Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Characterization
2.2. Treatment Application and Experimental Setup
2.3. Phospholipid Fatty Acid (PLFA) Analysis
2.4. GeoChip Analysis
2.5. DNA Extraction, Labeling, Hybridization, Scanning, and Data Processing
3. Results
3.1. General Characterization of Mine Waste Materials
3.2. Preliminary Microbial Community Characterization
3.3. X-ray Absorption Spectroscopy
3.4. Relationships among Microbial Communities
3.5. Total Abundance of Functional Gene Categories
3.6. Changes in S-, C-Cycling, and Metal Resistance Genes
4. Discussion
4.1. Preliminary Microbial Community Characterization
4.2. Relationships among Microbial Communities
4.3. Functional Gene Diversity
4.4. Total Abundance of Functional Gene Categories
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adriano, D.C. Trace Elements in Terrestrial Environments: Biogeochemistry, Bioavailability, and Risks of Metals; Springer: New York, NY, USA, 2001. [Google Scholar]
- Bhattacharya, J.; Ji, S.W.; Lee, H.S.; Cheong, Y.W.; Yim, G.J.; Min, J.S.; Choi, Y.S. Treatment of acidic coal mine drainage: Design and operational challenges of successive alkalinity producing systems. Mine Water Environ. 2008, 27, 12–19. [Google Scholar] [CrossRef]
- Almendras, M.; Wiertz, J.V.; Chamy, R. Heavy metals immobilization in contaminated smelter soils using microbial sulphate reduction. In Advanced Materials Research; Trans Tech Publications: Princeton, NJ, USA, 2009; Volume 71, pp. 577–580. [Google Scholar]
- Johnson, D.B.; Hallberg, K.B. Acid mine drainage remediation options: A review. Sci. Total Environ. 2005, 338, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Pierzynski, G.M.; Vaillant, G.C. Remediation to reduce ecological risk from trace element contamination: A decision case study. Collect. Case Stud. 2018, 9–18. Available online: https://dl.sciencesocieties.org/publications/books/abstracts/acsesspublicati/casestudies/9?access=0&view=pdf. (accessed on 3 November 2018).
- Hayes, J.M.; Waldbauer, J.R. The carbon cycle and associated redox processes through time. Philos. Trans. R. Soc. Lond. B 2006, 361, 931–950. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stein, O.R.; Borden-Stewart, D.J.; Hook, P.B.; Jones, W.L. Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands. Water Res. 2007, 41, 3440–3448. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.H.; Xue, X.X.; Liu, R.; Jin, Z.F. Current Situation and Prospect of the Comprehensive Utilization of mining tailings. Min. Metall. Eng. 2005, 3, 44–48. [Google Scholar]
- Borch, T.; Kretzschmar, R.; Kappler, A.; Cappellen, P.V.; Ginder-Vogel, M.; Voegelin, A.; Campbell, K. Biogeochemical redox processes and their impact on contaminant dynamics. Environ. Sci. Technol. 2009, 44, 15–23. [Google Scholar] [CrossRef] [PubMed]
- Evans, M.; Warburton, J.; Yang, J. Eroding blanket peat catchments: Global and local implications of upland organic sediment budgets. Geomorphology 2006, 79, 45–57. [Google Scholar] [CrossRef]
- Toevs, G.R.; Morra, M.J.; Polizzotto, M.L.; Strawn, D.G.; Bostick, B.C.; Fendorf, S. Metal (loid) diagenesis in mine-impacted sediments of Lake Coeur d’Alene, Idaho. Environ. Sci. Technol. 2006, 40, 2537–2543. [Google Scholar] [CrossRef] [PubMed]
- Burton, E.D.; Bush, R.T.; Sullivan, L.A.; Mitchell, D.R. Schwertmannite transformation to goethite via the Fe (II) pathway: Reaction rates and implications for iron–sulfide formation. Geochim. Cosmochim. Acta 2008, 72, 4551–4564. [Google Scholar] [CrossRef]
