Speciation of Phosphorus from Suspended Sediment Studied by Bulk and Micro-XANES
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Total P and P Fractionation in Suspended Sediments
3.2. Compositional Validation of Suspended Sediment Using X-Ray Fluorescence (XRF) and X-ray Absorption Near-Edge Structure (XANES)
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pulley, S.; Foster, I.D.L.; Antunes, A.P.M. The dynamics of sediment-associated contaminants over a transition from drought to multiple flood events in a lowland UK catchment. Hydrol. Process. 2016, 30, 704–719. [Google Scholar] [CrossRef] [Green Version]
- Ballantine, D.J.; Waling, D.E.; Collins, A.L.; Leeks, G.J.L. The phosphorus content of fluvial suspended sediment in three lowland groundwater-dominated catchments. J. Hydrol. 2008, 357, 140–151. [Google Scholar] [CrossRef]
- Sharpley, A.N.; Bergstrom, L.; Aronsson, H.; Bechmann, M.; Bolster, C.H.; Borling, K.; Djodjic, F.; Jarvie, H.P.; Schoumans, O.F.; Stamm, C.; et al. Future agriculture with minimized phosphorus losses to waters: Research needs and direction. AMBIO 2015, 44, S163–S179. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, W.; Shan, B.; Zhang, H.; Tang, W. Assessment of preparation methods for organic phosphorus analysis in phosphorus-polluted Fe/Al-rich Haihe river sediments using solution 31P-NMR. PLoS ONE 2013, 8, e76525. [Google Scholar] [CrossRef] [Green Version]
- Su, J.; van Bochove, E.; Auclair, J.-C.; Theriault, G.; Denault, J.T.; Bosse, C.; Li, X.; Hu, C. Phosphorus algal availability and release potential in suspended and streambed sediments in relation to sediment and catchment characteristics. Agricul. Ecosyst. Environ. 2014, 188, 169–179. [Google Scholar] [CrossRef]
- Stutter, M.I.; Langan, S.J.; Lumsdon, D.G.; Clark, L.M. Multi-element signatures of stream sediments and sources under moderate to low flow conditions. Appl. Geochem. 2009, 24, 800–809. [Google Scholar] [CrossRef]
- Lamba, J.; Karthikeyan, K.G.; Thompson, A.M. Using radiometric fingerprinting and phosphorus to elucidate sediment transport dynamics in an agricultural watershed. Hydrol. Process. 2015, 29, 2681–2693. [Google Scholar] [CrossRef]
- Bol, R.; Gruau, G.; Mellander, P.-E.; Dupas, R.; Bechmann, M.; Skarbovik, E.; Bieroza, M.; Djodjic, F.; Glendell, M.; Jordan, P.; et al. Challenges of reducing phosphorus based water eutrophication in the agricultural landscapes of Northwest Europe. Front. Mar. Sci. 2020, 32, 276. [Google Scholar] [CrossRef] [Green Version]
- Gaspar, L.; Lizaga, I.; Blake, W.H.; Latorre, B.; Quijano, L.; Navas, A. Fingerprinting changes in source contribution for evaluating soil response during an exceptional rainfall in Spanish pre-pyrenees. J. Environ. Manag. 2019, 240, 136–148. [Google Scholar] [CrossRef]
- Joshi, S.R.; Kukkadapu, R.K.; Burdige, D.J.; Bowden, M.E.; Sparks, D.L.; Jaisi, D.P. Organic matter remineralization predominates phosphorus cycling in the mid-bay sediments in the Chesapeake Bay. Environ. Sci. Technol. 2015, 49, 5887–5896. [Google Scholar] [CrossRef]
- Li, W.; Joshi, S.R.; Hou, G.; Burdige, D.J.; Sparks, D.L.; Jaisi, D.P. Characterizing phosphorus speciation of Chesapeake Bay sediments using chemical extraction, 31P NMR, and X-ray Absorption Fine Structure Spectroscopy. Environ. Sci. Technol. 2014, 49, 203–211. [Google Scholar] [CrossRef] [PubMed]
- O’Connell, D.W.; Ansems, N.; Kukkadapu, R.K.; Jaisi, D.; Orihel, D.M.; Cade-Menun, B.J.; Hu, Y.; Wiklund, J.; Hall, R.I.; Chessell, H.; et al. Changes in sedimentary phosphorus burial following artificial eutrophication of Lake 227, Experimental Lakes Area, Ontario, Canada. J. Geophys. Res. Biogeosci. 2020. [Google Scholar] [CrossRef]
- Thandrup, B. Bacterial manganese and iron reduction in aquatic sediments. In Advances in Microbiol Ecology; Kluwer Academic/Plenum Publishing: New York, NY, USA, 2000; Volume 16, pp. 41–84. [Google Scholar]
- Giguet-Covex, C.; Poulenard, J.; Chalmin, E.; Arnaud, F.; Rivard, C.; Jenny, J.-P.; Dorioz, J.-M. XANES spectroscopy as a tool to trace phosphorus transformation during soil genesis and mountain ecosystem development from lake sediments. Geochim. Cosmochim. Acta 2013, 118, 129–147. [Google Scholar] [CrossRef]
- Gu, C.; Dam, T.; Hart, S.C.; Turner, B.L.; Chadwick, O.A.; Berhe, A.A.; Hu, Y.; Zhu, M. Quantifying uncertainties in sequential chemical extraction of soil phosphorus using XANES spectroscopy. Environ. Sci. Technol. 2020, 54, 2257–2267. [Google Scholar] [CrossRef]
- Psenner, R.; Pucsko, R.; Sager, M. Fractionation of organic and inorganic phosphorus compounds in lake sediments: An attempt to characterize ecologically important fractions. Archiv. Fuer. Hydrobiol. 1984, 70, 111–155. [Google Scholar]
