Forest Soil Cation Dynamics and Increases in Carbon on the Allegheny Plateau, PA, USA Following a Period of Strongly Declining Acid Deposition
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description and Field Methods
2.2. Sample Processing and Analytical Methods
2.3. Statistical Methods
3. Results
3.1. Whole Profile Chemistry
3.2. Relationships between Cation Change and Carbon
3.3. Forest Floor Pin Blocks
4. Discussion
4.1. Pit and Pin Block Temporal Soil Change
4.2. Comparison with Other Studies
4.3. Mechanisms of Recovery from Acidification
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- de Boucherville Richter, D.; Markewitz, D. Understanding Soil Change: Soil Sustainability Over Millennia, Centuries, and Decades; Cambridge University Press: Cambridge, UK, 2001; ISBN 978-0-521-77171-9. [Google Scholar]
- Ciolkosz, E.J.; Waltman, W.J.; Simpson, T.W.; Dobos, R.R. Distribution and genesis of soils of the northeastern United States. Geomorphology 1989, 2, 285–302. [Google Scholar] [CrossRef]
- Ciolkosz, E.J.; Waltman, W.J.; Thurman, N.C. Fragipans in Pennsylvania Soils. Soil Horiz. 1995, 36, 5. [Google Scholar] [CrossRef]
- Ciolkosz, E.J.; Waltman, W.J.; Thurman, N.C.; Cremeens, D.L.; Svoboda, M.D. Argillic Horizons in Pennsylvania Soils. Soil Horiz. 1996, 37, 20. [Google Scholar] [CrossRef]
- Lawrence, G.B.; Fernandez, I.J.; Richter, D.D.; Ross, D.S.; Hazlett, P.W.; Bailey, S.W.; Ouimet, R.; Warby, R.A.F.; Johnson, A.H.; Lin, H.; et al. Measuring Environmental Change in Forest Ecosystems by Repeated Soil Sampling: A North American Perspective. J. Environ. Qual. 2013, 42, 623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmid, P.; Gujer, E.; Zennegg, M.; Bucheli, T.D.; Desaules, A. Correlation of PCDD/F and PCB concentrations in soil samples from the Swiss soil monitoring network (NABO) to specific parameters of the observation sites. Chemosphere 2005, 58, 227–234. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, G.B.; Bailey, S.W. Workshop Establishes the Northeastern Soil Monitoring Cooperative. Eos Trans. Am. Geophys. Union 2007, 88, 247. [Google Scholar] [CrossRef]
- Vet, R.; Artz, R.S.; Carou, S.; Shaw, M.; Ro, C.-U.; Aas, W.; Baker, A.; Bowersox, V.C.; Dentener, F.; Galy-Lacaux, C.; et al. A global assessment of precipitation chemistry and deposition of sulfur, nitrogen, sea salt, base cations, organic acids, acidity and pH, and phosphorus. Atmos. Environ. 2014, 93, 3–100. [Google Scholar] [CrossRef]
- Likens, G.E.; Butler, T.J.; Claybrooke, R.; Vermeylen, F.; Larson, R. Long-term monitoring of precipitation chemistry in the U.S.: Insights into changes and condition. Atmos. Environ. 2020, 245. [Google Scholar] [CrossRef]
- Warby, R.A.F.; Johnson, C.E.; Driscoll, C.T. Continuing Acidification of Organic Soils across the Northeastern USA: 1984–2001. Soil Sci. Soc. Am. J. 2009, 73, 274–284. [Google Scholar] [CrossRef]
- Bailey, S.W.; Horsley, S.B.; Long, R.P. Thirty years of change in forest soils of the Allegheny Plateau, Pennsylvania. Soil Sci. Soc. Am. J. 2005, 69, 681–690. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Chen, H.Y.H.; Searle, E.B.; Sardans, J.; Ciais, P.; Peñuelas, J.; Huang, Z. Whole soil acidification and base cation reduction across subtropical China. Geoderma 2020, 361, 114107. [Google Scholar] [CrossRef]
- Billett, M.F.; Parker-Jervis, F.; FItzpatrick, E.A.; Cresser, M.S. Forest soil chemical changes between 1949/50 and 1987. J. Soil Sci. 1990, 41, 133–145. [Google Scholar] [CrossRef]
