Recycling of Waste Materials for Stabilizing Ash from Co-Combustion of Municipal Solid Wastes with an Olive By-Product: Soil Leaching Experiments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Origin and Preparation of Ash and Stabilizers
2.2. Leaching of Raw and Stabilized Ash through the Soil
2.3. Characterization of Solids and Liquid Analyses
3. Results and Discussion
3.1. Physical and Chemical Properties of Soil and Ash Samples
3.2. Leachability of the Various Species from the Soil/Ash Sample
3.3. Mineralogical and Chemical Properties of Stabilizers
3.4. Leachability of the Various Species from the Soil/Stabilized Ash Samples
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Directive 2009/28/EC of the European Parliament and of the Council of 23 April 2009. Promotion of the use of energy from renewable sources and amending and subsequently repealing Directives 2001/77/EC and 2003/30/EC. Off J. 140 (05/06/2009) 0016-62, 2009.
- Vamvuka, D.; Sfakiotakis, S.; Mpoumpouris, A. Slagging and fouling propensities of ashes from urban and industrial wastes. Recen. Innov. Chem. Eng. 2018, 11, 145. [Google Scholar] [CrossRef]
- Sfakiotakis, S.; Vamvuka, D.; Kosmadaki, M. Combustion characteristics and thermal behaviour of agricultural/urban waste blends as potential feedstocks for energy production. In Proceedings of the 6th Int. Conference on Hazardous and Industrial Waste Management, Chania-Crete, Greece, 4–7 September 2018. [Google Scholar]
- Van Caneghem, J.; Brems, A.; Lievens, P.; Block, C.; Billen, P.; Vermeulen, I. Fluidized bed waste incinerators: Design, operational and environmental issues. Prog. Energy Combust. Sci. 2012, 38, 551. [Google Scholar] [CrossRef]
- Siddique, R. Utilization of wood ash in concrete manufacturing. Resour. Conserv. Recycl. 2012, 67, 27. [Google Scholar] [CrossRef]
- Garcia-Maraver, A.; Mata-Sanchez, J.; Carpio, M.; Perez-Jimenez, J. Critical review of predictive coefficients for biomass ash deposition tendency. J. Energy Inst. 2017, 90, 214. [Google Scholar] [CrossRef]
- Steenari, B.M.; Lindqvist, O. Stabilisation of biofuel ashs for recycling to forest soil. Biomass Bioenergy 1997, 13, 39. [Google Scholar] [CrossRef]
- Adriano, D.C. Trace Elements in Terrestrial Environments. Biogeochemistry, Bioavailability and Risks of Metals; Springer: New York, NY, USA, 2001. [Google Scholar]
- Bosio, A.; Zacco, A.; Borgese, I.; Rodella, N.; Colombi, P.; Benassi, L.; Depero, L.E.; Bontempi, E. A sustainable technology for Pb and Zn stabilization based on the use of only waste materials: A green chemistry approach to avoid chemicals and promote CO2 sequestration. Chem. Eng. J. 2014, 253, 377. [Google Scholar] [CrossRef]
- Vanna, C.; Voutsas, E.; Magoulas, K. Process development for chemical stabilization of fly ash from municipal solid waste incineration. Chem. Eng. Res. Des. 2017, 125, 57. [Google Scholar]
- Wang, H.; Fan, X.; Wang, Y.; Li, W.; Sun, Y.; Zhan, M.; Wu, G. Comparative leaching of six toxic metals from raw and chemically stabilized MSWI fly ash using citric acid. J. Environ. Manag. 2018, 208, 15. [Google Scholar] [CrossRef]
- Atanes, E.; Cuesta-Garcia, B.; Nieto-Marquez, A.; Fernandez-Martinez, F. A mixed separation-immobilization method for soluble salts removal and stabilization of heavy metals in municipal solid waste incineration fly ash. J. Environ. Manag. 2019, 240, 359. [Google Scholar] [CrossRef]
- Li, R.; Zhang, B.; Wang, Y.; Zhao, Y.; Li, F. Leaching potential of stabilized fly ash from the incineration of municipal solid waste with a new polymer. J. Environ. Manag. 2019, 232, 286. [Google Scholar] [CrossRef]
