High-Throughput Isolation of Nucleic Acids from Soil
Abstract
:1. Introduction
2. Results
2.1. DNA Quantity, Purity, and Amplifiability
2.2. Consumable Cost and Time Per Sample
3. Discussion
4. Material and Methods
4.1. Sampling and Chemical-Physical Analysis of Soil
4.2. DNA Extraction and Purification
- Automated method 1: The protocol for the BioSprint 96 (Qiagen, Germany) developed for purification of DNA from plant tissue was appropriately modified to perform DNA extraction from soil. Each of the three samples was placed in a 2 mL sterile Eppendorf safe lock microtube (Eppendorf, Germany) with two different sizes of silica beads: 0.4 mL of beads (Ø 0.1 mm) and 0.4 mL of beads (Ø 0.6 mm). 1.2 mL of Na2HPO4 extracting buffer (0.12 M, pH 8) was added to the microtubes. Microtubes were loaded in a TissueLyser II (Qiagen) and homogenized for 5 min (30 Hz) for cell lysis. Lysates were centrifuged (20.000 g × 5 min) and the resulting supernatant (“crude DNA”) was transferred into 1.5 mL sterile microtubes for purification.
- Automated method 2: the QIASymphony DSP DNA Mini Kit 192–version 1 (Qiagen) was used to extract DNA by means of the QIASymphony platform according to the manufacturer’s instructions. No modifications were made to the original protocol, recommended for DNA extraction from blood. The producer suggested this kit as the most appropriate to try DNA extraction from soil.
- Manual method 1: the FastDNA SPIN Kit for Soil (MP Biomedicals, Santa Ana, CA, USA) was used to extract DNA according to the manufacturer’s instructions. No modifications were made to the original protocol.
- Manual method 2: the PowerSoil DNA Isolation Kit (MoBio Laboratories, Carlsbad, CA USA) was used to extract DNA according to the manufacturer’s instructions. No modifications were made to the original protocol.
4.3. Evaluation of DNA Quantity, Purity, and Amplifiability
4.4. Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Torsvik, V.; Øvreås, L. Microbial diversity and function in soil: From genes to ecosystems. Curr. Opin. Microbiol. 2002, 5, 240–245. [Google Scholar] [CrossRef]
- Cameron, E.K.; Martins, I.S.; Lavelle, P.; Mathieu, J.; Tedersoo, L.; Gottschall, F.; Guerra, C.A.; Hines, J.; Patoine, G.; Siebert, J.; et al. Global gaps in soil biodiversity data. Nat. Ecol. Evol. 2018, 2, 1042–1043. [Google Scholar] [CrossRef]
- Marcote, I.; Hernández, T.; García, C.; Polo, A. Influence of one or two successive annual applications of organic fertilisers on the enzyme activity of a soil under barley cultivation. Bioresour. Technol. 2001, 79, 147–154. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Carter, M.R.; Doran, J.W.; Pankhurst, C.E.; Dwyer, L.M. Chapter 4 Biological attributes of soil quality. In Developments in Soil Science; Gregorich, E.G., Carter, M.R., Eds.; Elsevier: Amsterdam, The Netherlands, 1997; pp. 81–113. [Google Scholar]
- Nannipieri, P.; Ascher, J.; Ceccherini, M.T.; Landi, L.; Pietramellara, G.; Renella, G. Microbial diversity and soil functions. Eur. J. Soil Sci. 2003, 54, 655–670. [Google Scholar] [CrossRef]
- Geisen, S.; Briones, M.J.I.; Gan, H.; Behan-Pelletier, V.M.; Friman, V.; Arjen de Groot, G.; Hannula, S.E.; Lindo, Z.; Philippot, L.; Tiunov, A.V.; et al. A methodological framework to embrace soil biodiversity. Soil Biol. Biochem. 2019, 136, 107536. [Google Scholar] [CrossRef]
- Robe, P.; Nalin, R.; Capellano, C.; Vogel, T.M.; Simonet, P. Extraction of DNA from soil. Eur. J. Soil Biol. 2003, 39, 183–190. [Google Scholar] [CrossRef]
- Schloss, P.D.; Handelsman, J. Biotechnological prospects from metagenomics. Curr. Opin. Biotechnol. 2003, 14, 303–310. [Google Scholar] [CrossRef]
- Bessetti, J. An Introduction to PCR Inhibitors. Available online: https://www.promega.es/-/media/files/resources/profiles-in-dna/1001/an-introduction-to-pcr-inhibitors.pdf?la=es-es (accessed on 27 December 2019).
