Early Treatment with Growth Hormone (GH) and Rehabilitation Recovers Hearing in a Child with Cerebral Palsy
Abstract
:1. Introduction
2. Case Presentation Section
2.1. Medical History
2.2. Blood Analysis
2.3. Medical Treatments
2.4. Rehabilitation and Results
2.4.1. Physiotherapy
2.4.2. Neurostimulation
2.4.3. Integrative and Neurosensorial Stimulation (EINA)
2.4.4. Speech Therapy
2.4.5. Magnetic Resonance Imaging
3. Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Erenberg, A.; Lemons, J.; Sia, C.; Trunkel, D.; Ziring, P. Newborn and infant hearing loss: Detection and intervention. American Academy of Pediatrics. Task Force on Newborn and Infant Hearing, 1998–1999. Pediatrics 1999, 103, 527–530. [Google Scholar] [PubMed]
- Sokol, J.; Hyde, M. Hearing Screening. Pediatr. Rev. 2002, 23, 155–162. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Batalla, F.; Trinidad-Ramos, G.; Sequí-Canet, J. Risk factors for sensorineural hearing loss in children. Acta Otorrinolaringol. Esp. 2012, 63, 382–390. [Google Scholar] [CrossRef] [PubMed]
- Hille, E.; Verkerk, P.; van Straaten, H. Bilateral Hearing Impairment in Dutch Neonatal Intensive Care Unit Infants with Unilateral Failure on Hearing Screening. Pediatrics 2004, 113, 1467–1468. [Google Scholar] [CrossRef] [PubMed]
- Su, J.; Wang, L. Research advances in neonatal hypoglycemic brain injury. Transl. Pediatr. 2012, 1, 108–115. [Google Scholar] [PubMed]
- Stenninger, E.; Schollin, J.; Åman, J. Early postnatal hypoglycaemia in newborn infants of diabetic mothers. Acta Paediatr. 1997, 86, 1374–76. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Zou, L.P.; Wang, J.; Shi, X.; Tian, S.; Yang, X.; Ju, J.; Yao, H.; Liu, Y. Neonatal hypoglycemic brain injury is a cause of infantile spasms. Exp. Ther. Med. 2016, 11, 2066–2070. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McKinlay, C.J.; Alsweiler, J.M.; Ansell, J.M.; Anstice, N.S.; Chase, J.G.; Gamble, G.D.; Harris, D.L.; Jacobs, R.J.; Jiang, Y.; Paudel, N.; et al. Neonatal Glycemia and Neurodevelopmental Outcomes at 2 Years. N. Engl. J. Med. 2015, 373, 1507–1518. [Google Scholar] [CrossRef] [Green Version]
- Mangabeira, V.; Garcia-Mijares, M.; Silva, M. Sugar withdrawal and differential reinforcementof low rate (DRL) performance in rats. Physiol. Behav. 2015, 139, 468–473. [Google Scholar] [CrossRef]
- Stenninger, E.; Flink, R.; Eriksson, B.; Sahlen, C. Long term neurological dysfunction and neonatal hypoglycaemia after diabetic pregnancy. Arch. Dis. Child. Fetal Neonatal Ed. 1998, 79, F174–F179. [Google Scholar] [CrossRef]
- Reid, S.M.; Modak, M.B.; Berkowitz, R.G.; Reddihough, D.S. A population-based study and systematic review of hearing loss in children with cerebral palsy. Dev. Med. Child. Neurol. 2011, 53, 1038–1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Muus, J.; Weir, F.; Kreicher, K. Hearing loss in children with growth hormone deficiency. Int. J. Pediatr. Otorhinolaryngol. 2017, 100, 107–113. [Google Scholar] [CrossRef] [PubMed]
