Sensitivity of Nematode Community Analysis to Agricultural Management Practices and Inoculation with Local Effective Microorganisms in the Southeastern United States
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Design
2.2. Nematode Sampling, Extraction and Analysis
2.3. CO2 Burst Incubation and Analysis
2.4. Nitrogen Mineralization Sampling, Incubations and Analysis
2.5. Harvesting and Yield
2.6. Statistics
3. Results and Discussion
3.1. Sensitivity of Nematode Community Structure Analysis to Previous Land Management Practices
3.2. Local Effective Microorganisms’ Impact on Nematode Community Structure and Agronomic Measures
3.3. Using Nematodes in the Measurement of Soil Health in Agricultural Systems
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dominati, E.; Patterson, M.; Mackay, A. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecol. Econ. 2010, 69, 1858–1868. [Google Scholar] [CrossRef]
- Daily, G.C. Nature’s Services; Island Press: Washington, DC, USA, 1997; Volume 19971. [Google Scholar]
- Karlen, D.L.; Mausbach, M.J.; Doran, J.W.; Cline, R.G.; Harris, R.F.; Schuman, G.E. Soil quality: A concept, definition, and framework for evaluation (a guest editorial). Soil Sci. Soc. Am. J. 1997, 61, 4–10. [Google Scholar] [CrossRef]
- Doran, J.W.; Zeiss, M.R. Soil health and sustainability: Managing the biotic component of soil quality. Appl. Soil Ecol. 2000, 15, 3–11. [Google Scholar] [CrossRef]
- Cairns, J.; McCormick, P.V.; Niederlehner, B.R. A proposed framework for developing indicators of ecosystem health. Hydrobiologia 1993, 263, 1–44. [Google Scholar] [CrossRef]
- Armenise, E.; Redmile-Gordon, M.A.; Stellacci, A.M.; Ciccarese, A.; Rubino, P. Developing a soil quality index to compare soil fitness for agricultural use under different managements in the Mediterranean environment. Soil Tillage Res. 2013, 130, 91–98. [Google Scholar] [CrossRef]
- Garrigues, E.; Corson, M.S.; Angers, D.A.; van der Werf, H.M.; Walter, C. Soil quality in Life Cycle Assessment: Towards development of an indicator. Ecol. Indic. 2012, 18, 434–442. [Google Scholar] [CrossRef]
- Kelting, D.L.; Burger, J.A.; Patterson, S.C.; Aust, W.M.; Miwa, M.; Trettin, C.C. Soil quality assessment in domesticated forests—A southern pine example. For. Ecol. Manag. 1999, 122, 167–185. [Google Scholar] [CrossRef]
- Wienhold, B.J.; Andrews, S.S.; Karlen, D.L. Soil quality: A review of the science and experiences in the USA. Environ. Geochem. Health 2004, 26, 89–95. [Google Scholar] [CrossRef] [PubMed]
- Masto, R.E.; Chhonkar, P.K.; Purakayastha, T.J.; Patra, A.K.; Singh, D. Soil quality indices for evaluation of long-term land use and soil management practices in semi-arid sub-tropical India. Land Degrad. Dev. 2008, 19, 516–529. [Google Scholar] [CrossRef]
- Bone, J.; Barraclough, D.; Eggleton, P.; Head, M.; Jones, D.T.; Voulvoulis, N. Prioritising soil quality assessment through the screening of sites: The use of publicly collected data. Land Degead. Dev. 2014, 25, 251–266. [Google Scholar] [CrossRef]
- Yan, S.; Singh, A.N.; Fu, S.; Liao, C.; Wang, S.; Li, Y.; Cui, Y.; Hu, L. A soil fauna index for assessing soil quality. Soil Biol. Biochem. 2012, 47, 158–165. [Google Scholar] [CrossRef]
- Knoepp, J.D.; Coleman, D.C.; Crossley, D.A., Jr.; Clark, J.S. Biological indices of soil quality: An ecosystem case study of their use. For. Ecol. Manag. 2000, 138, 357–368. [Google Scholar] [CrossRef]
- Paz-Ferreiro, J.; Fu, S. Biological indices for soil quality evaluation: Perspectives and limitations. Land Degrad. Dev. 2016, 27, 14–25. [Google Scholar] [CrossRef]
- Pattison, A.B.; Moody, P.W.; Badcock, K.A.; Smith, L.J.; Armour, J.A.; Rasiah, V.; Cobon, J.A.; Gulino, L.M.; Mayer, R. Development of key soil health indicators for the Australian banana industry. Appl. Soil Ecol. 2008, 40, 155–164. [Google Scholar] [CrossRef]