- Chen, X.; Wright, J.V.; Conca, J.L.; Peurrung, L.M. Effects of pH on heavy metal sorption on mineral apatite. Environ. Sci. Technol. 1997, 31, 624–631. [Google Scholar] [CrossRef]
- MacLean, L.C.W.; Pray, T.J.; Onstott, T.C.; Brodie, E.L.; Hazen, T.C.; Southam, G. Mineralogical, chemical and biological characterization of an anaerobic biofilm collected from a borehole in a deep gold mine in South Africa. Geomicrobiol. J. 2007, 24, 491–504. [Google Scholar] [CrossRef]
- Bazylinski, D.A.; Frankel, R.B. Biologically controlled mineralization in prokaryotes. Rev. Mineral. Geochem. 2003, 54, 217–247. [Google Scholar] [CrossRef]
- Whiteman, M.; Armstrong, J.S.; Chu, S.H.; Jia-Ling, S.; Wong, B.S.; Cheung, N.S.; Halliwell, B.; Moore, P.K. The novel neuromodulator hydrogen sulfide: An endogenous peroxynitrite ‘scavenger’? J. Neurochem. 2004, 90, 765–768. [Google Scholar] [CrossRef] [PubMed]
- He, Z.; Gentry, T.J.; Schadt, C.W.; Wu, L.; Liebich, J.; Chong, S.C.; Huang, Z.; Wu, W.; Gu, B.; Jardine, P.; et al. GeoChip: A comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J. 2007, 1, 67. [Google Scholar] [CrossRef] [PubMed]
- Van Nostrand, J.D.; Wu, W.M.; Wu, L.; Deng, Y.; Carley, J.; Carroll, S.; He, Z.; Gu, B.; Luo, J.; Criddle, C.S.; et al. GeoChip-based analysis of functional microbial communities during the reoxidation of a bioreduced uranium-contaminated aquifer. Environ. Microbiol. 2009, 11, 2611–2626. [Google Scholar] [CrossRef] [PubMed]
- Tu, Q.; Yu, H.; He, Z.; Deng, Y.; Wu, L.; Van Nostrand, J.D.; Zhou, A.; Voordeckers, J.; Lee, Y.J.; Qin, Y.; et al. GeoChip 4: A functional gene-array-based high-throughput environmental technology for microbial community analysis. Mol. Ecol. Resour. 2014, 14, 914–928. [Google Scholar] [CrossRef] [PubMed]
- Loick, N.; Weisener, C. Novel molecular tools to assess microbial activity in contaminated environments. In Geomicrobiology and Biogeochemistry; Springer: Berlin/Heidelberg, Germany, 2014; pp. 17–35. [Google Scholar]
- Lu, Z.; Deng, Y.; Van Nostrand, J.D.; He, Z.; Voordeckers, J.; Zhou, A.; Lee, Y.J.; Mason, O.U.; Dubinsky, E.A.; Chavarria, K.L.; et al. Microbial gene functions enriched in the Deepwater Horizon deep-sea oil plume. ISME J. 2012, 6, 451. [Google Scholar] [CrossRef] [PubMed]
- Frostegård, Å.; Tunlid, A.; Bååth, E. Use and misuse of PLFA measurements in soils. Soil Biol. Biochem. 2011, 43, 1621–1625. [Google Scholar] [CrossRef]
- Olsson, P.A. Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 1999, 29, 303–310. [Google Scholar] [CrossRef] [Green Version]
- Brantley, S.L.; Goldhaber, M.B.; Ragnarsdottir, K.V. Crossing disciplines and scales to understand the critical zone. Elements 2007, 3, 307–314. [Google Scholar] [CrossRef]
- Brown, G.E.; Foster, A.L.; Ostergren, J.D. Mineral surfaces and bioavailability of heavy metals: A molecular-scale perspective. Proc. Natl. Acad. Sci. USA 1999, 96, 3388–3395. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kilmer, V.J.; Alexander, L.T. Methods of making mechanical analyses of soils. Soil Sci. 1949, 68, 15–24. [Google Scholar] [CrossRef]
- Soil Survey Laboratory Staff. Soil Survey Laboratory Manual. Soil Survey Investigation; Report No. 42 USDA-NRCS; U.S. Government Printing Office: Washington, DC, USA, 1996.
