Antimony (V) Adsorption at the Hematite–Water Interface: A Macroscopic and In Situ ATR-FTIR Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagent and Materials
2.2. Antimony Sorption Experiments
2.3. In Situ ATR-FTIR Experiments
2.4. Surface Complexation Modeling
3. Results and Discussion
3.1. In Situ ATR-FTIR Analysis of Sb (V) Adsorption on Hematite
3.2. Adsorption Envelope and Surface Complexation Modeling
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Filella, M.; Belzile, N.; Chen, Y. Antimony in the environment: A review focused on natural waters: I. Occurrence. Earth-Sci. Rev. 2002, 57, 125–176. [Google Scholar] [CrossRef]
- Filella, M.; Belzile, N.; Chen, Y.-W. Antimony in the environment: A review focused on natural waters: II. Relevant solution chemistry. Earth-Sci. Rev. 2002, 59, 265–285. [Google Scholar] [CrossRef]
- Filella, M.; Belzile, N.; Lett, M.-C. Antimony in the environment: A review focused on natural waters. III. Microbiota relevant interactions. Earth-Sci. Rev. 2007, 80, 195–217. [Google Scholar] [CrossRef]
- Carlin, J.F., Jr. USGS Mineral Commodity Summaries; USGS: Denver, CO, USA, 2000.
- Clausen, J.; Korte, N. The Distribution of Metals in Soils and Pore Water at Three U.S. Military Training Facilities. Soil Sediment Contam. Int. J. 2009, 18, 546–563. [Google Scholar] [CrossRef]
- Gebel, T. Arsenic and antimony: Comparative approach on mechanistic toxicology. Chem. Biol. Interact. 1997, 107, 131–144. [Google Scholar] [CrossRef]
- Ilgen, A.G.; Trainor, T.P. Sb(III) and Sb(V) sorption onto Al-rich phases: Hydrous Al oxide and the clay minerals kaolinite KGa-1b and oxidized and reduced nontronite NAu-1. Environ. Sci. Technol. 2012, 46, 843–851. [Google Scholar] [CrossRef] [PubMed]
- USEPA. National Primary Drinking Water Regulations; 816-F-09-004; USEPA: Washington, DC, USA, 2009.
- Wilson, S.C.; Lockwood, P.V.; Ashley, P.M.; Tighe, M. The chemistry and behaviour of antimony in the soil environment with comparisons to arsenic: A critical review. Environ. Pollut. 2010, 158, 1169–1181. [Google Scholar] [CrossRef]
- Leuz, A.; Hug, S.J.; Wehrli, B.; Johnson, C.A. Iron-mediated oxidation of antimony(III) by oxygen and hydrogen peroxide compared to arsenic(III) oxidation. Environ. Sci. Technol. 2006, 40, 2565–2571. [Google Scholar] [CrossRef]
- Mitsunobu, S.; Harada, T.; Takahashi, Y. Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ. Sci. Technol. 2006, 40, 7270–7276. [Google Scholar] [CrossRef]
- Mitsunobu, S.; Takahashi, Y.; Sakai, Y.; Inumaru, K. Interaction of synthetic sulfate green rust with antimony(V). Environ. Sci. Technol. 2009, 43, 318–323. [Google Scholar] [CrossRef] [PubMed]
- Mitsunobu, S.; Takahashi, Y.; Terada, Y.; Sakata, M. Antimony(V) incorporation into synthetic ferrihydrite, goethite, and natural iron oxyhydroxides. Environ. Sci. Technol. 2010, 44, 3712–3718. [Google Scholar] [CrossRef]
- Johnston, S.G.; Bennett, W.W.; Doriean, N.; Hockmann, K.; Karimian, N.; Burton, E.D. Antimony and arsenic speciation, redox-cycling and contrasting mobility in a mining-impacted river system. Sci. Total Environ. 2020, 710, 136354. [Google Scholar] [CrossRef] [PubMed]
- Scheinost, A.C.; Rossberg, A.; Vantelon, D.; Xifra, I.; Kretzschmar, R.; Leuz, A.; Funke, H.; Johnson, C.A. Quantitative antimony speciation in shooting-range soils by EXAFS spectroscopy. Geochimica Cosmochimica Acta 2006, 70, 3299–3312. [Google Scholar] [CrossRef]