- Bongers, T.; Ferris, H. Nematode community structure as a bioindicator in environmental monitoring. Trends Ecol. Evol. 1999, 14, 224–228. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bongers, T.D.; De Goede, R.G.M.; Freckman, D.W.; Georgieva, S.S. Feeding habits in soil nematode families and genera—An outline for soil ecologists. J. Nematol. 1993, 25, 315. [Google Scholar] [PubMed]
- Ritz, K.; Black, H.I.; Campbell, C.D.; Harris, J.A.; Wood, C. Selecting biological indicators for monitoring soils: A framework for balancing scientific and technical opinion to assist policy development. Ecol. Indic. 2009, 9, 1212–1221. [Google Scholar] [CrossRef] [Green Version]
- Ferris, H.; Bongers, T.; De Goede, R.G.M. A framework for soil food web diagnostics: Extension of the nematode faunal analysis concept. Appl. Soil Ecol. 2001, 18, 13–29. [Google Scholar] [CrossRef]
- Neher, D.A. Role of nematodes in soil health and their use as indicators. J. Nematol. 2001, 33, 161. [Google Scholar]
- Bongers, T. The maturity index: An ecological measure of environmental disturbance based on nematode species composition. Oecologia 1990, 83, 14–19. [Google Scholar] [CrossRef]
- Neher, D.A.; Campbell, C.L. Sampling for regional monitoring of nematode communities in agricultural soils. J. Nematol. 1996, 28, 196. [Google Scholar] [PubMed]
- Neher, D.A.; Peck, S.L.; Rawlings, J.O.; Campbell, C.L. Measures of nematode community structure and sources of variability among and within agricultural fields. Plant Soil 1995, 170, 167–181. [Google Scholar] [CrossRef]
- Bongers, T.; van der Meulen, H.; Korthals, G. Inverse relationship between the nematode maturity index and plant parasite index under enriched nutrient conditions. Appl. Soil Ecol. 1997, 6, 195–199. [Google Scholar] [CrossRef]
- Zullini, A. Nematodes as indicators of river pollution. Nematol. Mediterr. 1976, 4, 13–22. [Google Scholar]
- Prejs, K. The littoral and profundal benthic nematodes of lakes with different trophy. Ekologia Polska 1977, 25, 21–30. [Google Scholar]
- Yeates, G.W. Nematodes as soil indicators: Functional and biodiversity aspects. Biol. Fertil. Soils 2003, 37, 199–210. [Google Scholar]
- Kozlowska, J. The effect of sewage sediments on communities of soil nematodes. Pol. Ecol. Stud. 1989, 15, 27–39. [Google Scholar]
- Zullini, A.; Peretti, E. Lead pollution and moss-inhabiting nematodes of an industrial area. Water Air Soil Pollut. 1986, 27, 403–410. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Q.; Zhu, A.; Liang, W.; Zhang, J.; Steinberger, Y. Effects of tillage and residue management on soil nematode communities in North China. Ecol. Indic. 2012, 13, 75–81. [Google Scholar] [CrossRef]
- Ito, T.; Araki, M.; Komatsuzaki, M.; Kaneko, N.; Ohta, H. Soil nematode community structure affected by tillage systems and cover crop managements in organic soybean production. Appl. Soil Ecol. 2015, 86, 137–147. [Google Scholar] [CrossRef]
- Grabau, Z.J.; Chen, S. Influence of long-term corn–soybean crop sequences on soil ecology as indicated by the nematode community. Appl. Soil Ecol. 2016, 100, 172–185. [Google Scholar] [CrossRef]
- Zhao, J.; Wang, F.; Li, J.; Zou, B.; Wang, X.; Li, Z.; Fu, S. Effects of experimental nitrogen and/or phosphorus additions on soil nematode communities in a secondary tropical forest. Soil Biol. Biochem. 2014, 75, 1–10. [Google Scholar] [CrossRef]
- Higa, T.; Parr, J.F. Beneficial and Effective Microorganisms for a Sustainable Agriculture and Environment; International Nature Farming Research Center: Atami, Japan, 1994; Volume 1. [Google Scholar]
- Suchini Ramirez, J.G. Innovaciones Agroecologicas para una Producciones Agropecuaria Sostenible en la Region del Trifinio, 1st ed.; CATIE: Turrialba, Costa Rica, 2012. [Google Scholar]
- Ministierio de Agricultura y Ganaderia Guia Tecnicia para la Difusion de Tecnologias de Produccion Agropecuaria Sostenible, 1st ed.; MAG: San Jose, Costa Rica, 2010.