- Prado-Barreto, V.M.; Salvatori, R.; Santos Júnior, R.C.; Brandão-Martins, M.B.; Correa, E.A.; Garcez, F.B.; Valença, E.H.; Souza, A.H.; Pereira, R.M.; Nunes, M.A.; et al. Hearing Status in Adult Individuals with Lifetime, Untreated Isolated Growth Hormone Deficiency. Otolaryngol. Head Neck Surg. 2014, 150, 464–471. [Google Scholar] [CrossRef] [PubMed]
- Attias, J.; Zarchi, O.; Nageris, B.I.; Laron, Z. Cochlear hearing loss in patients with Laron syndrome. Eur. Arch. Otorhinolaryngol. 2011, 269, 461–466. [Google Scholar] [CrossRef]
- Varela-Nieto, I.; Murillo-Cuesta, S.; Rosa, L.R.; Lassatetta, L.; Contreras, J. IGF-I deficiency and hearing loss: Molecular clues and clinical implications. Pediatr. Endocrinol. Rev. 2013, 10, 460–472. [Google Scholar] [PubMed]
- Devesa, J.; Almengló, C.; Devesa, P. Multiple effects of Growth Hormone in the Body: Is it Really the Hormone for Growth? Clin. Med. Insights Endocrinol. Diabetes 2016, 9, 47–71. [Google Scholar] [CrossRef]
- Caicedo, D.; Díaz, O.; Devesa, P.; Devesa, J. Growth Hormone (GH) and Cardiovascular System. Int. J. Mol. Sci. 2018, 19, 290. [Google Scholar] [CrossRef] [PubMed]
- Ransome, M.; Turnley, A. Growth hormone signaling and hippocampal neurogenesis: Insights from genetic models. Hippocampus 2008, 18, 1034–1050. [Google Scholar] [CrossRef]
- Devesa, J.; Alonso, A.; López, N.; García, J.; Puell, C.I.; Pablos, T.; Devesa, P. Growth Hormone (GH) and Rehabilitation Promoted Distal Innervation in a Child Affected by Caudal Regression Syndrome. Int. J. Mol. Sci. 2017, 18, 230. [Google Scholar] [CrossRef]
- Devesa, J.; Núñez, I.; Agra, C.; Bejarano, A.; Devesa, P. Treatment with Growth Hormone (GH) Increased the Metabolic Activity of the Brain in an Elder Patient, Not GH-Deficient, Who Suffered Mild Cognitive Alterations and Had an ApoE 4/3 Genotype. Int. J. Mol. Sci. 2018, 19, 2294. [Google Scholar] [CrossRef]
- Reimunde, P.; Rodicio, C.; López, N.; Alonso, A.; Devesa, P.; Devesa, J. Effects of recombinant growth hormone replacement and physical rehabilitation in recovery of gross motor function in children with cerebral palsy. Ther. Clin. Risk Manag. 2010, 6, 585–592. [Google Scholar]
- Devesa, J.; Alonso, B.; Casteleiro, N.; Couto, P.; Castañón, B.; Zas, E.; Reimunde, P. Effects of recombinant growth hormone (GH) replacement and psychomotor and cognitive stimulation in the neurodevelopment of GH-deficient (GHD) children with cerebral palsy: A pilot study. Ther. Clin. Risk Manag. 2011, 7, 199–206. [Google Scholar] [CrossRef]
- Devesa, P.; Agasse, F.; Xapelli, S.; Almengló, C.; Devesa, J.; Malva, J.O.; Arce, V.M. Growth hormone pathways signaling for cell proliferation and survival in hippocampal precursors from postnatal mice. BMC Neurosci. 2014, 15, 100. [Google Scholar] [CrossRef] [PubMed]
- Quintana, A.; Agra, C.; Outeiral, L.; Devesa, A.; Llorente, D.; Devesa, J. Cognitive evolution of a patient who suffered a subarachnoid Haemorrhage eight year ago, after being tretated with Growth Hormone, Melatonin and Neurorehabilitation. Reports 2018, 1, 2. [Google Scholar] [CrossRef]