- Xie, K.; Hu, H.; Xu, S.; Chen, T.; Huang, Y.; Yang, Y.; Yang, F.; Yao, H. Fate of heavy metals during molten salts thermal treatment of municipal solid waste incineration fly ashes. Waste Manag. 2010, 103, 334. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Song, L.; Li, G. Chemical stabilization of MSW incinerator fly ashes. J. Hazard. Mater. 2002, 95, 47. [Google Scholar]
- Zhang, B.; Zhou, W.; Zhao, H.; Tian, Z.; Li, F.; Wu, Y. Stabilization/solidification of lead in MSWI fly ash with mercapto functionalized dendrimer. Chelator. Waste Manag. 2016, 50, 105. [Google Scholar] [CrossRef] [PubMed]
- Rodella, N.; Bosio, A.; Zacco, A.; Borgese, L.; Pasquali, M.; Dalipi, R.; Depero, L.E.; Patel, V.; Bingham, P.A.; Bontempi, B. Arsenic stabilization in coal fly ash through the employment of waste materials. J. Environ. Chem. Eng. 2014, 2, 1352. [Google Scholar] [CrossRef]
- Benassi, L.; Bosio, A.; Dalipi, R.; Borgese, L.; Rodella, N.; Pasquali, M.; Depero, L.E.; Bergese, P.; Bontempi, E. Comparison between rice husk grown in different regions for stabilizing fly ash from a solid waste incinerator. J. Environ. Manag. 2015, 159, 128. [Google Scholar] [CrossRef]
- Chiu, A.; Akesseh, R.; Moumouni, I.; Xiao, Y. Laboratory assessment of rice husk ash (RHA) in the solidification/stabilization of heavy metal contaminated slurry. J. Hazard. Mater. 2019, 371, 62. [Google Scholar] [CrossRef]
- Benassi, L.; Zanoletti, A.; Depero, L.; Bontempi, E. Sewage sludge ash recovery as valuable raw material for chemical stabilization of leachable heavy metals. J. Environ. Manag. 2019, 245, 464. [Google Scholar] [CrossRef]
- Assi, A.; Bilo, F.; Zanoletti, A.; Ponti, J.; Valsesia, A.; La Spina, R.; Zacco, A.; Bontempi, E. Zero-waste approach in municipal solid waste incineration: Reuse of bottom ash to stabilize fly ash. J. Clean. Prod. 2020, 245, 118779. [Google Scholar] [CrossRef]
- Liu, Z.; Yue, Y.; Lu, M.; Zhang, J.; Sun, F.; Huang, X.; Zhou, J.; Qian, G. Comprehension of heavy metal stability in municipal solid waste incineration fly ash with its compositional variety: A quick prediction case of leaching potential. Waste Manag. 2019, 84, 329. [Google Scholar] [CrossRef]
- Alexandrakis, S. Environmental Pollution of Soils from Deposition of Ashes Produced by Co-Combustion of Urban and Agricultural Wastes of Chania Region in Crete. Master’s Thesis, Technical University of Crete, Chania, Greece, 2019. [Google Scholar]
- Vamvuka, D.; Kaniadakis, G.; Pentari, D.; Alevizos, G. Comparison of ashes from fixed/fluidized bed combustion of swine sludge and olive by-products. Properties, environmental impact and potential uses. Renew. Energy 2017, 112, 74. [Google Scholar] [CrossRef]
- Vamvuka, D.; Sfakiotakis, S.; Pantelaki, O. Evaluation of gaseous and solid products from the pyrolysis of waste biomass blends for energetic and environmental applications. Fuel 2019, 236, 574. [Google Scholar] [CrossRef]
- Sumner, M.E.; Miller, W.P. Cation exchange capacity and exchange coefficients. In Methods of Soil Analysis. Part 3. Chemical Methods; Bingham, J.M., Ed.; ASA-SSSA Madison: Madison, WI, USA, 1996. [Google Scholar]
- Vassilev, S.V.; Baxter, D.; Andersen, L.K.; Vassileva, C.G. An overview of the composition and application of biomass ash. Part 1. Phase-mineral and chemical composition and classification. Fuel 2013, 105, 40. [Google Scholar] [CrossRef]
- Decision 2018/853 of the European Parliament and the Council as regards procedural rules in the field of environmental reporting and repealing Council Directive 91/692/EEC. 2018.