- Ney, L.; Franklin, D.; Mahmud, K.; Cabrera, M.; Hancock, D.; Habteselassie, M.; Newcomer, Q. Examining trophic-level nematode community structure and nitrogen mineralization to assess local effective microorganisms’ role in nitrogen availability of swine effluent to forage crops. Appl. Soil Ecol. 2018, 130, 209–218. [Google Scholar] [CrossRef]
- Hu, C.; Qi, Y. Long-term effective microorganisms application promote growth and increase yields and nutrition of wheat in China. Eur. J. Agron. 2013, 46, 63–67. [Google Scholar] [CrossRef]
- Khaliq, A.M.; Abbasi, K.; Hussain, T. Effects of integrated use of organic and inorganic nutrient sources with effective microorganisms (EM) on seed cotton yield in Pakistan. Bioresour. Technol. 2006, 97, 967–972. [Google Scholar] [CrossRef] [PubMed]
- Daly, M.J.; Stewart, D.P.C. Influence of “effective microorganisms” (EM) on vegetable production and carbon mineralization—A preliminary investigation. J. Sustain. Agric. 1999, 14, 15–25. [Google Scholar] [CrossRef]
- Mayer, J.; Scheid, S.; Widmer, F.; Fließbach, A.; Oberholzer, H. How effective are ‘Effective microorganisms® (EM)’? Results from a field study in temperate climate. Appl. Soil Ecol. 2010, 46, 230–239. [Google Scholar] [CrossRef]
- Van Vliet, P.C.J.; Bloem, J.; De Goede, R.G.M. Microbial diversity, nitrogen loss and grass production after addition of Effective Micro-organisms® (EM) to slurry manure. Appl. Soil Ecol. 2006, 32, 188–198. [Google Scholar] [CrossRef]
- Sharif, M.; Khan, M.; Khan, M.A.; Wahid, F.; Marwat, K.B.; Khattak, A.M.; Naseer, M. Effect of rock phosphate and farmyard manure applied with effective microorganisms on the yield and nutrient uptake of wheat and sunflower crops. Pak. J. Bot. 2015, 47, 219–226. [Google Scholar]
- Javaid, A.; Bajwa, R. Field evaluation of effective microorganisms (EM) application for growth, nodulation, and nutrition of mung bean. Turk. J. Agric. For. 2011, 35, 443–452. [Google Scholar]
- Martinez, A.D.P.C.; Acosta Sanchez, R.L.; Morales Velasco, S.; Prado, F.A. Evaluación de microorganismos de montaña (mm) en la producción de acelga en la meseta de Popayán. Biotecnología en el Sector Agropecuario y Agroindustrial BSAA 2014, 12, 79–87. [Google Scholar]
- World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2014.
- Soil Survey Staff. Keys to Soil Taxonomy, 10th ed.; U.S. Department of Agriculture, Natural Resources Conservation Service. 2006. Available online: https://websoilsurvey.sc.egov.usda.gov/App/HomePage.htm (accessed on 28 February 2019).
- Georgia Weather “Past Data”. Available online: http://weather.uga.edu/?variable=HI&site=GAWU (accessed on 28 February 2019).
