Governing Constraints of Chromium(VI) Formation from Chromium(III)-Bearing Minerals in Soils and Sediments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Conceptual Framework
2.2. Model Implementation
2.3. Constraining Factors of Cr(VI) Release
3. Results and Discussion
3.1. Chromium(III)-Mineral Dissolution Rates and Subsequent Oxidation Kinetics
3.2. Variable Effects of Cr(III) Mineral Solubility on Cr Oxidation
3.3. Influence of Separation Distance on Cr(VI)
3.4. Diffusion Distance Controls Time to a Steady-State
3.5. Hydrologic Constraints on Cr(VI) Concentrations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robertson, F. Hexavalent Chromium in the Ground Water in Paradise Valley, Arizona. Gr. Water. 1975, 13, 516–527. [Google Scholar] [CrossRef]
- Chung, J.B.; Burau, R.G.; Zasoski, R.J. Chromate Generation by Chromate Depleted Subsurface Materials. Water Air Soil Pollut. 2001, 128, 407–417. [Google Scholar] [CrossRef]
- Ball, J.W.; Izbicki, J.A. Occurrence of hexavalent chromium in ground water in the western Mojave Desert, California. Appl. Geochem. 2004, 19, 1123–1135. [Google Scholar] [CrossRef]
- Izbicki, J.A.; Ball, J.W.; Bullen, T.D.; Sutley, S.J. Chromium, chromium isotopes and selected trace elements, western Mojave Desert, USA. Appl. Geochem. 2008, 23, 1325–1352. [Google Scholar] [CrossRef]
- Morrison, J.M.; Goldhaber, M.B.; Lee, L.; Holloway, J.M.; Wanty, R.B.; Wolf, R.E.; Ranville, J.F. A regional–scale study of chromium and nickel in soils of northern California, USA. Appl. Geochem. 2009, 24, 1500–1511. [Google Scholar] [CrossRef]
- Izbicki, J.A.; Bullen, T.D.; Martin, P.; Schroth, B. Delta Chromium-53/52 isotopic composition of native and contaminated groundwater, Mojave Desert, USA. Appl. Geochem. 2012, 27, 841–853. [Google Scholar] [CrossRef]
- Izbicki, J.A.; Wright, M.T.; Seymour, W.A.; McCleskey, R.B.; Fram, M.S.; Belitz, K.; Esser, B.K. Cr(VI) occurrence and geochemistry in water from public-supply wells in California. Appl. Geochem. 2015, 63, 203–217. [Google Scholar] [CrossRef]
- Hausladen, D.M.; Alexander-Ozinskas, A.; McClain, C.; Fendorf, S. Hexavalent Chromium Sources and Distribution in California Groundwater. Environ. Sci. Technol. 2018, 52, 8242–8251. [Google Scholar] [CrossRef]
- Who | Chemical Hazards in Drinking–Water: Chromium. Available online: http://www.who.int/water_sanitation_health/water-quality/guidelines/chemicals/chromium/en/ (accessed on 4 November 2019).
- Oze, C.; Fendorf, S.; Bird, D.K.; Coleman, R.G. Chromium Geochemistry of Serpentine Soils. Int. Geol. Rev. 2004, 46, 97–126. [Google Scholar] [CrossRef]
- Oze, C.; Bird, D.K.; Fendorf, S. Genesis of hexavalent chromium from natural sources in soil and groundwater. Proc. Natl. Acad. Sci. USA 2007, 104, 6544–6549. [Google Scholar] [CrossRef]
- Nriagu, J.O.; Nieboer, E. Chromium in the Natural and Human Environments; John Wiley & Sons: Hoboken, NJ, USA, 1988; ISBN 978-0-471-85643-6. [Google Scholar]
- Fandeur, D.; Juillot, F.; Morin, G.; Olivi, L.; Cognigni, A.; Webb, S.M.; Ambrosi, J.-P.; Fritsch, E.; Guyot, F.; Brown, J.; et al. XANES Evidence for Oxidation of Cr(III) to Cr(VI) by Mn-Oxides in a Lateritic Regolith Developed on Serpentinized Ultramafic Rocks of New Caledonia. Environ. Sci. Technol. 2009, 43, 7384–7390. [Google Scholar] [CrossRef]
- Lee, B.D.; Graham, R.C.; Laurent, T.E.; Amrhein, C. Pedogenesis in a wetland meadow and surrounding serpentinitic landslide terrain, northern California, USA. Geoderma 2004, 118, 303–320. [Google Scholar] [CrossRef]
- Caillaud, J.; Proust, D.; Philippe, S.; Fontaine, C.; Fialin, M. Trace metals distribution from a serpentinite weathering at the scales of the weathering profile and its related weathering microsystems and clay minerals. Geoderma 2009, 149, 199–208. [Google Scholar] [CrossRef]
- Berger, A.; Frei, R. The fate of chromium during tropical weathering: A laterite profile from central madagascar. Geoderma 2014, 213, 521–532. [Google Scholar] [CrossRef]
- Becquer, T.; Quantin, C.; Sicot, M.; Boudot, J.P. Chromium availability in ultramafic soils from new caledonia. Sci. Total Environ. 2003, 301, 251–261. [Google Scholar] [CrossRef]