- Zarcinas, B.A.; McLaughlin, M.J.; Smart, M.K. The effect of acid digestion technique on the performance of nebulization systems used in inductively coupled plasma spectrometry. Commun. Soil Sci. Plant Anal. 1996, 27, 1331–1354. [Google Scholar] [CrossRef]
- Luptakova, A.; Kusnierova, M. Bioremediation of acid mine drainage contaminated by SRB. Hydrometallurgy 2005, 77, 97–102. [Google Scholar] [CrossRef]
- Wan, J.; Tokunaga, T.K.; Brodie, E.; Wang, Z.; Zheng, Z.; Herman, D.; Hazen, T.C.; Firestone, M.K.; Sutton, S.R. Reoxidation of bioreduced uranium under reducing conditions. Environ. Sci. Technol. 2005, 39, 6162–6169. [Google Scholar] [CrossRef] [PubMed]
- Karna, R.R.; Hettiarachchi, G.M.; Newville, M.; Sun, C.; Ma, Q. Synchrotron-based X-ray spectroscopy studies for redox-based remediation of lead, zinc, and cadmium in mine waste materials. J. Environ. Qual. 2016, 45, 1883–1893. [Google Scholar] [CrossRef] [PubMed]
- Bligh, E.G.; Dyer, W.J. A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 1959, 37, 911–917. [Google Scholar] [CrossRef] [PubMed]
- White, D.C.; Ringelberg, D.B. Signature lipid biomarker analysis. Tech. Microb. Ecol. 1998, 1, 255–272. [Google Scholar]
- McKinley, V.L.; Peacock, A.D.; White, D.C. Microbial community PLFA and PHB responses to ecosystem restoration in tallgrass prairie soils. Soil Biol. Biochem. 2005, 37, 1946–1958. [Google Scholar] [CrossRef]
- Liang, Y.; Van Nostrand, J.D.; Deng, Y.; He, Z.; Wu, L.; Zhang, X.; Li, G.; Zhou, J. Functional gene diversity of soil microbial communities from five oil-contaminated fields in China. ISME J. 2011, 5, 403. [Google Scholar] [CrossRef] [PubMed]
- Heald, S.M.; Cross, J.O.; Brewe, D.L.; Gordon, R.A. Nuclear instruments and methods in physics research section A: Accelerators, spectrometers, detectors and associated equipment. Proc. Natl. Conf. Synchrotron Radiat. Res. 2007, 582, 215–217. [Google Scholar]
- Manceau, A.; Marcus, M.A.; Tamura, N. Quantitative speciation of heavy metals in soils and sediments by synchrotron X-ray techniques. Rev. Mineral. Geochem. 2002, 49, 341–428. [Google Scholar] [CrossRef]
- Scheinost, A.C.; Kretzschmar, R.; Pfister, S.; Roberts, D.R. Combining selective sequential extractions, X-ray absorption spectroscopy, and principal component analysis for quantitative zinc speciation in soil. Environ. Sci. Technol. 2002, 36, 5021–5028. [Google Scholar] [CrossRef] [PubMed]
- Roberts, D.R.; Scheinost, A.; Sparks, D. Zinc speciation in a smelter contaminated soil profile using bulk and microspectroscopic techniques. Environ. Sci. Technol. 2002, 36, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- White, C.; Gadd, G.M. Copper accumulation by sulfate-reducing bacterial biofilms. FEMS Microbiol. Lett. 2000, 183, 313–318. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Janssen, G.M.; Temminghoff, E.J. In situ metal precipitation in a zinc-contaminated, aerobic sandy aquifer by means of biological sulfate reduction. Environ. Sci. Technol. 2004, 38, 4002–4011. [Google Scholar] [CrossRef] [PubMed]
- Kirk, M.F.; Holm, T.R.; Park, J.; Jin, Q.; Sanford, R.A.; Fouke, B.W.; Bethke, C.M. Bacterial sulfate reduction limits natural arsenic contamination in groundwater. Geology 2004, 32, 953–956. [Google Scholar] [CrossRef]