- Freckman, D.W.; Ettema, C.H. Assessing nematode communities in agroecosystems of varying human intervention. Agric. Ecosyst. Environ. 1993, 45, 239–261. [Google Scholar] [CrossRef]
- Yeates, G.W.; Bardgett, R.D.; Cook, R.; Hobbs, P.J.; Bowling, P.J.; Potter, J.F. Faunal and microbial diversity in three Welsh grassland soils under conventional and organic management regimes. J. Appl. Ecol. 1997, 34, 453–470. [Google Scholar] [CrossRef]
- Forge, T.A.; Simard, S.W. Trophic structure of nematode communities, microbial biomass, and nitrogen mineralization in soils of forests and clearcuts in the southern interior of British Columbia. Can. J. Soil Sci. 2000, 80, 401–410. [Google Scholar] [CrossRef]
- Cesarz, S.; Reich, P.B.; Scheu, S.; Ruess, L.; Schaefer, M.; Eisenhauer, N. Nematode functional guilds, not trophic groups, reflect shifts in soil food webs and processes in response to interacting global change factors. Pedobiologia 2015, 58, 23–32. [Google Scholar] [CrossRef] [Green Version]
- Nivelle, E.; Verzeaux, J.; Habbib, H.; Kuzyakov, Y.; Decocq, G.; Roger, D.; Lacoux, J.; Duclercq, J.; Spicher, F.; Nava-Saucedo, J.E.; et al. Functional response of soil microbial communities to tillage, cover crops and nitrogen fertilization. Appl. Soil Ecol. 2016, 108, 147–155. [Google Scholar] [CrossRef]
- Southey, J.F. Laboratory Methods for Work with Plant and Soil Nematodes, 1st ed.; Her Majesty’s Stationery Office: London, UK, 1970. [Google Scholar]
- Goodey, T. Soil and Freshwater Nematodes. A Monograph, 2nd ed.; John Wiley: London, UK; New York, NY, USA, 1963. [Google Scholar]
- Bongers, T.; Bongers, M. Functional diversity of nematodes. Appl. Soil Ecol. 1998, 10, 239–251. [Google Scholar] [CrossRef]
- Franzluebbers, A.J. Should soil testing services measure soil biological activity? Agric. Environ. Lett. 2016, 1. [Google Scholar] [CrossRef]
- Villar, N.; Aizpurua, A.; Castellón, A.; Ortuzar, M.A.; Moro, M.B.G.; Besga, G. Laboratory methods for the estimation of soil apparent N mineralization and wheat N uptake in calcareous soils. Soil Sci. 2014, 179, 84–94. [Google Scholar] [CrossRef]
- Marsalis, M.A.; Angadi, S.V.; Contreras-Govea, F.E. Dry matter yield and nutritive value of corn, forage sorghum, and BMR forage sorghum at different plant populations and nitrogen rates. Field Crop Res. 2010, 116, 52–57. [Google Scholar] [CrossRef]
- SAS Institute Inc. JMP (Version 13.0); SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Davis, R.F.; Bertrand, P.; Gay, D.; Baird, R.; Padgett, B.; Brown, E.; Balsdon, J. Guide for Interpreting Nematode Assay Results. 2013. Available online: http://extension.uga.edu/publications/detail.html?number=C834&title=Guide for Interpreting Nematode Assay Results#Action (accessed on 22 March 2019).