- Tighe, M.; Lockwood, P.; Wilson, S. Adsorption of antimony(V) by floodplain soils, amorphous iron(III) hydroxide and humic acid. J. Environ. Monit. 2005, 7, 1177–1185. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burton, E.D.; Hockmann, K.; Karimian, N. Antimony Sorption to Goethite: Effects of Fe(II)-Catalyzed Recrystallization. ACS Earth Space Chem. 2020, 4, 476–487. [Google Scholar] [CrossRef] [Green Version]
- Xi, J.; He, M.; Zhang, G. Antimony adsorption on kaolinite in the presence of competitive anions. Environ. Earth Sci. 2014, 71, 2989–2997. [Google Scholar] [CrossRef]
- Xi, J.; He, M. Removal of Sb(III) and Sb(V) from aqueous media by goethite. Water Qual. Res. J. 2013, 48, 223–231. [Google Scholar] [CrossRef]
- Guo, X.; Wu, Z.; He, M.; Meng, X.; Jin, X.; Qiu, N.; Zhang, J. Adsorption of antimony onto iron oxyhydroxides: Adsorption behavior and surface structure. J. Hazard. Mater. 2014, 276, 339–345. [Google Scholar] [CrossRef]
- Hind, A.R.; Bhargava, S.K.; McKinnon, A. At the solid/liquid interface: FTIR/ATR—The tool of choice. Adv. Colloid Interface Sci. 2001, 93, 91–114. [Google Scholar] [CrossRef]
- Lefèvre, G. In situ Fourier-transform infrared spectroscopy studies of inorganic ions adsorption on metal oxides and hydroxides. Adv. Colloid Interface Sci. 2004, 107, 109–123. [Google Scholar] [CrossRef] [Green Version]
- Hug, S.J. In Situ Fourier Transform Infrared Measurements of Sulfate Adsorption on Hematite in Aqueous Solutions. J. Colloid Interface Sci. 1997, 188, 415–422. [Google Scholar] [CrossRef]
- Hug, S.J.; Sulzberger, B. In situ Fourier Transform Infrared Spectroscopic Evidence for the Formation of Several Different Surface Complexes of Oxalate on TiO2 in the Aqueous Phase. Langmuir 1994, 10, 3587–3597. [Google Scholar] [CrossRef]
- Elzinga, E.J.; Sparks, D.L. Phosphate adsorption onto hematite: An in situ ATR-FTIR investigation of the effects of pH and loading level on the mode of phosphate surface complexation. J. Colloid Interface Sci. 2007, 308, 53–70. [Google Scholar] [CrossRef]
- Muller, T.; Craw, D.; McQuillan, A.J. Arsenate and antimonate adsorption competition on 6-line ferrihydrite monitored by infrared spectroscopy. Appl. Geochem. 2015, 61, 224–232. [Google Scholar] [CrossRef]
- McComb, K.A.; Craw, D.; McQuillan, A.J. ATR-IR Spectroscopic Study of Antimonate Adsorption to Iron Oxide. Langmuir 2007, 23, 12125–12130. [Google Scholar] [CrossRef]
- Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; Wiley: Hoboken, NJ, USA, 1986. [Google Scholar]
- Sugimoto, T.; Sakata, K.; Muramatsu, A. Formation Mechanism of Monodisperse Pseudocubic α-Fe2O3 Particles from Condensed Ferric Hydroxide Gel. J. Colloid Interface Sci. 1993, 159, 372–382. [Google Scholar] [CrossRef]
- Elzinga, E.; Kretzschmar, R. In situ ATR-FTIR spectroscopic analysis of the co-adsorption of orthophosphate and Cd(II) onto hematite. Geochimica Cosmochimica Acta 2013, 117, 53–64. [Google Scholar] [CrossRef]
- Rakshit, S.; Sallman, B.; Davantés, A.; Lefèvre, G. Tungstate (VI) sorption on hematite: An in situ ATR-FTIR probe on the mechanism. Chemosphere 2017, 168, 685–691. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sallman, B.; Rakshit, S.; Lefevre, G. Influence of phosphate on tungstate sorption on hematite: A macroscopic and spectroscopic evaluation of the mechanism. Chemosphere 2018, 213, 596–601. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rakshit, S.; Sarkar, D.; Datta, R. Surface complexation of antimony on kaolinite. Chemosphere 2015, 119, 349–354. [Google Scholar] [CrossRef]
