Adsorption, Desorption and Bioavailability of Tungstate in Mediterranean Soils
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soils
2.2. Adsorption Desorption Experiments
2.3. Tungsten Analysis
3. Results
3.1. Influence of Contact Time
3.2. Modelling Sorption and Desorption of Tungstate by Soil
3.3. Adsorption and Bioavailability
Distribution Coefficients
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Koutsospyros, A.; Braida, W.J.; Christodoulatos, C.; Dermatas, D.; Strigul, N.S. A review of tungsten: From environmental obscurity to scrutiny. J. Hazard. Mater. 2006, 136, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Shedd, K.B. Tungsten U.S. Geological Survey. Miner. Commod. Summ. 2011, 176–177. [Google Scholar]
- Oburger, E.; Vergar Cid, C.; Schwertberger, D.; Roschitz, C.; Wenzel, W.W. Response of tungsten (W) solubility and chemical fractionation to changes in soil pH and soil aging. Sci. Total Environ. 2020, 731, 139224. [Google Scholar] [CrossRef] [PubMed]
- Seiler, R.L.; Stollenwerk, K.G.; Garbarino, J.R. Factors controlling tungsten concentrations in ground water, Carson Desert, Nevada. Appl. Geochem. 2005, 20, 423–441. [Google Scholar] [CrossRef]
- Alvarez, M.A.; Galindo, P.J.; Perez, E.C. Molybdenum and tungsten complexes with carbon dioxide and ethylene ligands. Chem. Sci. 2019, 10, 8541–8546. [Google Scholar] [CrossRef] [Green Version]
- Cui, M.; Mohajerin, T.J.; Adebayo, S.; Datta, S.; Johannesson, K.H. Investigation of tungstate thiolation reaction kinetics and sedimentary molybdenum/tungsten enrichments: Implication for tungsten speciation in sulfidic waters and possible applications for paleoredox studies. Geochim. Cosmochim. Acta 2020, in press. [Google Scholar] [CrossRef]
- Oburger, E.; Vergara Cid, C.; Preiner, J.; Hu, J.; Hann, S.; Wanek, W.; Richter, A. pH-Dependent Bioavailability, Speciation, and Phytotoxicity of Tungsten (W) in Soil Affect Growth and Molybdoenzyme Activity of Nodulated Soybeans. Environ. Sci. Technol. 2018, 52, 6146–6156. [Google Scholar] [CrossRef]
- Kelly, A.D.R.; Lemaire, M.; Young, Y.K.; Eustache, J.H.; Guilbert, C.; Molina, M.F.; Mann, K.K. In vivo tungsten exposure alters B-cell development and increases DNA damage in murine bone marrow. Toxicol. Sci. 2013, 131, 434–446. [Google Scholar] [CrossRef]
- Laulicht, F.; Brocato, J.; Cartularo, L.; Vaughan, J.; Wu, F.; Kluz, T.; Sun, H.; Oksuz, B.A.; Shen, S.; Peana, M.; et al. Tungsten-induced carcinogenesis in human bronchial epithelial cells. Toxicol. Appl. Pharm. 2015, 288, 33–39. [Google Scholar] [CrossRef] [Green Version]
- Sheppard, P.R.; Ridenour, G.; Speakman, R.J.; Witten, M.L. Elevated tungsten and cobalt in airborne particulates in Fallon, Nevada: Possible implications for the childhood leukemia cluster. Appl. Geochem. 2006, 21, 152–165. [Google Scholar] [CrossRef]
- Sheppard, P.R.; Speakman, R.J.; Ridenour, G.; Witten, M.I. Using lichen chemistry to assess airborne tungsten and cobalt in Fallon, Nevada. Environ. Monit. Assess. 2007, 130, 511–518. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Technical Fact Sheet—Tungsten; January 2014; EPA Office of Solid Waste and Emergency Response: Washington, DC, USA, 2014.
- Clausen, J.L.; Korte, N. Environmental fate of tungsten from military use. Sci. Total Environ. 2009, 407, 2887–2893. [Google Scholar] [CrossRef] [PubMed]
- US EPA. Technical Fact Sheet Tungsten (5106P), EPA 505-F-17-004, 2017; Office of Land and Emergency Management: Washington, DC, USA, 2017.