- Ferris, H.; Bongers, T. Nematode indicators of organic enrichment. J. Nematol. 2006, 38, 3. [Google Scholar] [PubMed]
- Dong, D.; Chen, Y.F.; Steinberger, Y.; Cao, Z.P. Effects of different soil management practices on soil free-living nematode community structure, Eastern China. Can. J. Soil Sci. 2008, 88, 115–127. [Google Scholar] [CrossRef]
- Jaffee, B.A.; Ferris, H.; Scow, K.M. Nematode-trapping fungi in organic and conventional cropping systems. Phytopathology 1998, 88, 344–350. [Google Scholar] [CrossRef] [PubMed]
- Sohlenius, B.; Persson, H.; Magnusson, C. Distribution of roots and nematodes in a young Scots pine stand in Central Sweden. Ecol. Bull. 1977, 25, 340–347. [Google Scholar]
- Parmelee, R.W.; Bohlen, P.J.; Edwards, C.A. Analysis of nematode trophic structure in agroecosystems: Functional groups versus high resolution taxonomy. In The Significance and Regulation of Soil Biodiversity. Developments in Plant and Soil Sciences; Collins, H.P., Robertson, G.P., Klug, M.J., Eds.; Springer: Dordrecht, The Netherlands, 1995; Volume 63, pp. 203–207. [Google Scholar]
- Carrascosa, M.; Sánchez-Moreno, S.; Alonso-Prados, J.L. Effects of organic and conventional pesticides on plant biomass, nematode diversity and the structure of the soil food web. Nematology 2015, 17, 11–26. [Google Scholar] [CrossRef]
Number of Times Tilled | |||
ARF System | CRS System | Bare Control | |
Year 1 | 1 | 2 | 1 |
Year 2 | 1 | 2 | 0 |
Year 3 | 2 | 2 | 2 |
Total | 4 | 6 | 3 |
Nitrogen Applied (kg ha−1) | |||
ARF System | CRS System | Bare Control | |
Year 1 | 50 | 62 | 0 |
Year 2 | 27 | 43 | 0 |
Year 3 | 0 | 0 | 0 |
Total | 77 | 105 | 0 |
Winter 2017 (Wheat) | |||
Index | ARF (Std. Err.) | CRS (Std. Err.) | BC (Std. Err.) |
MI | 2.19 A (0.07) | 2.10 B (0.01) | 2.20 A (0.10) |
PPI | 3.21 B (0.07) | 3.71 A (0.11) | 3.08 B (0.04) |
SI | 66.14 A (3.57) | 14.4 B (1.38) | 65.73 A (4.27) |
EI | 35.11A(4.87) | 35.76 A (2.98) | 20.12 B (2.82) |
Summer 2017 (Edamame) | |||
Index | ARF (Std. Err.) | CRS (Std. Err.) | BC (Std. Err.) |
MI | 2.14 A (0.05) | 2.04 B (0.05) | 2.29 A (0.36) |
PPI | 3.25 B (0.03) | 3.72 A (0.09) | 3.32 B (0.18) |
SI | 55.44 A (2.67) | 42.13 B (2.97) | 65.55 A (4.17) |
EI | 27.60 B (2.35) | 34.28 A (5.06) | 20.34 B (9.43) |
WINTER | |||
ARF System | |||
Index | LEM (Std. Err.) | FLEM (Std. Err.) | CONT (Std. Err.) |
MI | 2.19 (0.07) | 2.10 (0.15) | 2.20 (0.14) |
PPI | 3.11 b (0.03) | 3.11 b (0.04) | 3.41 a (0.19) |
SI | 62.44 (5.59) | 65.42 (6.35) | 71.07 (9.34) |
EI | 35.12 (13.05) | 37.98 (6.74) | 32.11 (5.68) |
CRS System | |||
Index | LEM (Std. Err.) | FLEM (Std. Err.) | CONT (Std. Err.) |
MI | 2.02 (0.03) | 2.01 (0.02) | 2.00 (0.02) |
PPI | 3.50 b (0.20) | 3.62 ab (0.20) | 4.00 a (0.00) |
SI | 15.11 A (2.60) | 24.72 A (1.93) | 5.01 B (2.43) |
EI | 32.80 (4.89) | 37.86 (3.94) | 36.59 (1.81) |
SUMMER | |||
ARF System | |||
Index | LEM (Std. Err.) | FLEM (Std. Err.) | CONT (Std. Err.) |
MI | 2.13 (0.10) | 2.14 (0.10) | 2.14 (0.09) |
PPI | 3.28 (0.06) | 3.21 (0.06) | 3.25 (0.06) |
SI | 53.62 (7.40) | 53.35 (1.03) | 59.35 (3.91) |
EI | 30.13 (3.11) | 22.90 (2.87) | 29.77 (5.64) |
CRS System | |||