- Huang, Y.T.; Lowe, D.J.; Zhang, H.; Cursons, R.; Young, J.M.; Churchman, G.J.; Schipper, L.A.; Rawlence, N.J.; Wood, J.R.; Cooper, A. A new method to extract and purify DNA from allophanic soils and paleosols, and potential for paleoenvironmental reconstruction and other applications. Geoderma 2016, 274, 114–125. [Google Scholar] [CrossRef]
- Demeke, T.; Jenkins, G.R. Influence of DNA extraction methods, PCR inhibitors and quantification methods on real-time PCR assay of biotechnology-derived traits. Anal. Bioanal. Chem. 2010, 396, 1977–1990. [Google Scholar] [CrossRef]
- Sharma, S.; Sharma, K.K.; Kuhad, R.C. An efficient and economical method for extraction of DNA amenable to biotechnological manipulations, from diverse soils and sediments. J. Appl. Microbiol. 2013, 116, 923–933. [Google Scholar] [CrossRef]
- Fornasier, F.; Ascher, J.; Ceccherini, M.T.; Tomat, E.; Pietramellara, G. A simplified rapid, low-cost and versatile DNA-based assessment of soil microbial biomass. Ecol. Indic. 2014, 45, 75–82. [Google Scholar] [CrossRef]
- Wang, H.; Qi, J.; Xiao, D.; Wang, Z.; Tian, K. A re-evaluation of dilution for eliminating PCR inhibition in soil DNA samples. Soil Biol. Biochem. 2017, 106, 109–118. [Google Scholar] [CrossRef]
- Hebda, L.M.; Foran, D.R. Assessing the utility of soil DNA extraction kits for increasing DNA yields and eliminating PCR inhibitors from buried skeletal remains. J. Forensic Sci. 2015, 60, 1322–1330. [Google Scholar] [CrossRef] [PubMed]
- Wüst, P.K.; Nacke, H.; Kaiser, K.; Marhan, S.; Sikorski, J.; Kandeler, E.; Daniel, R.; Overmanna, J. Estimates of soil bacterial ribosome content and diversity are significantly affected by the nucleic acid extraction method employed. Appl. Environ. Microbiol. 2016, 82, 2595–2607. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martoz, C.; Amir, A.; Humphrey, G.; Gaffney, J.; Gogul, G.; Knight, R. DNA extraction for streamlined metagenomics of diverse environmental samples. Biotechniques 2017, 62, 290–293. [Google Scholar] [CrossRef] [Green Version]
- Miao, T.; Gao, S.; Jiang, S.; Kan, G.; Liu, P.; Wu, X.; An, Y.; Yao, S. A method suitable for DNA extraction from humus-rich soil. Biotechnol. Lett. 2014, 36, 2223–2228. [Google Scholar] [CrossRef]
- Bürgmann, H.; Pesaro, M.; Widmer, F.; Zeyer, J. A strategy for optimizing quality and quantity of DNA extracted from soil. J. Microbiol. Methods 2001, 45, 7–20. [Google Scholar] [CrossRef]
- Plassart, P.; Terrat, S.; Thomson, B.; Griffiths, R.; Dequiedt, S.; Lelievre, M.; Regnier, T.; Nowak, V.; Bailey, M.; Lemanceau, P.; et al. Evaluation of the ISO Standard 11063 DNA Extraction Procedure for assessing soil microbial abundance and community structure. PLoS ONE 2012, 7, 9. [Google Scholar] [CrossRef] [Green Version]
- Whitehouse, C.A.; Hottel, H.E. Comparison of five commercial DNA extraction kits for the recovery of Francisella tularensis DNA from spiked soil samples. Mol. Cell. Probes 2006, 21, 92–96. [Google Scholar] [CrossRef]