- Likens, G.E.; Driscoll, C.T.; Buso, D.C. Long-Term Effects of Acid Rain: Response and Recovery of a Forest Ecosystem. Science 1996, 172, 244–246. [Google Scholar] [CrossRef]
- Bailey, S.W.; Hornbeck, J.W.; Driscoll, C.T.; Gaudette, H.E. Calcium inputs and transport in a base-poor forest ecosystem as interpreted by Sr isotopes. Water Resour. Res. 1996, 32, 707–719. [Google Scholar] [CrossRef]
- Fernandez, I.J.; Rustad, L.E.; Norton, S.A.; Kahl, J.S.; Cosby, B.J. Experimental Acidification Causes Soil Base-Cation Depletion at the Bear Brook Watershed in Maine. Soil Sci. Soc. Am. J. 2003, 67, 1909. [Google Scholar] [CrossRef] [Green Version]
- Lawrence, G.B.; Hazlett, P.W.; Fernandez, I.J.; Ouimet, R.; Bailey, S.W.; Shortle, W.C.; Smith, K.T.; Antidormi, M.R. Declining acidic deposition begins reversal of forest-soil acidification in the northeastern US and eastern Canada. Environ. Sci. Technol. 2015, 49, 13103–13111. [Google Scholar] [CrossRef]
- Hazlett, P.; Emilson, C.; Lawrence, G.; Fernandez, I.; Ouimet, R.; Bailey, S. Reversal of Forest Soil Acidification in the Northeastern United States and Eastern Canada: Site and Soil Factors Contributing to Recovery. Soil Syst. 2020, 4, 54. [Google Scholar] [CrossRef]
- Ciolkosz, E.J.; Ranney, R.W.; Peterson, G.W.; Cunningham, R.L.; Matelski, R.P. Characteristics Interpretations and Uses of Pennsylvania Soils, Warren County; Progress Report; The Pennsylvania State University, Agricultural Experiment Station: State College, PA, USA, 1970. [Google Scholar]
- Bailey, S.W.; Long, R.P.; Horsley, S.B. Soil Description and Chemistry, Allegheny National Forest, 1997, 2017; Forest Service Research Data Archive: Fort Collins, CO, USA, 2021. [Google Scholar]
- Stout, S.L.; Marquis, D.A.; Ernst, R.L. A relative density measure for mixed-species stands. J. For. 1987, 85, 45–47. [Google Scholar]
- Marquis, D.A. The Allegheny Hardwood Forests of Pennsylvania; USDA Forest Service; U.S. Government Printing Office: Washington, DC, USA, 1975.
- Federer, C.A. Organic matter and nitrogen content of the forest floor in even aged northern hardwoods. Can. J. For. Res. 1984, 14, 763–767. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, Twelfth Edition; U.S. Department of Agriculture, Natural Resources Conservation Service: Washington, DC, USA, 2014.
- Robarge, W.P.; Fernandez, I.J. Quality Assurance Methods Manual for Laboratory Analytical Techniques. Revision 1; U.S. EPA. and USDA Forest Response Program; Corvallis Environmental Research Laboratory: Corvallis, OR, USA, 1987. [Google Scholar]
- Blume, L.J.; Schumacher, B.A.; Schaffer, P.W.; Cappo, K.A.; Papp, M.L.; van Remortel, R.D.; Coffey, D.S.; Johnson, M.G.; Chaloud, D.J. Handbook or Methods for Acid Deposition Studies Laboratory Analyses for Soil Chemistry; U.S. Environmental Protection Agency, Environmental Monitoring Systems Laboratory: Las Vegas, NV, USA, 1990.
- Ross, D.S.; Bailey, S.W.; Briggs, R.D.; Curry, J.; Fernandez, I.J.; Fredriksen, G.; Goodale, C.L.; Hazlett, P.W.; Heine, P.R.; Johnson, C.E.; et al. Inter-laboratory variation in the chemical analysis of acidic forest soil reference samples from eastern North America. Ecosphere 2015, 6, 1–22. [Google Scholar] [CrossRef]
- SAS/STAT Software, Version 9.4; SAS Institute, Inc.: Cary, NC, USA, 2012.
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D.; Schabenberger, O. SAS for Mixed Models, 2nd ed.; SAS Institute Inc.: Cary, NC, USA, 2006. [Google Scholar]
- NADP National Atmospheric Deposition Program. National Trends Network Data, Site PA29, Kane Experimental Forest. Available online: http://nadp.slh.wisc.edu/ (accessed on 27 January 2021).
