.; Mühlleitner, M.M.; Santos, R.; Wittbrodt, J. Models with extended Higgs sectors at future e+e- colliders. Phys. Rev. D 2019, 99, 055013. [Google Scholar] [CrossRef]
- Mühlleitner, M.; Sampaio, M.O.P.; Santos, R.; Wittbrodt, J. ScannerS: Parameter scans in extended scalar sectors. Eur. Phys. J. C 2022, 82, 198. [Google Scholar] [CrossRef]
- Gunion, J.F.; Haber, H.E. The CP conserving two Higgs doublet model: The Approach to the decoupling limit. Phys. Rev. D 2003, 67, 075019. [Google Scholar] [CrossRef]
- Craig, N.; Galloway, J.; Thomas, S. Searching for Signs of the Second Higgs Doublet. arXiv 2013, arXiv:1305.2424. [Google Scholar]
- Carena, M.; Low, I.; Shah, N.R.; Wagner, C.E.M. Impersonating the Standard Model Higgs Boson: Alignment without Decoupling. J. High Energy Phys. 2014, 4, 15. [Google Scholar] [CrossRef]
- McKay, M.D.; Beckman, R.J.; Conover, W.J. A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code. Technometrics 1979, 21, 239–245. [Google Scholar]
- Stein, M. Large Sample Properties of Simulations Using Latin Hypercube Sampling. Technometrics 1987, 29, 143–151. [Google Scholar] [CrossRef]
- Wittbrodt, J. EVADE Project. 2023. Available online: https://gitlab.com/jonaswittbrodt/EVADE (accessed on 1 August 2024).
- Haller, J.; Hoecker, A.; Kogler, R.; Mönig, K.; Peiffer, T.; Stelzer, J. Update of the global electroweak fit and constraints on two-Higgs-doublet models. Eur. Phys. J. C 2018, 78, 675. [Google Scholar] [CrossRef]
- Bahl, H.; Biekötter, T.; Heinemeyer, S.; Li, C.; Paasch, S.; Weiglein, G.; Wittbrodt, J. HiggsTools: BSM scalar phenomenology with new versions of HiggsBounds and HiggsSignals. Comput. Phys. Commun. 2023, 291, 108803. [Google Scholar] [CrossRef]
- Binjonaid, M. N2HDM Interface and Analysis Tools. 2024. Available online: https://github.com/drmaien/N2HDM (accessed on 30 November 2024).
- Group, P.D.; Workman, R.L.; Burkert, V.D.; Crede, V.; Klempt, E.; Thoma, U.; Tiator, L.; Agashe, K.; Aielli, G.; Allanach, B.C.; et al. Review of particle physics. Phys. Rev. D 2024, 110, 030001. [Google Scholar] [CrossRef]
- Bechtle, P.; Heinemeyer, S.; Klingl, T.; Stefaniak, T.; Weiglein, G.; Wittbrodt, J. HiggsSignals-2: Probing new physics with precision Higgs measurements in the LHC 13 TeV era. Eur. Phys. J. C 2021, 81, 145. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Combined measurements of Higgs boson production and decay using up to 139 fb−1 of proton-proton collision data at s=13 TeV collected with the ATLAS experiment. arXiv 2021, arXiv:1909.02845. [Google Scholar]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Higgs boson production cross-section measurements and their EFT interpretation in the 4ℓ decay channel at s = 13 TeV with the ATLAS detector. Eur. Phys. J. C 2020, 80, 957, Erratum in Eur. Phys. J. C 2021, 81, 29; Erratum in Eur. Phys. J. C 2021, 81, 398. [Google Scholar] [CrossRef]
- CMS Collaboration; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Dragicevic, M.; Valle, A.E.D.; Frühwirth, R.; et al. Measurements of production cross sections of the Higgs boson in the four-lepton final state in proton–proton collisions at s=13TeV. Eur. Phys. J. C 2021, 81, 488. [Google Scholar] [CrossRef]
- The CMS Collaboration; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Bergauer, T.; Dragicevic, M.; Erö, J.; Valle, A.E.D.; Flechl, M.; et al. Measurement of the inclusive and differential Higgs boson production cross sections in the leptonic WW decay mode at s= 13 TeV. J. High Energy Phys. 2021, 3, 3. [Google Scholar] [CrossRef]
- The ATLAS Collaboration. Measurements of gluon-gluon fusion and vector-boson fusion Higgs boson production cross-sections in the H→WW*→eνμν decay channel in pp collisions at s=13 TeV with the ATLAS detector. Phys. Lett. B 2019, 789, 508–529. [Google Scholar] [CrossRef]
- The ATLAS Collaboration; Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; et al. Measurement of Higgs boson decay into b-quarks in associated production with a top-quark pair in pp collisions at s=13 TeV with the ATLAS detector. J. High Energy Phys. 2022, 6, 97. [Google Scholar] [CrossRef]