- Heidari, S.; Alireza, O.M.; Fatemeh, R. The sensitivity and specificity of automated auditory brainstem response and otoacoustic emission in neonatal hearing screening: A systematic review. Aud. Vest. Res. 2015, 24, 141–151. [Google Scholar]
- Yousefi, J.; Ajalloueyan, M.; Amirsalari, S.; Hassanali Fard, M. The specificity and sensitivity of transient otoacustic emission in neonatal hearing screening compared with diagnostic test of auditory brain stem response in Tehran hospitals. Iran. J. Pediatr. 2013, 23, 199–204. [Google Scholar] [PubMed]
- Sohmer, H.; Kinarti, R.; Gafni, M. The latency of auditory nerve-brainstem responses in sensorineural hearing loss. Arch. Otorhinolaryngol. 1981, 230, 189–199. [Google Scholar] [CrossRef]
- Gibson, W.; Sanli, H. Auditory Neuropathy: An Update. Ear Hear. 2007, 28, 102S–106S. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Y.; Wu, H.; Chen, X.; Tao, Z.; Zhang, F.; Yang, J.; Gu, Y.; Tang, Z. Self hearing recovery in infants with hearing loss after universal newborn hearing screening system. Lin Chuang Er Bi Yan Hou Ke Za Zh 2006, 20, 585–587. [Google Scholar]
- Kang, M.; Jeong, S.; Kim, L. Changes in the Hearing Thresholds of Infants Who Failed the Newborn Hearing Screening Test and in Infants Treated in the Neonatal Intensive Care Unit. Clin. Exp. Otorhinolaryngol. 2012, 5, S32. [Google Scholar] [CrossRef] [PubMed]
- Koenighofer, M.; Parzefall, T.; Ramsebner, R. Delayed auditory pathway maturation and prematurity. Wien klin Wochenschr 2014, 127, 440–444. [Google Scholar] [CrossRef] [PubMed]
- Harvey, S.; Johnson, C.D.; Sanders, E.J. Growth hormone in neural tissues of the chick embryo. J. Endocrinol. 2001, 169, 487–498. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, M.; Sage, C.; Tang, Y. Overlapping and distinct pRb pathways in the mammalian auditory and vestibular organs. Cell Cycle 2011, 10, 337–351. [Google Scholar] [CrossRef] [PubMed]
- Lumpkin, E.; Marshall, K.; Nelson, A. The cell biology of touch. J. Cell Biol. 2010, 191, 237–248. [Google Scholar] [CrossRef] [PubMed]
- Oshima, K.; Grimm, C.M.; Corrales, C.E.; Senn, P.; Monedero, R.M.; Géléoc, G.S.; Edge, A.; Holt, J.R.; Heller, S. Differential distribution of stem cells in the auditory and vestibular organs of the inner ear. J Assoc. Res. Otolaryngol. 2007, 8, 18–31. [Google Scholar] [CrossRef]
- Smeti, I.; Assou, S.; Savary, E.; Masmoudi, S.; Zine, A. Transcriptomic Analysis of the Developing and adult mouse cochlear sensory epithelia. PLoS ONE 2012, 7, e42987. [Google Scholar] [CrossRef] [PubMed]
- Schuck, J.B.; Sun, H.; Penberthy, W.T.; Cooper, N.G.; Li, X.; Smith, M.E. Transcriptomic analysis of the zebrafish inner ear points to growth hormone mediated regeneration following acoustic trauma. BMC Neurosci. 2011, 12, 88. [Google Scholar] [CrossRef]