- Datta, S.; Vero, S.E.; Hettiarachchi, G.M.; Johannesson, K. Tungsten Contamination of Soils and Sediments: Current State of Science. Curr. Pollut. Rep. 2017, 3, 55–64. [Google Scholar] [CrossRef]
- Kennedy, A.J.; Johnson, D.R.; Seiter, J.M.; Lindsay, J.H.; Boyd, R.E.; Bednar, A.J.; Allison, P.G. Tungsten toxicity, bioaccumulation, and compartmentalization into organisms representing two trophic levels. Environ. Sci. Technol. 2012, 46, 9646–9652. [Google Scholar] [CrossRef]
- Koutsospyros, A.D.; Strigul, N.; Braida, W.; Christodoulatos, C. Tungsten: Environmental pollution and health effects. In Encyclopedia of Environmental Health; Nriagu, J.O., Ed.; Elsevier: Burlington, VT, USA, 2011; pp. 418–426. [Google Scholar]
- Gustafsson, J.P. Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol. 2003, 200, 105–115. [Google Scholar] [CrossRef] [Green Version]
- Sen Tuna, G.; Braida, W. Evaluation of the adsorption of mono- and poly- tungstates onto different types of clay minerals and Pahokee peat. Soil Sediment. Contam. 2014, 23, 838–849. [Google Scholar] [CrossRef]
- Li, R.; Chunye, L.; Xitao, L. Adsorption of tungstate on kaolinite: Adsorption models and kinetics. RSC Adv. 2016, 6, 19872–19877. [Google Scholar]
- Vissenberg, M.J.; Joosten, L.J.M.; Heffels, M.M.E.H.; van Welsenes, A.J.; de Beer, V.H.J.; van Santen, R.A. Tungstate versus Molybdate Adsorption on Oxidic Surfaces: A Chemical Approach. J. Phys. Chem. B 2000, 104, 8456–8461. [Google Scholar] [CrossRef]
- Sun, J.; Bostick, B.C. Effects of tungstate polymerization on tungsten (VI) adsorption on ferrihydrite. Chem. Geol. 2015, 417, 21–31. [Google Scholar] [CrossRef] [Green Version]
- Johannesson, K.H.; Dave, H.B.; Mohajerin, T.J.; Datta, S. Controls on tungsten concentrations in groundwater flow systems: The role of adsorption, aquifer sediment Fe(III) oxide/oxyhydroxide content, and thiotungstate formation. Chem. Geol. 2013, 351, 76–94. [Google Scholar] [CrossRef]
- Hur, H.; Reeder, R.J. Tungstate sorption mechanisms on boehmite: Systematic uptake studies and X-ray absorption spectroscopy analysis. J. Colloid. Interface Sci. 2016, 461, 249–260. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakshit, S.; Sallman, B.; Davantés, A.; Lefèvre, G. Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism. Chemosphere 2017, 168, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Petruzzelli, G.; Pedron, F. Tungstate adsorption onto Italian soils with different characteristics. Environ. Monit. Assess. 2017, 189, 379. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Methods of Soil Analysis. Part 3. Chemical Methods; Science Society of America Book Series: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- Klute, A. Methods of Soil Analysis. Part 1. Physical and Mineralogical Methods. Agronomy Monograph No. 9, 2nd ed.; American Society of Agronomy/Soil Science Society of America: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Dermatas, D.; Braida, W.; Christodoulatos, C.; Strigul, N.; Panikov, N.; Los, M.; Larson, S. Solubility, sorption, and soil respiration effects of tungsten and tungsten alloys. Environ. Forensics 2004, 5, 5–13. [Google Scholar] [CrossRef]
- Bednar, A.J.; Jones, W.T.; Chappell, M.A.; Johnson, D.R.; Ringelberg, D.B. A modified acid digestion procedure for extraction of tungsten from soil. Talanta 2010, 80, 1257–1263. [Google Scholar] [CrossRef]
- Xie, X.; Chen, C.; Lu, X.; Luo, F.; Wang, C.; Alsaedi, A.; Hayat, T. Porous Ni Fe-oxide nanocubes derived from prussian blue analogue as efficient adsorbents for the removal of toxic metal ions and organic dyes. J. Hazard. Mater. 2019, 379, 120786. [Google Scholar] [CrossRef]
- Usman, A. The relative adsorption selectivities of Pb, Cu, Zn, Cd and Ni by soils developed on shale in New Valley, Egypt. Geoderma 2008, 144, 334–343. [Google Scholar] [CrossRef]