- Paludan, C.; Jensen, H.S. Sequential extraction of phosphorus in freshwater wetland and lake sediment: Significance of humic acids. Wetlands 1995, 15, 365–373. [Google Scholar] [CrossRef]
- Reitzel, K. Separation of aluminum bound phosphate from iron bound phosphate in freshwater sediments by a sequential extraction procedure. In Phosphate in Sediments; Serano, L., Golterman, H.L., Eds.; Backhuys Publishers: Leiden, The Netherlands, 2005; pp. 109–117. [Google Scholar]
- Ruttenberg, K.C. Development of a sequential extraction method for different forms of phosphorus in 889 marine sediments. Limnol. Oceanogr. 1992, 37, 1460–1482. [Google Scholar] [CrossRef]
- Baldwin, D.S. The phosphorus composition of a diverse series of Australian sediments. Hydrobiologia 1996, 335, 63–73. [Google Scholar] [CrossRef]
- Hesterberg, D.; Zhou, W.Q.; Hutchison, K.J.; Beauchemin, S.; Sayers, D.E. XAFS study of adsorbed and mineral forms of phosphate. J. Synchrotron Radiat. 1999, 6, 636–638. [Google Scholar] [CrossRef]
- Prietzel, J.; Dümig, A.; Wu, Y.; Zhou, J.; Klysubun, W. Synchrotron-based P K -edge XANES spectroscopy reveals rapid changes of phosphorus speciation in the topsoil of two glacier foreland chronosequences. Geochim. Cosmochim. Acta 2013, 108, 154–171. [Google Scholar] [CrossRef]
- Cade-Menun, B.J. Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta 2005, 66, 359–371. [Google Scholar] [CrossRef]
- Cade-Menun, B.J. Improved peak identification in P-31-NMR spectra of environmental samples with a standardized method and peak library. Geoderma 2015, 257, 102–114. [Google Scholar] [CrossRef]
- Ajiboye, B.; Akinremi, O.O.; Hu, Y.F.; Flaten, D.N. Phosphorus speciation of sequential extracts of organic amendments using NMR and XANES spectroscopies. J. Environ. Qual. 2007, 36, 1563–1576. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Hu, Y.; Yang, J.; Abdi, D.; Cade-Menun, B.J. Investigation of soil legacy phosphorus transformation in long- term agricultural fields using sequential fractionation, P K-edge XANES and solution P-NMR spectroscopy. Environ. Sci. Technol. 2015, 49, 168–176. [Google Scholar] [CrossRef] [PubMed]
- Kar, G.; Hundal, L.S.; Schoenau, J.J.; Peak, D. Direct chemical speciation of P in sequential chemical extraction residues using P Kedge X-ray absorption near-edge structure spectroscopy. Soil Sci. 2011, 176, 589–595. [Google Scholar] [CrossRef]
- Cooper, R.J.; Rawlins, B.G.; Kreuger, T.; Lézé, B.; Hiscock, K.M.; Pedentchouk, N. Contrasting controls on the phosphorus concentration of suspended particulate matter under base flow and storm event conditions in agricultural headwater streams. Sci. Total Environ. 2015, 533, 49–59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rawlins, B.G. Controls on the phosphorus content of fine stream bed sediment in agricultural headwater catchments at the landscape scale. Agric. Ecosyst. Environ. 2011, 144, 352–363. [Google Scholar] [CrossRef] [Green Version]
- Environment Protection Agency. Water Quality in 2017: An Indicators Report; Environment Protection Agency of Ireland: Dublin, Ireland, 2018. [Google Scholar]
- Phillips, J.M.; Russell, M.A.; Walling, D.E. Time-integrated sampling of suspended sediment: A simple methodology for small catchments. Hydrol. Process. 2000, 14, 2589–2602. [Google Scholar] [CrossRef]
- Hupfer, M.; Zak, D.; Rossberg, R.; Herzog, C.; Pothig, R. Evaluation of a well-established sequential phosphorus fractionation technique for use in calcite-rich lake sediments: Identification and prevention of artifacts due to apatite formation. Limnol. Oceanogr. Methods 2009, 7, 399–410. [Google Scholar] [CrossRef]
- Xiao, Q.; Maclennan, A.; Hu, Y.; Hackett, M.; Leinweber, P.; Sham, T.-K. Medium-energy microprobe station at the SXRMB of the CLS. J. Synchrotron Rad. 2017, 24, 333–337. [Google Scholar] [CrossRef]
- Fay, D.; Kramers, G.; Zhang, C.; McGrath, D.; Grennan, E. Soils Geochemical Atlas of Ireland; Teagasc and the Environmental Protection Agency: Dublin, Ireland, 2007; ISBN 1-84170-489-1. [Google Scholar]
- Wang, J.Y.; Pant, H.K. Enzymatic hydrolysis of organic phosphorus in river bed sediments. Ecol. Eng. 2010, 36, 963–968. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, W.; Zhang, H.; Jianlin, B.; Jin, X.; Li, J.; Shan, B. Characterization of biogenic phosphorus in sediments from the multi-polluted Haihe River, China, using phosphorus fractionation and 31P-NMR. Ecol. Eng. 2014, 71, 520–526. [Google Scholar] [CrossRef]
- Fay, D.; Kramers, G.; Zhang, C. Soil Geochemical Atlas of Ireland; SAFER/EPA: Johnstown Castle, Ireland; Available online: http://erc.epa.ie/safer/iso19115/display?isoID=105 (accessed on 31 July 2020).