- Sun, H.; Lin, C.-H.; Smith, M.E. Growth hormone promotes hair cell regeneration in the zebafish (Dario rerio) inner ear following acoustic trauma. PLoS ONE 2011, 6, e28372. [Google Scholar] [CrossRef]
- Gabrielpillai, J.; Geissler, C.; Stock, B.; Stöver, T.; Diensthuber, M. Growth hormone promotes neurite growth of spiral ganglion neurons. NeuroReport 2018, 29, 637–642. [Google Scholar] [CrossRef]
- Andersson-Wallgreen, G.; Ohlsson, A.C.; Albertsson-Wikland, K.; Barrenäs, M.L. Growth promoting treatment normalizes speech frequency inTurner syndrome. Laryngoscope 2008, 118, 1125–1130. [Google Scholar] [CrossRef]
- Sanders, E.; Parker, E.; Harvey, S. Retinal ganglion cell survival in development: Mechanisms of retinal growth hormone action. Exp. Eye Res. 2006, 83, 1205–1214. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Moreno, C.G.; Fleming, T.; Carranza, M.; Avila-Mendoza, J.; Luna, M.; Harvey, S.; Arámburo, C. Growth hormone protects against kainate excitotoxicity and induces BDNF and NT3 expression in chicken neuroretinal cells. Exp. Eye Res. 2018, 166, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Yamahara, K.; Yamamoto, N.; Nakagawa, T.; Ito, J. Insulin-like growth factor 1: A novel treatment for the protection or regeneration of cochlear hair cells. Hear. Res. 2015, 330, 2–9. [Google Scholar] [CrossRef] [PubMed]
- Meltser, I.; Cederroth, C.; Basinou, V.; Savelyev, S.; Lundkvist, G.S.; Canlon, B. TrkB-mediated protection against circadian sensitivity to noise trauma in the murine cochlea. Curr. Biol. 2014, 24, 658–663. [Google Scholar] [CrossRef]
- Nakagawa, T.; Kumakawa, K.; Usami, S.I.; Hato, N.; Tabuchi, K.; Takahashi, M.; Fujiwara, K.; Sasaki, A.; Komune, S.; Sakamoto, T.; et al. A randomized controlled clinical trial of topical insulin-like growth factor-1 therapy for sudden deafness refractory to systemic corticosteroid treatment. BMC Med. 2014, 12, 219. [Google Scholar] [CrossRef] [PubMed]
- Wan, G.; Gómez-Casati, M.; Gigliello, A.R.; Liberman, M.C.; Corfas, G. Neurotrophin-3 regulates ribbon synapse density in the cochlea and induces synapse regeneration after acoustic trauma. Elife 2014, 3, e03564. [Google Scholar] [CrossRef]
- Suzuki, J.; Corfas, G.; Liberman, M. Round-window delivery of neurotrophin 3 regenerates cochlear synapses after acoustic overexposure. Sci. Rep. 2016, 6, 24907. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Biesalski, H.K.; Welker, H.A.; Thalmann, R.; Vollrath, L. Melatonin and other serotonin derivatives in the guinea pig membranous cochlea. Neurosci. Lett. 1988, 91, 41–46. [Google Scholar] [CrossRef]
- Helliwell, R.J.; Howell, H.E.; Lawson, W.; Barrett, P.; Morgan, P.J. Autoradiographic anomaly in125I-melatonin binding revealed in ovine adrenal. Mol. Cell. Endocrinol. 1994, 104, 95–102. [Google Scholar] [CrossRef]
- Lopez-Gonzalez, M.; Guerrero, J.; Rojas, F. Melatonin and other antioxidants prolong the postmortem activity of the outer hair cells of the organ of Corti: Its relation to the type of death. J. Pin. Res. 1999, 27, 73–77. [Google Scholar] [CrossRef]