- Shaheen, S.M. Sorption and lability of cadmium and lead in different soils from Egypt and Greece. Geoderma 2009, 153, 61–68. [Google Scholar] [CrossRef]
- Giles, C.H.; Smith, D.; Huitson, A. A general treatment and classification of the solute adsorption isotherm. I. Theoretical. J. Colloid. Interface Sci. 1974, 47, 755–765. [Google Scholar] [CrossRef]
- Bednar, A.J.; Boyd, R.E.; Jones, W.T.; McGrath, C.J.; Johnson, D.R.; Chappell, M.A.; Ringelberg, D.B. Investigations of tungsten mobility in soil using column tests. Chemosphere 2009, 75, 1049–1056. [Google Scholar] [CrossRef]
- Davantès, A.; Costa, D.; Lefèvre, G. Infrared study of (poly)tungstate ions in solution and Sorbed into layered double hydroxides: Vibrational calculations and in situ analysis. J. Phys. Chem. 2015, 119, 12356–12364. [Google Scholar] [CrossRef]
- Cruywagen, J.J. Protonation, oligomerization, and condensation reactions of vanadate (V), molybdate (VI), and tungstate (VI). In Advances in Inorganic Chemistry; Sykes, A.G., Ed.; Academic Press Inc.: San Diego, CA, USA, 2000; pp. 127–182. [Google Scholar]
- Xu, N.; Christodoulatos, C.; Braida, W. Modeling the competitive effect of phosphate, sulfate, silicate, and tungstate anions on the adsorption of molybdate onto goethite. Chemosphere 2006, 64, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Dixit, S.; Hering, J.G. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: Implications for arsenic mobility. Environ. Sci. Technol. 2003, 37, 4182–4189. [Google Scholar] [CrossRef] [PubMed]
- Sparks, D.L. Environmental Soil Chemistry; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Elzinga, E.J.; Sparks, D.L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid. Interface Sci. 2007, 308, 53–70. [Google Scholar] [CrossRef] [PubMed]
- McBride, M.B. Environmental Chemistry of Soils; Oxford University Press: New York, NY, USA, 1994. [Google Scholar]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Antimony and arsenic behavior during Fe(II)-induced transformation of Jarosite. Environ. Sci. Technol. 2017, 51, 4259–4268. [Google Scholar] [CrossRef] [PubMed]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Antimony and arsenic partitioning during Fe2+-induced transformation of Jarosite under acidic conditions. Chemosphere 2018, 195, 515–523. [Google Scholar] [CrossRef] [PubMed]
- Karimian, N.; Burton, E.D.; Johnston, S.G.; Hockmann, K.; Choppala, G. Humic acid impacts antimony partitioning and speciation during iron(II)-induced ferrihydrite transformation. Sci. Total Environ. 2019, 683, 399–410. [Google Scholar] [CrossRef]
- Gecol, H.; Parfait, M.; Erdogan, E.; Sage, H. Biopolymer coated clay particles for the adsorption of tungsten from water. Desalination 2006, 197, 165–178. [Google Scholar] [CrossRef]
- Holford, I.C.R.; Mattingly, G.E.G. A model for the behaviour of labile phosphate in soil. Plant Soil 1974, 44, 219–229. [Google Scholar] [CrossRef]
- Barrow, N.J. A mechanistic model for describing the sorption and desorption of phosphate by soil. Eur. J. Soil Sci. 2015, 66, 9–18. [Google Scholar] [CrossRef]
- Jing, Y.D.; He, Z.L.; Yang, X.E. Adsorption–Desorption Characteristics of Mercury in Paddy Soils of China. J. Environ. Qual. 2008, 37, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Alexander, M. Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants. Environ. Sci. Technol. 2000, 34, 4259–4265. [Google Scholar] [CrossRef]
- Wenzel, W.W.; Kirchbaumer, N.; Prohaska, T.; Stingeder, G.; Lombi, E.; Adriano, D.C. Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 2001, 436, 309–323. [Google Scholar] [CrossRef]
- Khodaverdiloo, H.; Samadi, A. Batch equilibrium study on sorption, desorption, and immobilisation of cadmium in some semi-arid zone soils as affected by soil properties. Soil Res. 2011, 49, 444–454. [Google Scholar] [CrossRef]