Index | LEM (Std. Err.) | FLEM (Std. Err.) | CONT (Std. Err.) |
MI | 2.12 (0.09) | 1.98 (0.12) | 2.01 (0.03) |
PPI | 3.54 b (0.19) | 3.65 ab (0.15) | 3.97 a (0.03) |
SI | 66.10 A (8.32) | 37.74 B (0.82) | 35.22 B (4.78) |
EI | 32.02 (13.24) | 36.92 (4.74) | 33.91 (4.36) |
MI | PPI | SI | EI | CO2 3 days | CO2 28 days | N Min. | Yield | Biomass | |
MI | - | 0.63 | 0.79 | −0.54 | 0.19 | 0.02 | 0.05 | −0.49 | −0.38 |
PPI | −0.63 | - | −0.64 | 0.24 | 0.03 | 0.27 | 0.09 | 0.55 | 0.42 |
SI | 0.79 | −0.64 | - | −0.16 | 0.26 | 0.20 | 0.21 | −0.47 | −0.41 |
EI | −0.54 | 0.24 | −0.16 | - | −0.05 | 0.05 | −0.10 | 0.33 | 0.51 |
Summer (edamame): Correlations between nematode indices and measures of soil health. | |||||||||
MI | PPI | SI | EI | CO2 3 days | CO2 28 days | N Min. | Yield | Biomass | |
MI | - | 0.07 | 0.62 | −0.67 | −0.28 | −0.30 | 0.01 | 0.08 | −0.46 |
PPI | 0.07 | - | −0.35 | −0.00 | −0.21 | −0.02 | 0.40 | 0.00 | −0.23 |
SI | 0.62 | −0.35 | - | −0.44 | −0.29 | −0.30 | −0.05 | −0.37 | −0.40 |
EI | −0.67 | −0.00 | −0.44 | - | 0.24 | 0.03 | −0.00 | 0.12 | 0.31 |
Winter | Summer | ||||||||
---|---|---|---|---|---|---|---|---|---|
CO2 3 Days | N Min. | Yield | Biomass | CO2 3 Days | N Min. | Yield | Biomass | ||
BF | −0.15 | 0.05 | 0.36 | 0.27 | BF | 0.34 | 0.06 | 0.27 | 0.38 |
FF | −0.46 | −0.28 | 0.50 | 0.44 | FF | 0.26 | −0.25 | 0.17 | 0.30 |
PPN | −0.16 | −0.05 | −0.48 | −0.51 | PPN | 0.25 | −0.15 | 0.23 | 0.30 |
TYL | −0.34 | −0.04 | 0.51 | 0.43 | TYL | 0.27 | −0.36 | 0.36 | −0.01 |
DOR | 0.33 | 0.08 | −0.18 | −0.16 | DOR | −0.09 | 0.16 | −0.09 | −0.23 |
MON | 0.21 | −0.31 | −0.13 | 0.17 | MON | −0.04 | 0.22 | −0.04 | −0.33 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ney, L.; Franklin, D.; Mahmud, K.; Cabrera, M.; Hancock, D.; Habteselassie, M.; Newcomer, Q.; Dahal, S.; Subedi, A. Sensitivity of Nematode Community Analysis to Agricultural Management Practices and Inoculation with Local Effective Microorganisms in the Southeastern United States. Soil Syst. 2019, 3, 41. https://doi.org/10.3390/soilsystems3020041
Ney L, Franklin D, Mahmud K, Cabrera M, Hancock D, Habteselassie M, Newcomer Q, Dahal S, Subedi A. Sensitivity of Nematode Community Analysis to Agricultural Management Practices and Inoculation with Local Effective Microorganisms in the Southeastern United States. Soil Systems. 2019; 3(2):41. https://doi.org/10.3390/soilsystems3020041
Chicago/Turabian StyleNey, Laura, Dorcas Franklin, Kishan Mahmud, Miguel Cabrera, Dennis Hancock, Mussie Habteselassie, Quint Newcomer, Subash Dahal, and Anish Subedi. 2019. "Sensitivity of Nematode Community Analysis to Agricultural Management Practices and Inoculation with Local Effective Microorganisms in the Southeastern United States" Soil Systems 3, no. 2: 41. https://doi.org/10.3390/soilsystems3020041
APA StyleNey, L., Franklin, D., Mahmud, K., Cabrera, M., Hancock, D., Habteselassie, M., Newcomer, Q., Dahal, S., & Subedi, A. (2019). Sensitivity of Nematode Community Analysis to Agricultural Management Practices and Inoculation with Local Effective Microorganisms in the Southeastern United States. Soil Systems, 3(2), 41. https://doi.org/10.3390/soilsystems3020041