- Rotthauwe, J.; Witzel, K.; Liesack, W. The ammonia monooxygenase structural gene amoA as a functional marker: Molecular fine-scale analysis of natural ammonia-oxidizing populations. Appl. Environ. Microbiol. 1997, 63, 4704–4712. [Google Scholar]
- Orgiazzi, A.; Bonnet Dunbar, M.; Panagos, P.; Arjen de Groot, G.; Lemanceau, P. Soil biodiversity and DNA barcodes: Opportunities and challenges. Soil Biol. Biochem. 2014, 80, 244–250. [Google Scholar] [CrossRef]
- Santos, S.; Nunes, I.; Nielsen, T.K.; Jacquiod, S.; Hansen, L.H.; Winding, A. Soil DNA extraction procedure influences Protist 18S rRNA gene community profiling. Protist 2017, 168, 283–293. [Google Scholar] [CrossRef] [PubMed]
- Zinger, L.; Chave, J.; Coissac, E.; Iribar, A.; Louisanna, E.; Manzi, S.; Schilling, V.; Schimann, H.; Sommeria-Klein, G.; Taberlet, P. Extracellular DNA extraction is a fast, cheap and reliable alternative for multi-taxa surveys based on soil DNA. Soil Biol. Biochem. 2016, 96, 16–19. [Google Scholar] [CrossRef]
- Foesel, B.U.; Nägele, V.; Naether, A.; Wüst, P.K.; Weinert, J.; Bonkowski, M.; Lohaus, G.; Polle, A.; Alt, F.; Oelmann, Y.; et al. Determinants of Acidobacteria activity inferred from the relative abundances of 16S rRNA transcripts in German grassland and forest soils. Environ. Microbiol. 2014, 16, 658–675. [Google Scholar] [CrossRef] [PubMed]
- Psifidi, A.; Dovas, C.I.; Bramis, G.; Lazou, T.; Russel, C.L.; Arsenos, G.; Banos, G. Comparison of eleven methods for genomic DNA extraction suitable for large-scale whole-genome genotyping and long-term DNA banking using blood samples. PLoS ONE 2014, 10, 1. [Google Scholar] [CrossRef] [PubMed]
- Francis, C.A.; Roberts, K.J.; Beman, J.M.; Santoro, A.E.; Oakley, B.B. Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. Proc. Natl. Acad. Sci. USA 2005, 102, 14683–14688. [Google Scholar] [CrossRef] [Green Version]
- Rösch, C.; Mergel, A.; Bothe, H. Biodiversity of denitrifying and dinitrogen-fixing bacteria in an acid forest soil. Appl. Environ. Microbiol. 2002, 68, 3818–3829. [Google Scholar] [CrossRef] [Green Version]
Method | S1 | S2 | S3 | |
---|---|---|---|---|
Yield (µg/g) | “Crude DNA” | 4.742 ± 0.092 a | 3.005 ± 0.015 a | 4.217 ± 0.044 a |
BioSprint 96 | 0.132 ± 0.003 c | 0.079 ± 0.002 c | 0.095 ± 0.004 d | |
QIASymphony | 0.140 ± 0.012 c | 0.083 ± 0.017 c | 0.101 ± 0.023 c | |
FastDNA | 0.051 ± 3 × 10−4 d | 0.095 ± 6 × 10−4 c | 0.109 ± 6 × 10−4 c | |
PowerSoil | 0.366 ± 0.002 b | 0.178 ± 0.001 b | 0.280 ± 0.001 b | |
Purity (A260/A280) | “Crude DNA” | 1.24 ± 0.005 c | 1.28 ± 0.006 c | 1.25 ± 0.005 c |
BioSprint 96 | 1.80 ± 0.003 b | 1.84 ± 0.008 a | 1.35 ± 0.021 b | |
QIASymphony | 1.84 ± 0.011 b | 1.85 ± 0.015 a | 1.42 ± 0.013 b | |
FastDNA | 1.71 ± 0.003 b | 1.49 ± 0.006 b | 1.69 ± 0.003 b | |
PowerSoil | 2.11 ± 0.003 a | 1.70 ± 0.006 b | 1.75 ± 0.003 a | |
Gene copies Arch-amoA | “Crude DNA” | 6.80 × 101 ± 1.33 × 101 d | 3.84 × 102 ± 8.52 d | 4.41 × 102 ± 3.90 × 101 d |
BioSprint 96 | 1.46 × 106 ± 3.84 × 105 b | 6.36 × 105 ± 9.70 × 104 c | 2.44 × 106 ± 4.40 × 105 c | |
QIASymphony | 3.44 × 106 ± 7.04 × 105 b | 8.43 × 105 ± 5.16 × 104 c | 2.84 × 106 ± 5.25 × 105 c | |