- Klein, M.; Friedrich, M.; Roger, A.J.; Hugenholtz, P.; Fishbain, S.; Abicht, H.; Blackall, L.L.; Stahl, D.A.; Wagner, M. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfate-reducing prokaryotes. J. Bacteriol. 2001, 183, 6028–6035. [Google Scholar] [CrossRef] [PubMed]
- Smith, G.A.; Nickels, J.S.; Kerger, B.D.; Davis, J.D.; Collins, S.P.; Wilson, J.T.; McNabb, J.F.; White, D.C. Quantitative characterization of microbial biomass and community structure in subsurface material: A prokaryotic consortium responsive to organic contamination. Can. J. Microbiol. 1986, 32, 104–111. [Google Scholar] [CrossRef]
- Bossio, D.A.; Scow, K.M. Impacts of carbon and flooding on soil microbial communities: Phospholipid fatty acid profiles and substrate utilization patterns. Microb. Ecol. 1998, 35, 265–278. [Google Scholar] [CrossRef] [PubMed]
- Ibekwe, A.M.; Kennedy, A.C. Phospholipid fatty acid profiles and carbon utilization patterns for analysis of microbial community structure under field and greenhouse conditions. FEMS Microbiol. Ecol. 1998, 26, 151–163. [Google Scholar] [CrossRef] [Green Version]
- Trajanovska, S.; Britz, M.L.; Bhave, M. Detection of heavy metal ion resistance genes in Gram-positive and Gram-negative bacteria isolated from a lead-contaminated site. Biodegradation 1997, 8, 113–124. [Google Scholar] [CrossRef] [PubMed]
- Fuhrman, J.A. Microbial community structure and its functional implications. Nature 2009, 459, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Tokunaga, T.K.; Wan, J.; Firestone, M.K.; Hazen, T.C.; Olson, K.R.; Herman, D.J.; Sutton, S.R.; Lanzirotti, A. In situ reduction of chromium (VI) in heavily contaminated soils through organic carbon amendment. J. Environ. Qual. 2003, 32, 1641–1649. [Google Scholar] [CrossRef] [PubMed]
- Brodie, E.L.; DeSantis, T.Z.; Joyner, D.C.; Baek, S.M.; Larsen, J.T.; Andersen, G.L.; Hazen, T.C.; Richardson, P.M.; Herman, D.J.; Tokunaga, T.K.; et al. Application of a high-density oligonucleotide microarray approach to study bacterial population dynamics during uranium reduction and reoxidation. Appl. Environ. Microbiol. 2006, 72, 6288–6298. [Google Scholar] [CrossRef] [PubMed]
- Yergeau, E.; Kang, S.; He, Z.; Zhou, J.; Kowalchuk, G.A. Functional microarray analysis of nitrogen and carbon cycling genes across an Antarctic latitudinal transect. ISME J. 2007, 1, 163. [Google Scholar] [CrossRef] [PubMed]
- Ku, T.C.; Kay, J.; Browne, E.; Martini, A.M.; Peters, S.C.; Chen, M.D. Pyritization of iron in tropical coastal sediments: Implications for the development of iron, sulfur, and carbon diagenetic properties, Saint Lucia, Lesser Antilles. Mar. Geol. 2008, 249, 184–205. [Google Scholar] [CrossRef]
- Morse, J.W.; Luther, G.W., III. Chemical influences on trace metal-sulfide interactions in anoxic sediments. Geochim. Cosmochim. Acta 1999, 63, 3373–3378. [Google Scholar] [CrossRef]