- Driscoll, C.T.; Lawrence, G.B.; Bulger, A.J.; Butler, T.J.; Cronan, C.S.; Eagar, C.; Lambert, K.F.; Likens, G.E.; Stoddard, J.L.; Weathers, K.C. Acidic deposition in the northeastern United States: Sources and inputs, ecosystem effects, and management strategies. BioScience 2001, 51, 180–198. [Google Scholar] [CrossRef] [Green Version]
- Horsley, S.B.; Long, R.P.; Bailey, S.W.; Hallett, R.A.; Hall, T.J. Factors associated with the decline disease of sugar maple on the Allegheny Plateau. Can. J. For. Res. 2000, 30, 1365–1378. [Google Scholar] [CrossRef]
- Long, R.P.; Horsley, S.B.; Hallett, R.A.; Bailey, S.W. Sugar maple growth in relation to nutrition and stress in the northeastern United States. Ecol. Appl. 2009, 19, 1454–1466. [Google Scholar] [CrossRef] [Green Version]
- Fraser, O.L.; Bailey, S.W.; Ducey, M.J. Decadal Change in Soil Chemistry of Northern Hardwood Forests on the White Mountain National Forest, New Hampshire, USA. Soil Sci. Soc. Am. J. 2019, 83, S96–S104. [Google Scholar] [CrossRef]
- Lawrence, G.; Siemion, J.; Antidormi, M.; Bonville, D.; McHale, M. Have Sustained Acidic Deposition Decreases Led to Increased Calcium Availability in Recovering Watersheds of the Adirondack Region of New York, USA. Soil Syst. 2021, 5, 6. [Google Scholar] [CrossRef]
- Berger, T.W.; Türtscher, S.; Berger, P.; Lindebner, L. A slight recovery of soils from Acid Rain over the last three decades is not reflected in the macro nutrition of beech (Fagus sylvatica) at 97 forest stands of the Vienna Woods. Environ. Pollut. 2016, 216, 624–635. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oulehle, F.; Evans, C.D.; Hofmeister, J.; Krejci, R.; Tahovska, K.; Persson, T.; Cudlin, P.; Hruska, J. Major changes in forest carbon and nitrogen cycling caused by declining sulphur deposition. Glob. Chang. Biol. 2011, 17, 3115–3129. [Google Scholar] [CrossRef]
- Prietzel, J.; Falk, W.; Reger, B.; Uhl, E.; Pretzsch, H.; Zimmermann, L. Half a century of Scots pine forest ecosystem monitoring reveals long-term effects of atmospheric deposition and climate change. Glob. Chang. Biol. 2020, 26, 5796–5815. [Google Scholar] [CrossRef] [PubMed]
- Melvin, A.M.; Lichstein, J.W.; Goodale, C.L. Forest liming increases forest floor carbon and nitrogen stocks in a mixed hardwood forest. Ecol. Appl. 2013, 23, 1962–1975. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Breemen, N.; Driscoll, C.T.; Mulder, J. Acidic deposition and internal proton sources in acidification of soils and waters. Nature 1984, 307, 599–604. [Google Scholar] [CrossRef]
- Clarholm, M.; Skyllberg, U. Translocation of metals by trees and fungi regulates pH, soil organic matter turnover and nitrogen availability in acidic forest soils. Soil Biol. Biochem. 2013, 63, 142–153. [Google Scholar] [CrossRef]
- Shortle, W.C.; Smith, K.T.; Jellison, J.; Schilling, J.S. Potential of decaying wood to restore root-available base cations in depleted forest soils. Can. J. For. Res. 2012, 42, 1015–1024. [Google Scholar] [CrossRef]
- Ross, D.S.; Knowles, M.E.; Juillerat, J.I.; Görres, J.H.; Cogbill, C.V.; Wilmot, S.; D’Agati, K. Interaction of land use history, earthworms, soil chemistry and tree species on soil carbon distribution in managed forests in Vermont, USA. For. Ecol. Manag. 2021, 17, 1–16. [Google Scholar]