- Ure, A.M.; Berrow, M.L. The elemental constituents of soil. Int. Environ. Chem. 1982, 2, 94–204. [Google Scholar]
- Pan, C.; Liu, H.; Catalano, J.G.; Qian, A.; Wang, Z.; Giammar, D.E. Rates of Cr(VI) generation from CrxFe1−x(OH)3 solids upon reaction with manganese oxide. Environ. Sci. Technol. 2017, 51, 12416–12423. [Google Scholar] [CrossRef]
- Pan, C.; Liu, H.; Catalano, J.G.; Wang, Z.; Qian, A.; Giammar, D.E. Understanding the roles of dissolution and diffusion in Cr(OH)3 oxidation by -MnO2. ACS Earth Space Chem. 2019, 3, 357–365. [Google Scholar] [CrossRef]
- Mills, C.T.; Morrison, J.M.; Goldhaber, M.B.; Ellefsen, K.J. Chromium(VI) generation in vadose zone soils and alluvial sediments of the southwestern Sacramento valley, California: A potential source of geogenic Cr(VI) to groundwater. Appl. Geochem. 2011, 26, 1488–1501. [Google Scholar] [CrossRef]
- Manning, A.H.; Mills, C.T.; Morrison, J.M.; Ball, L.B. Insights into controls on hexavalent chromium in groundwater provided by environmental tracers, Sacramento Valley, California, USA. Appl. Geochem. 2015, 62, 186–199. [Google Scholar] [CrossRef]
- Parkhurst, D.; Appelo, C. User’s guide to phreeqc (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. Water-Resour. Investig. Rep. 1999, 99, 321. [Google Scholar]
- Van Genuchten, M.T. General Approach for Modeling Solute Transport in Structured Soils. 1985. Available online: https://inis.iaea.org/search/searchsinglerecord.aspx?recordsFor=SingleRecord&RN=19054696 (accessed on 7 July 2019).
- Schwertmann, U.; Latham, M. Properties of iron oxides in some new caledonian oxisols. Geoderma 1986, 39, 105–123. [Google Scholar] [CrossRef]
- Garnier, J.; Quantin, C.; Guimarães, E.M.; Vantelon, D.; Montargès-Pelletier, E.; Becquer, T. Cr(VI) genesis and dynamics in ferralsols developed from ultramafic rocks: The case of Niquelândia, Brazil. Geoderma 2013, 193–194, 256–264. [Google Scholar] [CrossRef]
- Garnier, J.; Quantin, C.; Martins, E.S.; Becquer, T. Solid speciation and availability of chromium in ultramafic soils from niquelândia, Brazil. J. Geochem. Explor. 2006, 88, 206–209. [Google Scholar] [CrossRef]
- Fendorf, S.E.; Zasoski, R.J. Chromium(III) oxidation by.delta-manganese oxide (MnO2). Characterization. Environ. Sci. Technol. 1992, 26, 79–85. [Google Scholar] [CrossRef]
- Garnier, J.; Quantin, C.; Guimarães, E.; Becquer, T. Can chromite weathering be a source of Cr in soils. Miner. Mag. 2008, 72, 49–53. [Google Scholar] [CrossRef]
- McClain, C.N.; Fendorf, S.; Webb, S.M.; Maher, K. Quantifying Cr(VI) production and export from serpentine soil of the California coast range. Environ. Sci. Technol. 2017, 51, 141–149. [Google Scholar] [CrossRef]
- Rai, D.; Moore, D.A.; Hess, N.J.; Rosso, K.M.; Rao, L.; Heald, S.M. Chromium(III) hydroxide solubility in the aqueous K+-H+ -OH− -CO2-HCO 3 − -CO 3 2− -H2O System: A thermodynamic model. J. Solut. Chem. 2007, 36, 1261–1285. [Google Scholar] [CrossRef]
- Kazakis, N.; Kantiranis, N.; Voudouris, K.S.; Mitrakas, M.; Kaprara, E.; Pavlou, A. geogenic Cr oxidation on the surface of mafic minerals and the hydrogeological conditions influencing hexavalent chromium concentrations in groundwater. Sci. Total Environ. 2015, 514, 224–238. [Google Scholar] [CrossRef]
- Namgung, S.; Kwon, M.J.; Qafoku, N.P.; Lee, G. Cr(OH)3(s) oxidation induced by surface catalyzed Mn(II) oxidation. Environ. Sci. Technol. 2014, 48, 10760–10768. [Google Scholar] [CrossRef]
- Tebo, B.M.; Bargar, J.R.; Clement, B.G.; Dick, G.J.; Murray, K.J.; Parker, D.; Verity, R.; Webb, S.M. Biogenic manganese oxides: Properties and mechanisms of formation. Annu. Rev. Earth Planet. Sci. 2004, 32, 287–328. [Google Scholar] [CrossRef]
- Hausladen, D.M.; Fendorf, S. Hexavalent chromium generation within naturally structured soils and sediments. Environ. Sci. Technol. 2017, 51, 2058–2067. [Google Scholar] [CrossRef] [PubMed]
- Luhdorff and Scalmanini. Groundwater monitoring program, data management system, and update of groundwater conditions in the Yolo County area. Available online: http://www.ycfcwcd.org/pdffiles/reports/ab%20303%20gw%20final%20report%20pdf%20reduced.pdf (accessed on 3 March 2017).