- Gondek, K.; Mierzwa-Hersztek, M.; Kopec, M. Mobility of heavy metals in sandy soil after application of composts produced from maize straw, sewage sludge and biochar. J. Environ. Manag. 2018, 210, 87. [Google Scholar] [CrossRef] [PubMed]
- Council of the European Union. Council decision 2003/33/EC of 19 December 2002 establishing criteria and procedures for the acceptance of waste at landfills pursuant to Article 16 of and Annex II to Directive 1999/31/EC. Off. J. European Commun. L11 (16/01/2003) 27, 2003. [Google Scholar]
- EU Commission Decision. 2014/955/EU Amending Decision 2000/532/EC on the List of Waste Pursuant to Directive 2008/98/EC of the European Parliament and the Council; Official J. of the EU: Brussels, Belgium, 2014. [Google Scholar]
- Vamvuka, D.; Trikouvertis, M.; Pentari, D.; Alevizos, G.; Stratakis, A. Characterization and evaluation of fly and bottom ashes from combustion of residues from vineyards and processing industry. J. Energy Inst. 2017, 90, 574. [Google Scholar] [CrossRef]
- Rodriguez, E.T.; Garbev, K.; Merz, D.; Black, I.; Richardson, I.G. Thermal stability of C-S-H phases and applicability of Richardson and Groves’ and Richardson C-(A)-S-H(I) models to synthetic C-S-H. Cem. Concr. Res. 2017, 93, 45. [Google Scholar] [CrossRef]
- Shaaban, M.; Van Zwieten, L.; Bashir, S.; Younas, A.; Núñez-Delgado, A.; Chhajro, M.A.; Kubar, K.A.; Ali, U.; Rana, M.S.; Mehmood, M.A.; et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution. J. Environ. Manag. 2018, 228, 429. [Google Scholar] [CrossRef]
- Boostani, H.; Najafi-Ghiri, M.; Hardie, A.; Khalili, D. Comparison of Pb stabilization in a contaminated calcareous soil by application of vermicompost and sheep manure and their biochars produced at two temperatures. Appl. Geochem. 2019, 102, 121. [Google Scholar] [CrossRef]
- Chen, Q.; Tyrer, M.; Hills, C.; Yang, X.; Carey, P. Immobilization of heavy metal in cement-based solidification/stabilization: A review. Waste Manag. 2009, 29, 390. [Google Scholar] [CrossRef]
- Qian, L.; Ma, M. The decreased release of heavy metals from fly ashes by adding alunite. J. Molec. Liq. 2014, 198, 323. [Google Scholar] [CrossRef]
Sample | ||
---|---|---|
Soil | OK/MSW Ash | |
pH | 7.1 | 13.0 |
EC (mS/cm) | 0.02 | 1.5 |
CEC (meq/100g) | 0.76 | 0.01 |
Mineral phases | ||
Calcite CaCO3 | + | |
Quartz SiO2 | +++ | ++ |
Anhydrite CaSO4 | ++ | |
Dolomite CaMg(CO3)2 | + | |
Arcanite K2SO4 | ++ | |
Periclase MgO | + | |
Fairchildite K2Ca(CO3)2 | + | |
Sylvite KCl | + | |
Hydroxyapatite Ca5(PO4)3(OH) | + | |
Microcline KAlSi3O8 | + | |
Aphthitalite NaK3(SO4)2 | + | |
Magnesite MgCO3 | + | |
Muscovite KAl2(Si3AlO10)(OH)2 | + | + |
Monticellite Ca(MgFe)SiO4 | + | |
Srebrodolskite Ca2Fe2O5 | + | |
Clinochlore (Mg,Fe)5Al(Si3Al)O10(OH)8 | + |