- Vega, F.A.; Covelo, E.F.; Andrade, M.L. Hysteresis in the individual and competitive sorption of cadmium, copper, and lead by various soil horizons. J. Colloid. Interface Sci. 2009, 331, 312–317. [Google Scholar] [CrossRef]
- Rampoldi, E.A.; Hang, S.; Barriuso, E. Carbon-14-Glyphosate behavior in relationship to pedoclimatic conditions and crop sequence. J. Environ. Qual. 2014, 43, 558–567. [Google Scholar] [CrossRef]
- Sander, M.; Lu, Y.; Pignatello, J.J. A thermodynamically based method to quantify true sorption hysteresis. J. Environ. Qual. 2005, 34, 1063–1072. [Google Scholar] [CrossRef]
- Kashiwabara, T.; Takahashi, Y.; Marcus, M.A.; Uruga, T.; Tanida, H.; Terada, Y.; Usui, A. Tungsten species in natural ferromanganese oxides related toits different behavior from molybdenum in oxic ocean. Geochim. Cosmochim. Acta 2013, 106, 364–378. [Google Scholar] [CrossRef]
- Wang, Y.; Tiwari, D.; Wang, H. Effect of ionic strength on adsorption of As(III) and As(V) on variable charge soils. J. Environ. Sci. 2009, 21, 927–932. [Google Scholar]
- Kanematsu, M.; Young, T.M.; Fukushi, K.; Green, P.G.; Darby, J.L. Arsenic (III, V) adsorption on a goethite-based adsorbent in the presence of major co-existing ions: Modeling competitive adsorption consistent with spectroscopic and molecular evidence. Geochim. Cosmochim. Acta 2013, 106, 404–428. [Google Scholar] [CrossRef]
- Hayes, K.F.; Papelis, C.; Leckie, J.O. Modeling ionic strength effects on anion adsorption at hydrous oxide/solution interfaces. J. Colloid. Interface Sci. 1988, 125, 717–726. [Google Scholar] [CrossRef]
- Merrikhpour, H.; Jalali, M. Geostatistical assessment of solid–liquid distribution coefficients (Kd) for Cd, Cu, Pb and Zn in surface soils of Hamedan, Iran. Model. Earth Syst. Environ. 2015, 1, 2–9. [Google Scholar] [CrossRef]
- Shanware, A.S.; Phadtare, P. Tungsten toxicity in soil and biological role of tungsten in bacteria. Indian J. Sci. 2014, 10, 36–42. [Google Scholar]
- Erdemir, Ü.S.; Arslan, H.; Güleryüz, G.; Güçer, Ş. Elemental Composition of Plant Species from an Abandoned Tungsten Mining Area: Are They Useful for Biogeochemical Exploration and/or Phytoremediation Purposes? Bull. Environ. Contam. Tox. 2017, 98, 299–303. [Google Scholar] [CrossRef] [PubMed]
Parameters | Soil TE | Soil EH | Soil TH |
---|---|---|---|
Soil classification | Typic Eutrochrept | Entic Hapludoll | Typic Hapludalf |
pH | 4.7 | 7.1 | 8.0 |
Organic Matter | 5.32 | 2.10 | 1.43 |
C.E.C (cmol (+) kg−1) | 25.6 | 17.7 | 16.6 |
Clay% | 10.4 | 12.5 | 7.65 |
Silt% | 23.6 | 28.8 | 14.0 |
Sand% | 66.0 | 59.3 | 78.3 |
Total W mg·kg−1 | 0.32 | 0.44 | 0.29 |
SSA (m2·g−1) | 186 | 169 | 140 |
Fe | 2.42 | 2.20 | 2.15 |
Al | 1.84 | 2.11 | 1.98 |
Soil | Langmuir | Freundlich | ||||
---|---|---|---|---|---|---|
qmax | K | R2 | Log Kf | 1/n | R2 | |
TE | 35.08 | 0.259 | 0.957 | 1.421 | 0.553 | 0.822 |
EH | 20.66 | 0.247 | 0.940 | 1.193 | 0.576 | 0.806 |
TH | 16.15 | 0.265 | 0.966 | 1.0921 | 0.559 | 0.865 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Petruzzelli, G.; Pedron, F. Adsorption, Desorption and Bioavailability of Tungstate in Mediterranean Soils. Soil Syst. 2020, 4, 53. https://doi.org/10.3390/soilsystems4030053
Petruzzelli G, Pedron F. Adsorption, Desorption and Bioavailability of Tungstate in Mediterranean Soils. Soil Systems. 2020; 4(3):53. https://doi.org/10.3390/soilsystems4030053
Chicago/Turabian StylePetruzzelli, Gianniantonio, and Francesca Pedron. 2020. "Adsorption, Desorption and Bioavailability of Tungstate in Mediterranean Soils" Soil Systems 4, no. 3: 53. https://doi.org/10.3390/soilsystems4030053
APA StylePetruzzelli, G., & Pedron, F. (2020). Adsorption, Desorption and Bioavailability of Tungstate in Mediterranean Soils. Soil Systems, 4(3), 53. https://doi.org/10.3390/soilsystems4030053