- Van der Grift, B.; Behrends, T.; Osté, L.A.; Schot, P.P.; Wassen, M.J.; Griffioen, J. Fe hydroxyphosphate precipitation and Fe(II) oxidation kinetics upon aeration of Fe(II) and phosphate-containing synthetic and natural solutions. Cosmochim. Acta Geochim. 2016, 186, 71–90. [Google Scholar] [CrossRef]
- Smolders, E.; Baetens, E.; Verbeeck, M.; Nawara, S.; Diels, J.; Verdievel, M.; Peeters, B.; De Cooman, W.; Baken, S. Internal loading and redox cycling of sediment iron explain reactive phosphorus concentrations in lowland rivers. Environ. Sci. Technol. 2017, 51, 2584–2592. [Google Scholar] [CrossRef] [PubMed]
- Mockler, E.M.; Deakin, J.; Archbold, M.; Gill, L.; Daly, D.; Bruen, M. Sources of nitrogen and phosphorus emissions to Irish rivers and coastal waters: Estimates from a nutrient load apportionment framework. Sci. Total Environ. 2017, 601–602, 326–339. [Google Scholar] [CrossRef]
- Joseph, M.M.; Kumar, C.S.R.; Renjith, K.R.; Kumar, T.R.G.; Chandramohanakumar, N. Phosphorus fractions in the surface sediments of three mangrove systems of southwest coast of India. Environ. Earth Sci. 2011, 62, 1209–1218. [Google Scholar] [CrossRef]
- Liu, J.; Sui, P.; Cade-Menun, B.J.; Hu, Y.; Yang, J.; Huang, S.; Ma, Y. Molecular-level understanding of phosphorus transformation with long-term phosphorus addition and depletion in an alkaline soil. Geoderma 2019, 353, 116–124. [Google Scholar] [CrossRef]
- Zimmer, D.; Kruse, J.; Siebers, N.; Panten, K.; Oelschlager, C.; Warkentin, M.; Hu, Y.; Zuin, L.; Leinweber, P. Bone char vs S-enriched bone char: Multi-method characterization of bone chars and their transformation in soil. Sci. Total Environ. 2018, 643, 145–156. [Google Scholar] [CrossRef]
- Baumann, K.; Siebers, M.; Kruse, J.; Eckhardt, K.-U.; Hu, Y.; Michalik, D.; Siebers, N.; Kar, G.; Karsten, U.; Leinweber, P. Biological soil crusts as key player in biogeochemical P cycling during pedogenesis of sandy substrate. Geoderma 2019, 338, 145–158. [Google Scholar] [CrossRef]
- Wang, X.; Hu, Y.; Tang, Y.; Yang, P.; Feng, X.; Xu, W.; Zhu, M. Phosphate and phytate adsorption and precipitation on ferrihydrite surfaces. Environ. Sci. Nano 2017, 4, 2193–2204. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Wieler, M.; O’Connell, D.; Gill, L.; Xiao, Q.; Hu, Y. Speciation of Phosphorus from Suspended Sediment Studied by Bulk and Micro-XANES. Soil Syst. 2020, 4, 51. https://doi.org/10.3390/soilsystems4030051
Zhang Q, Wieler M, O’Connell D, Gill L, Xiao Q, Hu Y. Speciation of Phosphorus from Suspended Sediment Studied by Bulk and Micro-XANES. Soil Systems. 2020; 4(3):51. https://doi.org/10.3390/soilsystems4030051
Chicago/Turabian StyleZhang, Qingxin, Mackenzie Wieler, David O’Connell, Laurence Gill, Qunfeng Xiao, and Yongfeng Hu. 2020. "Speciation of Phosphorus from Suspended Sediment Studied by Bulk and Micro-XANES" Soil Systems 4, no. 3: 51. https://doi.org/10.3390/soilsystems4030051
APA StyleZhang, Q., Wieler, M., O’Connell, D., Gill, L., Xiao, Q., & Hu, Y. (2020). Speciation of Phosphorus from Suspended Sediment Studied by Bulk and Micro-XANES. Soil Systems, 4(3), 51. https://doi.org/10.3390/soilsystems4030051