Leaching Time (min) | pH | EC (mS/cm) | Cl− (mg/L) | SO42− (mg/L) |
---|---|---|---|---|
20 | 7.97 | 3.30 | 51.8 | 402 |
52 | 8.66 | 0.73 | 15.8 | 154 |
87 | 8.67 | 0.29 | 6.0 | 52 |
128 | 8.69 | 0.19 | 5.2 | 37 |
174 | 8.72 | 0.15 | 4.0 | 14 |
Mineral Phases | Sample | |||
---|---|---|---|---|
Lignite Fly Ash (LFA) | Silica Fume (SIF) | Wheat Straw Ash (WSA) | MBM Biochar (MBMb) | |
Quartz SiO2 | +++ | +++ | ||
Calcite CaCO3 | + | ++ | ||
Albite Na(AlSi3O8) | + | |||
Silicon Si | +++ | |||
Moissanite SiC | + | |||
Anhydrite CaSO4 | + | + | ||
Sylvite KCl | + | + | ||
Hydroxyapatite Ca5(PO4)3(OH) | + | +++ | ||
Hercynite FeAl2O4 | + | |||
Hematite Fe2O3 | ++ | |||
Mullite Al6Si2O13 | ++ | |||
Orthoclase KAlSi3O8 | + | |||
Anorthite (Ca, Na)(Si,Al)4O8 | ++ | |||
Arcanite K2SO4 | +++ | |||
Calcium phosphate NaCaPO4 | ++ | |||
Alite NaCl | + | |||
Whitlockite magnesian (CaMg)3(PO4)2 | + | |||
Fairchildite K2Ca(CO3)2 | + |
Soil/Ash/Stabilizer | Leachate | ||||
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | |
LFA | |||||
pH | 7.74 | 7.86 | 8.17 | 8.37 | 8.43 |
EC (mS/cm) | 2.8 | 1.6 | 0.75 | 0.39 | 0.23 |
Cl− (mg/L) | 53.2 | 16.2 | 9.1 | 8.5 | 6.9 |
SO42− (mg/L) | 359 | 323 | 212 | 101 | 40 |
SIF | |||||
pH | 7.64 | 7.87 | 8.24 | 8.38 | 8.42 |
EC (mS/cm) | 3.7 | 2.4 | 1.0 | 0.49 | 0.29 |
Cl− (mg/L) | 30.0 | 16.2 | 9.3 | 7.8 | 7.6 |
SO42− (mg/L) | 447 | 162 | 59 | 50 | 47 |
WSA | |||||
pH | 8.02 | 8.69 | 8.73 | 8.75 | 8.81 |
EC (mS/cm) | 4.1 | 1.5 | 0.63 | 0.57 | 0.45 |
Cl− (mg/L) | 44.7 | 9.1 | 8.4 | 8.0 | 7.7 |
SO42− (mg/L) | 367 | 312 | 77 | 9 | 1 |
LFA + SIF + WSA | |||||
pH | 7.49 | 7.99 | 8.16 | 8.18 | 8.18 |
EC (mS/cm) | 3.4 | 2.4 | 0.82 | 0.48 | 0.42 |
Cl− (mg/L) | 65.4 | 32.8 | 5.3 | 4.0 | 3.6 |
SO42− (mg/L) | 361 | 332 | 91 | 45 | 12 |
MBMb | |||||
pH | 7.25 | 7.47 | 7.50 | 7.60 | 7.69 |
EC (mS/cm) | 0.83 | 0.55 | 0.34 | 0.23 | 0.23 |
Cl− (mg/L) | 18.9 | 13.1 | 11.4 | 10.2 | 9.6 |
SO42− (mg/L) | 200 | 183 | 121 | 88 | 72 |
Sample | Major Element Concentration (mg/kg) | Trace Element Concentration (μg/kg) | ||||||
---|---|---|---|---|---|---|---|---|
Na | Mg | K | Ca | Sr | Cr | Cu | As | |
Soil/ash | 788.2 (65.7) | 246.8 (7.1) | 572.8 (6.3) | 202.6 (1.4) | 2272.5 (3.5) | 20,232.1 (39.8) | 73.5 (0.2) | 10.1 (0.20 |
Soil/ash + 10% LFA | 298.0 (26.3) | 65.8 (1.9) | 20.8 (0.2) | 75.5 (0.5) | 660.5 (1.1) | 5745.0 (11.3) | 3.5 (-) | - |
Soil/ash + 20% LFA | 222.8 (20.9) | 45.5 (1.4) | 10.1 (0.1) | 231.7 (1.7) | 538.7 (0.9) | 3137.0 (6.2) | - | - |
Soil/ash + 10% SIF | 705.9 (63.8) | 137.7 (4.1) | 153.2 (1.8) | 113.3 (0.8) | 1243.9 (2.1) | 11,342.8 (22.4) | 6.5 (0.01) | - |
Soil/ash + 20% SIF | 143.9 (14.2) | 37.0 (1.2) | 64.1 (0.8) | 229.5 (1.8) | 468.5 (0.9) | 2219.3 (4.4) | - | - |