FastDNA | 1.79 × 105 ± 3.82 × 104 c | 1.80 × 106 ± 2.06 × 104 b | 4.70 × 106 ± 1.04 × 106 b | |
PowerSoil | 1.64 × 107 ± 1.14 × 106 a | 1.56 × 107 ± 1.82 × 106 a | 2.04 × 107 ± 3.51 × 105 a | |
Gene copies nosZ | “Crude DNA” | 1.88 × 106 ± 2.16 × 105 d | 1.29 × 106 ± 2.35 × 104 d | 1.59 × 106 ± 4.62 × 103 d |
BioSprint 96 | 1.45 × 107 ± 8.64 × 105 b | 3.79 × 106 ± 8.85 × 104 c | 2.97 × 107 ± 1.13 × 106 b | |
QIASymphony | 1.54 × 107 ± 1.40 × 106 b | 3.86 × 106 ± 5.65 × 105 c | 2.59 × 106 ± 1.32 × 106 c | |
FastDNA | 5.39 × 106 ± 1.43 × 105 c | 1.27 × 107 ± 1.64 × 106 b | 2.10 × 107 ± 3.54 × 106 b | |
PowerSoil | 8.18 × 107 ± 7.78 × 106 a | 2.82 × 107 ± 7.17 × 105 a | 9.04 × 107 ± 1.10 × 107 a |
Method | Cost (€/Sample) | Processing Time (96 Samples) |
---|---|---|
BioSprint 96 | 1.50 | 0.3 h run + 0.5 h samples prep (50 min) * |
QIASymphony | 5.00 | 3 h run + 1 h samples prep (4 h) ** |
FastDNA | 8.00 | 8 h |
PowerSoil | 7.50 | 8 h |
Sample ID | Land Use | Sand (%) | Silt (%) | Clay (%) | pH (H2O) | OM (g kg−1) |
---|---|---|---|---|---|---|
S1 | Pasture | 94 | 2 | 4 | 7.45 | 3.8 |
S2 | Vineyard | 44 | 16 | 40 | 7.8 | 2.2 |
S3 | Arable | 66 | 10 | 24 | 7.5 | 1.7 |
Plate Nr. | Plate Type | Volume Per Well (μL) |
---|---|---|
1 | S-Blocks | 200 μL supernatant + 200 μL RLT * + 200 μL isopropanol + 25 μL MagAttract Suspension G (Qiagen) |
2 | S-Blocks | 500 μL RPW ** |
3 | S-Blocks | 500 μL 96% ethanol |
4 | S-Blocks | 500 μL 96% ethanol |
5 | S-Blocks | 500 μL 0.02 % (v/v) of TWEEN 20 (Amresco, USA) |
6 | MP | 100 μL PCR-grade H2O (elution plate) |
Primer. | Sequence | Amplicon Length | Reference |
---|---|---|---|
Arch-amoA-F | 5′-STA ATG GTC TGG CTT AGA CG-3′ | 635 bp | [28] |
Arch-amoA-R | 5′-GCG GCC ATC CAT CTG TAT GT-3′ | ||
NosZ-F | 5′-CGY TGT TCM TCG ACA GCC AG-3′ | 706 bp | [29] |
NosZ-R | 5′-CAT GTG CAG NGC RTG GCA GA-3‰ |
Target | Equation | R2 |
---|---|---|
Arch-amoA | y = 1E + 35x−21.52 | 0.9783 |
NosZ | y = 2E + 11e−0.631x | 0.9878 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chiodi, C.; Moro, M.; Squartini, A.; Concheri, G.; Occhi, F.; Fornasier, F.; Cagnin, M.; Bertoldo, G.; Broccanello, C.; Stevanato, P. High-Throughput Isolation of Nucleic Acids from Soil. Soil Syst. 2020, 4, 3. https://doi.org/10.3390/soilsystems4010003
Chiodi C, Moro M, Squartini A, Concheri G, Occhi F, Fornasier F, Cagnin M, Bertoldo G, Broccanello C, Stevanato P. High-Throughput Isolation of Nucleic Acids from Soil. Soil Systems. 2020; 4(1):3. https://doi.org/10.3390/soilsystems4010003
Chicago/Turabian StyleChiodi, Claudia, Matteo Moro, Andrea Squartini, Giuseppe Concheri, Francesco Occhi, Flavio Fornasier, Massimo Cagnin, Giovanni Bertoldo, Chiara Broccanello, and Piergiorgio Stevanato. 2020. "High-Throughput Isolation of Nucleic Acids from Soil" Soil Systems 4, no. 1: 3. https://doi.org/10.3390/soilsystems4010003
APA StyleChiodi, C., Moro, M., Squartini, A., Concheri, G., Occhi, F., Fornasier, F., Cagnin, M., Bertoldo, G., Broccanello, C., & Stevanato, P. (2020). High-Throughput Isolation of Nucleic Acids from Soil. Soil Systems, 4(1), 3. https://doi.org/10.3390/soilsystems4010003