- CMS Collaboration. Observation of Higgs boson decay to bottom quarks. Phys. Rev. Lett. 2018, 121, 121801. [Google Scholar] [CrossRef] [PubMed]
- The ATLAS Collaboration; Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; et al. Measurements of WH and ZH production in the H→bb¯ decay channel in pp collisions at 13 TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 178. [Google Scholar] [CrossRef]
- The CMS Collaboration; Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Dragicevic, M.; Valle, A.E.D.; Frühwirth, R.; Jeitler, M.; et al. nalysis of the CP structure of the Yukawa coupling between the Higgs boson and τ leptons in proton-proton collisions at s = 13 TeV. J. High Energy Phys. 2022, 2022, 12. [Google Scholar] [CrossRef]
- Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Damanakis, K.; Dragicevic, M.; Valle, A.E.D.; Frühwirth, R.; Jeitler, M.; et al. Measurements of Higgs boson production in the decay channel with a pair of τ leptons in proton–proton collisions at s=13 TeV. Eur. Phys. J. C 2023, 83, 562. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abeling, K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; Hoffman, A.C.A.; et al. Measurement of the properties of Higgs boson production at s=13 TeV in the H→γγ channel using 139 fb−1 of pp collision data with the ATLAS experiment. J. High Energy Phys. 2023, 7, 88. [Google Scholar] [CrossRef]
- The ATLAS Collaboration; Aad, G.; Abbott, B.; Abbott, D.C.; Abeling, K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; et al. Measurements of Higgs boson production cross sections and couplings in the diphoton decay channel at s = 13 TeV. J. High Energy Phys. 2021, 7, 27. [Google Scholar] [CrossRef]
- Bechtle, P.; Brein, O.; Heinemeyer, S.; Weiglein, G.; Williams, K.E. HiggsBounds: Confronting Arbitrary Higgs Sectors with Exclusion Bounds from LEP and the Tevatron. Comput. Phys. Commun. 2010, 181, 138–167. [Google Scholar] [CrossRef]
- Bechtle, P.; Dercks, D.; Heinemeyer, S.; Klingl, T.; Stefaniak, T.; Weiglein, G.; Wittbrodt, J. HiggsBounds-5: Testing Higgs Sectors in the LHC 13 TeV Era. Eur. Phys. J. C 2020, 80, 1211. [Google Scholar] [CrossRef]
- The ATLAS Collaboration; Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; et al. Search for resonant and non-resonant Higgs boson pair production in the bb¯τ+τ- decay channel using 13 TeV pp collision data from the ATLAS detector. J. High Energy Phys. 2023, 7, 40. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Search for Higgs boson pair production in the two bottom quarks plus two photons final state in pp collisions at s=13 TeV with the ATLAS detector. Phys. Rev. D 2022, 106, 052001. [Google Scholar] [CrossRef]
- CMS Collaboration. Combination of searches for Higgs boson pair production in proton-proton collisions at s= 13 TeV. Phys. Rev. Lett. 2019, 122, 121803. [Google Scholar] [CrossRef]
- ATLAS Collaboration. Combination of searches for heavy resonances decaying into bosonic and leptonic final states using 36 fb−1 of proton-proton collision data at s=13 TeV with the ATLAS detector. Phys. Rev. D 2018, 98, 052008. [Google Scholar] [CrossRef]
- ATLAS Collaboration; Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; et al. Search for heavy resonances decaying into a pair of Z bosons in the ll+ll-ll′+ll′- and ll+ll-νν¯ final states using 139 fb−1 of proton–proton collisions at s=13TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 332. [Google Scholar] [CrossRef]
- The CMS Collaboration; Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; et al. Search for a new scalar resonance decaying to a pair of Z bosons in proton-proton collisions at s=13 TeV. J. High Energy Phys. 2019, 6, 127, Erratum in JHEP 2019, 03, 128. [Google Scholar] [CrossRef]
- CMS Collaboration. Search for heavy resonances decaying to WW, WZ, or WH boson pairs in the lepton plus merged jet final state in proton-proton collisions at s = 13 TeV. Phys. Rev. D 2022, 105, 032008. [Google Scholar] [CrossRef]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Search for heavy diboson resonances in semileptonic final states in pp collisions at s=13 TeV with the ATLAS detector. Eur. Phys. J. C 2020, 80, 1165. [Google Scholar] [CrossRef]