Soil/ash + 10% WSA | 715.9 (64.0) | 239.1 (7.0) | 126.7 (1.4) | 206.6 (1.5) | 2064.7 (3.4) | 14,064.3 (27.7) | 53.8 (0.1) | 5.4 (0.08) |
Soil/ash + 20% WSA | 281.9 (27.2) | 104.6 (3.0) | 10.0 (0.1) | 489.1 (3.0) | 848.7 (1.5) | 4821.5 (9.5) | 2.0 (-) | - |
Soil/ash + 10% LFA + 10% SIF + 10% WSA | 340.6 (35.6) | 82.1 (2.5) | 6.9 (0.09) | 394.4 (3.1) | 760.9 (1.5) | 4297.5 (8.5) | 7.6 (0.02) | - |
Soil/ash + 10% MBMb | 281.3 (23.5) | 46.0 (1.3) | 47.5 (0.6) | 72.1 (0.5) | 395.5 (0.7) | 2248.5 (4.4) | - | - |
Soil/ash + 20% MBMb | 235.3 (19.6) | 7.9 (0.2) | 28.7 (0.4) | 43.2 (0.3) | 131.4 (0.2) | 487.6 (0.9) | - | - |
Mineral Phases | Sample | ||||
---|---|---|---|---|---|
Ash+LFA | Ash+SIF | Ash+WSA | Ash + 10% LFA + 10% SIF + 10% WSA | Ash + MBMb | |
Amorphous | 36 | 45 | 39 | 41 | 37 |
Quartz SiO2 | 4 | 3 | 3 | 3 | |
Calcite CaCO3 | 18 | 16 | 16 | 15 | 17 |
Srebrodolskite Ca2Fe2O5 | 10 | 10 | 8 | 6 | 8 |
Silicon Si | 3 | 2 | |||
Moissanite SiC | 3 | ||||
Anhydrite CaSO4 | 3 | 2 | 3 | 2 | 1 |
Sylvite KCl | 1 | ||||
Hydroxyapatite Ca5(PO4)3(OH) | 3 | 3 | 4 | 3 | 10 |
Hydrocalumite Ca4Al2(OH)12(Cl,CO3,OH)2·4H2O | 3 | ||||
Mascagnite (NH4)2SO4 | 7 | 6 | |||
Mullite Al6Si2O13 | 5 | ||||
Microcline KAlSi3O8 | 3 | 3 | |||
Monticellite Ca(MgFe)SiO4 | 3 | 2 | 3 | 3 | 1 |
Arcanite K2SO4 | 7 | 7 | 7 | 7 | 7 |
Periclase MgO | 2 | 2 | |||
Portlandite Ca(OH)2 | 3 | 2 | 3 | 3 | 1 |
Aphthitalite NaK3(SO4)2 | 2 | ||||
Zeophyllite Ca13Si10O28(OH)2F8·6H2O | 4 | 2 | |||
Biphosammite NH4H2PO4 | 2 | ||||
Alite NaCl | 2 | ||||
Whitlockite magnesian (CaMg)3(PO4)2 | 8 | ||||
Fairchildite K2Ca(CO3)2 | 3 | 3 | 3 | 2 | 1 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vamvuka, D.; Alexandrakis, S.; Alevizos, G.; Stratakis, A. Recycling of Waste Materials for Stabilizing Ash from Co-Combustion of Municipal Solid Wastes with an Olive By-Product: Soil Leaching Experiments. Soil Syst. 2020, 4, 34. https://doi.org/10.3390/soilsystems4020034
Vamvuka D, Alexandrakis S, Alevizos G, Stratakis A. Recycling of Waste Materials for Stabilizing Ash from Co-Combustion of Municipal Solid Wastes with an Olive By-Product: Soil Leaching Experiments. Soil Systems. 2020; 4(2):34. https://doi.org/10.3390/soilsystems4020034
Chicago/Turabian StyleVamvuka, Despina, Stelios Alexandrakis, George Alevizos, and Antonios Stratakis. 2020. "Recycling of Waste Materials for Stabilizing Ash from Co-Combustion of Municipal Solid Wastes with an Olive By-Product: Soil Leaching Experiments" Soil Systems 4, no. 2: 34. https://doi.org/10.3390/soilsystems4020034
APA StyleVamvuka, D., Alexandrakis, S., Alevizos, G., & Stratakis, A. (2020). Recycling of Waste Materials for Stabilizing Ash from Co-Combustion of Municipal Solid Wastes with an Olive By-Product: Soil Leaching Experiments. Soil Systems, 4(2), 34. https://doi.org/10.3390/soilsystems4020034