- Karlidağ, T.; Yalçin, Ş.; Öztürk, A.; Üstündağ, B.; Gök, Ü.; Kaygusuz, I.; Susaman, N. The role of free oxygen radicals in noise induced hearing loss: Effects of melatonin and methylprednisolone. Auris Nasus Larynx 2002, 29, 147–152. [Google Scholar] [CrossRef]
- Devesa, J.; Devesa, P.; Reimunde, P.; Arce, V. Growth Hormone and Kynesitherapy for Brain Injury Recovery. In Brain Injury-Pathogenesis, Monitoring, Recovery and Management; Agrawal, A., Ed.; Intech: Rijeka, Croatia, 2011; pp. 417–454. [Google Scholar]
Parameter | Adm. | 3 Months | 6 Months | 9 Months | 12 Months | Dis. | Normal Values |
---|---|---|---|---|---|---|---|
Erythrocytes | 4.62 × 106 | 4.75 × 106 | 4.97 × 106 | 4.48 × 106 | 5.15 × 106 | 4.96 × 106 | 4.20–5.85/µL (106) |
Hematocrit | 34.70 | 36.60 | 38.20 | 33.80 | 38.80 | 37.20 | 30–42 % |
Hemoglobin | 11.50 | 12.10 | 12.50 | 11.30 | 12.90 | 12.60 | 10.00–13.80 g/dL |
Glucose | 90.6 | 93 | 104 | 78 | 73 | 85 | 60–110 mg/dL |
Cholesterol | 224.5 | 172 | 185 | 173 | 152 | 169 | 50–175 mg/dL |
Triglycerides | 330.6 | 189 | 148 | 102 | 112 | 105 | 31–90 mg/dL |
Creatinine | 0.73 | 0.5 | 0.3 | 0.45 | 0.33 | 0.39 | 0.20–0.45 mg/dL |
GOT | 42.4 | 35.2 | 65 | 41.1 | 43.5 | 40.8 | 0.50–40 U/L |
CPK | 325 | 352 | 338 | 158 | 195 | 186 | 20–195 U/L |
IGF-I | 57 | 94.3 | 144 | 163 | 147 | 152 | 27–172 ng/mL |
IGFBP3 | 3.8 | 4.1 | 4.2 | 4.8 | 3.9 | 3.6 | 2.6–5.8 ng/mL |
Area | 3 Months and 15 Days | 10 Months and19 Days | 28 Months and 15 Days |
---|---|---|---|
Social/Personal | 2 | 13 | 32 |
Adaptive | 2 | 8 | 31 |
Gross motor | 3 | 8 | 28 |
Fine motor | 3 | 8 | 26 |
Total Motor | 3 | 8 | 27 |
Receptive communication | 1 | 7 | 30 |
Expressive communication | 1 | 3 | 29 |
Total Communication | 1 | 5 | 30 |
Cognition | 3 | 10 | 29 |
Total | 2 | 9 | 30 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guerra, J.; Devesa, A.; Llorente, D.; Mouro, R.; Alonso, A.; García-Cancela, J.; Devesa, J. Early Treatment with Growth Hormone (GH) and Rehabilitation Recovers Hearing in a Child with Cerebral Palsy. Reports 2019, 2, 4. https://doi.org/10.3390/reports2010004
Guerra J, Devesa A, Llorente D, Mouro R, Alonso A, García-Cancela J, Devesa J. Early Treatment with Growth Hormone (GH) and Rehabilitation Recovers Hearing in a Child with Cerebral Palsy. Reports. 2019; 2(1):4. https://doi.org/10.3390/reports2010004
Chicago/Turabian StyleGuerra, Joaquín, Ana Devesa, David Llorente, Rocío Mouro, Alba Alonso, José García-Cancela, and Jesús Devesa. 2019. "Early Treatment with Growth Hormone (GH) and Rehabilitation Recovers Hearing in a Child with Cerebral Palsy" Reports 2, no. 1: 4. https://doi.org/10.3390/reports2010004
APA StyleGuerra, J., Devesa, A., Llorente, D., Mouro, R., Alonso, A., García-Cancela, J., & Devesa, J. (2019). Early Treatment with Growth Hormone (GH) and Rehabilitation Recovers Hearing in a Child with Cerebral Palsy. Reports, 2(1), 4. https://doi.org/10.3390/reports2010004