- Khan, S.; Hesham, A.E.L.; Qiao, M.; Rehman, S.; He, J.Z. Effects of Cd and Pb on soil microbial community structure and activities. Environ. Sci. Pollut. Res. 2010, 17, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Van Nostrand, J.D.; Wu, L.; Wu, W.M.; Huang, Z.; Gentry, T.J.; Deng, Y.; Carley, J.; Carroll, S.; He, Z.; Gu, B.; et al. Dynamics of microbial community composition and function during in-situ bioremediation of a uranium-contaminated aquifer. Appl. Environ. Microbiol. 2011. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Calbrix, R.; Barray, S.; Chabrerie, O.; Fourrie, L.; Laval, K. Impact of organic amendments on the dynamics of soil microbial biomass and bacterial communities in cultivated land. Appl. Soil Ecol. 2007, 35, 511–522. [Google Scholar] [CrossRef]
- Eiler, A.; Langenheder, S.; Bertilsson, S.; Tranvik, L.J. Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl. Environ. Microbiol. 2003, 69, 3701–3709. [Google Scholar] [CrossRef] [PubMed]
- Hemme, C.L.; Deng, Y.; Gentry, T.J.; Fields, M.W.; Wu, L.; Barua, S.; Barry, K.; Tringe, S.G.; Watson, D.B.; He, Z.; et al. Metagenomic insights into evolution of a heavy metal-contaminated groundwater microbial community. ISME J. 2010, 4, 660. [Google Scholar] [CrossRef] [PubMed]
- Muyzer, G.; Stams, A.J. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 2008, 6, 441. [Google Scholar] [CrossRef] [PubMed]
- Huerta-Diaz, M.A.; Tessier, A.; Carignan, R. Geochemistry of trace metals associated with reduced sulfur in freshwater sediments. Appl. Geochem. 1998, 13, 213–233. [Google Scholar] [CrossRef]
Sample | (µg/L) | pH | (mg/L) | ||||
---|---|---|---|---|---|---|---|
Zn | Cd | Pb | DOC | Sulfate-S | Nitrate-N | ||
C0S0 119-day | 723 ± 40.9 | 432 ± 10.9 | <DL | 7.57 ± 0.02 | 5 ± 0.03 | 474 ± 10.25 | 2.0 ± 0.1 |
C0S0 252-day | 517 ±3 0.9 | 28 ± 0.9 | <DL | 8.41 ± 0.03 | 62 ± 2.6 | 571 ± 5.64 | 2.0 ± 0.2 |
C0S1 119-day | 30 ± 1.7 | 2 ± 0.01 | <DL | 8.00 ± 0.02 | 4 ± 0.1 | 468 ± 6.78 | 1.8 ± 0.5 |
C0S1 252-day | <DL | 1 ± 0.006 | 36 ± 1.6 | 6.39 ±0.005 | 65 ± 0.8 | ¶ | 2.2 ± 0.02 |
C1S0 119-day | <DL | 1 ± 0.001 | <DL | 8.18 ± 0.012 | 5 ± 0.02 | 503 ± 7.34 | 1.9 ± 0.01 |
C1S0 252-day | <DL | <DL | <DL | 7.58 ± 0.015 | <DL | 474 ± 3.95 | 2.0 ± 0.05 |
C1S1 119-day | <DL | 1 ± 0.004 | <DL | 7.40 ± 0.01 | 4 ± 0.1 | 437 ± 10.02 | 1.8 ± 0.04 |
C1S1 252-day | <DL | <DL | <DL | 7.02 ± 0.01 | <DL | 288 ± 8.64 | 1.9 ± 0.14 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Karna, R.R.; Hettiarachchi, G.M.; Van Nostrand, J.; Yuan, T.; Rice, C.W.; Assefa, Y.; Zhou, J. Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface. Soil Syst. 2018, 2, 60. https://doi.org/10.3390/soilsystems2040060
Karna RR, Hettiarachchi GM, Van Nostrand J, Yuan T, Rice CW, Assefa Y, Zhou J. Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface. Soil Systems. 2018; 2(4):60. https://doi.org/10.3390/soilsystems2040060
Chicago/Turabian StyleKarna, Ranju R., Ganga M. Hettiarachchi, Joy Van Nostrand, Tong Yuan, Charles W. Rice, Yared Assefa, and Jizhong Zhou. 2018. "Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface" Soil Systems 2, no. 4: 60. https://doi.org/10.3390/soilsystems2040060
APA StyleKarna, R. R., Hettiarachchi, G. M., Van Nostrand, J., Yuan, T., Rice, C. W., Assefa, Y., & Zhou, J. (2018). Microbial Population Dynamics and the Role of Sulfate Reducing Bacteria Genes in Stabilizing Pb, Zn, and Cd in the Terrestrial Subsurface. Soil Systems, 2(4), 60. https://doi.org/10.3390/soilsystems2040060