- Ying, S.C.; Masue-Slowey, Y.; Kocar, B.D.; Griffis, S.D.; Webb, S.; Marcus, M.A.; Francis, C.A.; Fendorf, s. distributed microbially and chemically-mediated redox processes controlling arsenic dynamics within Mn-/Fe-oxide constructed aggregates. Geochim. Cosmochim. Acta 2013, 104, 29–41. [Google Scholar] [CrossRef]
- Tang, Y.; Zeiner, C.A.; Santelli, C.M.; Hansel, C.M. Fungal oxidative dissolution of the Mn(II)-bearing mineral rhodochrosite and the role of metabolites in manganese oxide formation: Dissolution and oxidation of rhodochrosite by fungi. Environ. Microbiol. 2013, 15, 1063–1077. [Google Scholar] [CrossRef]
- Fendorf, S.E.; Fendorf, M.; Sparks, D.L.; Gronsky, R. Inhibitory mechanisms of Cr(lll) oxidation by δ-MnO2. J. Colloid. Interface Sci. 1992, 153, 37–54. [Google Scholar] [CrossRef]
- Cloutis, E.A. Manganese-rich olivines: Identification from spectral reflectance properties. J. Geophys. Res. Planets 1997, 102, 25575–25580. [Google Scholar] [CrossRef]
Mineral Phases | pH | drxn (m) | ddiff (m) | v (m d−1) |
---|---|---|---|---|
Cr(OH)3 (a) Cr2O3 FeCr2O4 | 5 | 10−10 | 10−6 | 10−2 |
6 | 10−7 | 10−3 | 10−1 | |
7.6 | 10−6 | 10−2 | 100 | |
9 | 10−5 | 10−1.3 | ||
10−2 | 10−1 |
Mineral Phase | log K | |
---|---|---|
Cr(OH)3 (a) a | Cr(OH)3 + H+ = Cr(OH)2+ + H2O | −0.49 |
Cr2O3 a | Cr2O3 + 2H+ + H2O = 2Cr(OH)2+ | −1.32 |
FeCr2O4 b | FeCr2O4 + 4H+ = 2Cr(OH)2+ + Fe2+ | 7.2003 |
pH | Cr(OH)3 (a) | Cr2O3 | FeCr2O4 * | |
---|---|---|---|---|
log[Cr(III)T] (M) | 5 | −4.15 | −4.33 | −3.21 |
6 | −5.97 | −6.14 | −5.41 | |
7.6 | −6.82 | −6.99 | −7.33 | |
9 | −6.84 | −7.01 | −7.80 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hausladen, D.; Fakhreddine, S.; Fendorf, S. Governing Constraints of Chromium(VI) Formation from Chromium(III)-Bearing Minerals in Soils and Sediments. Soil Syst. 2019, 3, 74. https://doi.org/10.3390/soilsystems3040074
Hausladen D, Fakhreddine S, Fendorf S. Governing Constraints of Chromium(VI) Formation from Chromium(III)-Bearing Minerals in Soils and Sediments. Soil Systems. 2019; 3(4):74. https://doi.org/10.3390/soilsystems3040074
Chicago/Turabian StyleHausladen, Debra, Sarah Fakhreddine, and Scott Fendorf. 2019. "Governing Constraints of Chromium(VI) Formation from Chromium(III)-Bearing Minerals in Soils and Sediments" Soil Systems 3, no. 4: 74. https://doi.org/10.3390/soilsystems3040074
APA StyleHausladen, D., Fakhreddine, S., & Fendorf, S. (2019). Governing Constraints of Chromium(VI) Formation from Chromium(III)-Bearing Minerals in Soils and Sediments. Soil Systems, 3(4), 74. https://doi.org/10.3390/soilsystems3040074