- The CMS Collaboration; Tumasyan, A.; Adam, W.; Andrejkovic, J.W.; Bergauer, T.; Chatterjee, S.; Damanakis, K.; Dragicevic, M.; Valle, A.E.D.; Hussain, P.S.; et al. Searches for additional Higgs bosons and for vector leptoquarks in ττ final states in proton-proton collisions at s = 13 TeV. J. High Energy Phys. 2023, 7, 73. [Google Scholar] [CrossRef]
- Sirunyan, A.M.; Tumasyan, A.; Adam, W.; Ambrogi, F.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Dragicevic, M.; Erö, J.; Valle, A.E.D.; et al. Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at s= 13 TeV. Eur. Phys. J. C 2019, 79, 564. [Google Scholar] [CrossRef]
- The ATLAS Collaboration; Aad, G.; Abbott, B.; Abeling, K.; Abicht, N.J.; Abidi, S.H.; Aboulhorma, A.; Abramowicz, H.; Abreu, H.; Abulaiti, Y.; et al. Search for a CP-odd Higgs boson decaying to a heavy CP-even Higgs boson and a Z boson in the ℓℓtt¯ and νν¯bb¯ final states using 140 fb−1 of data collected with the ATLAS detector. J. High Energy Phys. 2024, 2024, 197. [Google Scholar]
- Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; Abramowicz, H.; et al. Search for a heavy Higgs boson decaying into a Z boson and another heavy Higgs boson in the ℓℓbb and ℓℓWW final states in pp collisions at s=13TeV with the ATLAS detector. Eur. Phys. J. C 2021, 81, 396. [Google Scholar] [CrossRef]
- The ATLAS Collaboration; Aad, G.; Abbott, B.; Abbott, D.C.; Abud, A.A.; Abeling, K.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; et al. Search for charged Higgs bosons decaying into a top quark and a bottom quark at s = 13 TeV with the ATLAS detector. J. High Energy Phys. 2021, 6, 145. [Google Scholar] [CrossRef]
- The ATLAS Collaboration; Aaboud, M.; Aad, G.; Abbott, B.; Abdinov, O.; Abeloos, B.; Abhayasinghe, D.K.; Abidi, S.H.; AbouZeid, O.S.; Abraham, N.L.; et al. Search for charged Higgs bosons decaying via H±→τ±ντ in the τ+jets and τ+lepton final states with 36 fb−1 of pp collision data recorded at s=13 TeV with the ATLAS experiment. J. High Energy Phys. 2018, 9, 139. [Google Scholar] [CrossRef]
- Alonso, I.B.; Brüning, O.; Fessia, P.; Lamont, M.; Rossi, L.; Tavian, L.; Zerlauth, M. (Eds.) High-Luminosity Large Hadron Collider (HL-LHC): Technical Design Report; CERN Publishing: Geneva, Switzerland, 2020. [Google Scholar] [CrossRef]
- Cepeda, M.; Gori, S.; Ilten, P.; Kado, M.; Riva, F. Report from Working Group 2: Higgs Physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr. 2019, 7, 221–584. [Google Scholar] [CrossRef]
- Ferrari, P. Snowmass White Paper Contribution: Physics with the Phase-2 ATLAS and CMS Detectors; CERN: Geneva, Switzerland, 2022. [Google Scholar]
- Cid Vidal, X.; D’Onofrio, M.; Fox, P.J.; Torre, R.; Ulmer, K.A. Report from Working Group 3: Beyond the Standard Model physics at the HL-LHC and HE-LHC. CERN Yellow Rep. Monogr. 2019, 7, 585–865. [Google Scholar] [CrossRef]
Parameter | Min Value | Max Value |
---|---|---|
125.09 | 125.09 | |
30 | 1500 | |
30 | 1500 | |
30 | 1500 | |
580 | 1500 | |
0.8 | 20 | |
0.9 | 1 | |
0.8 | 1.2 | |
−1 | 1 | |
−1 | 1 | |
1 | 3000 |
(Min, Max) | (Min, Max) | |
---|---|---|
Type 1 | , | , |
Type 2 | , | , |
Type X | , | , |
Type Y | , | , |
Particle | Type | ||||
---|---|---|---|---|---|
T1 | |||||
T2 | |||||
TX | |||||
TY | |||||
T1 | |||||
T2 | |||||
TX | |||||
TY |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Binjonaid, M. Confronting the Broken Phase of the N2HDM with Higgs Data. Particles 2025, 8, 10. https://doi.org/10.3390/particles8010010
Binjonaid M. Confronting the Broken Phase of the N2HDM with Higgs Data. Particles. 2025; 8(1):10. https://doi.org/10.3390/particles8010010
Chicago/Turabian StyleBinjonaid, Maien. 2025. "Confronting the Broken Phase of the N2HDM with Higgs Data" Particles 8, no. 1: 10. https://doi.org/10.3390/particles8010010
APA StyleBinjonaid, M. (2025). Confronting the Broken Phase of the N2HDM with Higgs Data. Particles, 8(1), 10. https://doi.org/10.3390/particles8010010