- Royo, A.A.; Vickers, L.A.; Long, R.P.; Ristau, T.E.; Stoleson, S.H.; Stout, S.L. The Forest of Unintended Consequences: Anthropogenic Actions Trigger the Rise and Fall of Black Cherry. BioScience 2021, 20, 14. [Google Scholar]
- Bailey, S.W.; Horsley, S.B.; Long, R.P.; Hallett, R.A. Influence of edaphic factors on sugar maple nutrition and health on the Allegheny Plateau. Soil Sci. Soc. Am. J. 2004, 68, 243–252. [Google Scholar] [CrossRef]
Oa/A Horizon | Uppermost E/B Horizon | 50 cm Depth | 100 cm Depth | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Property | 1997 | 2017 | P | 1997 | 2017 | P | 1997 | 2017 | P | 1997 | 2017 | P |
Ca, cmolc kg−1 | 0.836 (0.120) | 3.045 (0.437) | <0.001 | 0.075 (0.009) | 0.048 (0.006) | 0.018 1 | 0.042 (0.008) | 0.016 (0.003) | 0.014 | 0.049 (0.16) | 0.025 (0.008) | 0.048 |
Mg, cmolc kg−1 | 0.382 (0.066) | 1.081 (0.066) | <0.001 | 0.049 (0.005) | 0.048 (0.005) | 0.933 | 0.013 (0.003) | 0.018 (0.004) | 0.256 | 0.017 (0.004) | 0.022 (0.006) | 0.251 |
Al, cmolc kg−1 | 5.898 (0.370) | 4.458 (0.370) | 0.031 | 7.446 (0.607) | 3.478 (0.284) | <0.001 1 | 3.824 (0.237) | 3.885 (0.237) | 0.872 | 2.866 (0.286) | 2.429 (0.286) | 0.403 |
pH | 2.90 (0.08) | 3.00 (0.08) | 0.302 | 3.24 (0.08) | 3.16 (0.08) | 0.670 | 3.98 (0.02) | 3.96 (0.02) | 0.472 | 3.98 (0.03) | 3.96 (0.03) | 0.664 |
C, percent dry mass | 12.95 (1.23) | 27.19 (1.23) | <0.001 | 1.58 (0.21) | 2.22 (0.21) | 0.109 | 0.31 (0.04) | 0.52 (0.07) | 0.013 | NA |
Year | p-Value | ||||
---|---|---|---|---|---|
Property | 1997 | 2017 | Site | Year | Site × Year 1 |
Oie mass, g m−2 | 0.40 (0.02) | 0.09 (0.01) | 0.014 | <0.001 | 0.748 |
Oie thickness, cm | 2.56 (0.17) | 1.14 (0.06) | <0.001 | <0.001 | 0.870 |
Oa/A mass, g m−2 | 0.73 (0.05) | 1.04 (0.12) | 0.002 | 0.016 | 0.655 |
Oa/A thickness, cm | 1.36 (0.11) | 4.30 (0.29) | 0.016 | <0.001 | 0.362 |
Ca, cmolc kg−1 | 1.144 (0.121) | 1.842 (0.267) | 0.007 | 0.005 | 0.017 |
Mg, cmolc kg−1 | 0.432 (0.032) | 0.720 (0.064) | 0.012 | <0.001 | 0.006 |
Al, cmolc kg−1 | 4.557 (0.310) | 1.821 (0.196) | <0.001 | <0.001 | 0.885 |
C, percent dry mass | 14.5 (0.9) | 23.4 (2.4) | 0.001 | 0.001 | 0.017 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bailey, S.W.; Long, R.P.; Horsley, S.B. Forest Soil Cation Dynamics and Increases in Carbon on the Allegheny Plateau, PA, USA Following a Period of Strongly Declining Acid Deposition. Soil Syst. 2021, 5, 16. https://doi.org/10.3390/soilsystems5010016
Bailey SW, Long RP, Horsley SB. Forest Soil Cation Dynamics and Increases in Carbon on the Allegheny Plateau, PA, USA Following a Period of Strongly Declining Acid Deposition. Soil Systems. 2021; 5(1):16. https://doi.org/10.3390/soilsystems5010016
Chicago/Turabian StyleBailey, Scott W., Robert P. Long, and Stephen B. Horsley. 2021. "Forest Soil Cation Dynamics and Increases in Carbon on the Allegheny Plateau, PA, USA Following a Period of Strongly Declining Acid Deposition" Soil Systems 5, no. 1: 16. https://doi.org/10.3390/soilsystems5010016
APA StyleBailey, S. W., Long, R. P., & Horsley, S. B. (2021). Forest Soil Cation Dynamics and Increases in Carbon on the Allegheny Plateau, PA, USA Following a Period of Strongly Declining Acid Deposition. Soil Systems, 5(1), 16. https://doi.org/10.3390/soilsystems5010016