- Peak, D.; Ford, R.G.; Sparks, D.L. An in Situ ATR-FTIR Investigation of Sulfate Bonding Mechanisms on Goethite. J. Colloid Interface Sci. 1999, 218, 289–299. [Google Scholar] [CrossRef] [Green Version]
- Parikh, S.J.; Mukome, F.N.; Zhang, X. ATR-FTIR spectroscopic evidence for biomolecular phosphorus and carboxyl groups facilitating bacterial adhesion to iron oxides. Colloids Surf. B Biointerfaces 2014, 119, 38–46. [Google Scholar] [CrossRef] [Green Version]
- Dolui, M.; Rakshit, S.; Essington, M.E.; Lefèvre, G. Probing Oxytetracycline Sorption Mechanism on Kaolinite in a Single Ion and Binary Mixtures with Phosphate using In Situ ATR-FTIR Spectroscopy. Soil Sci. Soc. Am. J. 2018, 82, 826–838. [Google Scholar] [CrossRef]
- Essington, M.E. Soil and Water Chemistry: An Integrative Approach; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Herbelin, A.L.; Westall, J.C. A Computer Program for Determination of Chemical Equilibrium Constants from Experimental Data; Department of Chemistry, Oregon State University: Corvallis, Oregon, 1999. [Google Scholar]
- Essington, M.E.; Vergeer, K.A. Adsorption of Antimonate, Phosphate, and Sulfate by Manganese Dioxide: Competitive Effects and Surface Complexation Modeling. Soil Sci. Soc. Am. J. 2015, 79, 803–814. [Google Scholar] [CrossRef]
- Essington, M.E.; Stewart, M.A. Adsorption of Antimonate by Gibbsite: Reversibility and the Competitive Effects of Phosphate and Sulfate. Soil Sci. Soc. Am. J. 2016, 80, 1197–1207. [Google Scholar] [CrossRef] [Green Version]
- Essington, M.; Stewart, M.; Vergeer, K. Adsorption of Antimonate by Kaolinite. Soil Sci. Soc. Am. J. 2017, 81, 514–525. [Google Scholar] [CrossRef]
- Essington, M.E.; Stewart, M.A. Adsorption of Antimonate, Sulfate, and Phosphate by Goethite: Reversibility and Competitive Effects. Soil Sci. Soc. Am. J. 2018, 82, 803–814. [Google Scholar] [CrossRef]
- Rakshit, S.; Sarkar, D.; Punamiya, P.; Datta, R. Antimony sorption at gibbsite-water interface. Chemosphere 2011, 84, 480–483. [Google Scholar] [CrossRef] [PubMed]
log Kint † | |||
---|---|---|---|
Reaction | 0.001 | 0.01 | 0.1 |
Model I | |||
≡FeOH0 + H+ + Sb(OH)6− = ≡FeOSb(OH)40 + 2H2O | 8.56(0.10) | 8.49(0.10) | 8.42(0.10) |
≡FeOH0 + H+ + Sb(OH)6− = ≡FeOH2+−Sb(OH)6− | 10.80(0.14) | 11.31(0.14) | 11.41(0.09) |
VY ‡ | 0.053 | 0.227 | 1.219 |
Model II | |||
≡FeOH0 + Sb(OH)6− = ≡FeOSb(OH)5− + H2O | 2.20(0.10) | 2.42(0.53) | 2.76(0.10) |
≡FeOH0 + H+ + Sb(OH)6− = ≡FeOH2+−Sb(OH)6− | 10.66(0.17) | 11.11(0.27) | NC § |
VY | 0.142 | 0.161 | 0.703 |
Model III | |||
2≡FeOH0 + H+ + Sb(OH)6− = (≡FeO)2Sb(OH)30 | 13.56(0.20) | 14.19(0.20) | 13.95(0.24) |
≡FeOH0 + H+ + Sb(OH)6− = ≡FeOH2+−Sb(OH)6− | 10.52(0.27) | 10.72(1.0) | 10.32(1.9) |
VY | 0.067 | 0.410 | 0.410 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mierzwa, J.; Mumbi, R.; Ray, A.; Rakshit, S.; Essington, M.E.; Sarkar, D. Antimony (V) Adsorption at the Hematite–Water Interface: A Macroscopic and In Situ ATR-FTIR Study. Soil Syst. 2021, 5, 20. https://doi.org/10.3390/soilsystems5010020
Mierzwa J, Mumbi R, Ray A, Rakshit S, Essington ME, Sarkar D. Antimony (V) Adsorption at the Hematite–Water Interface: A Macroscopic and In Situ ATR-FTIR Study. Soil Systems. 2021; 5(1):20. https://doi.org/10.3390/soilsystems5010020
Chicago/Turabian StyleMierzwa, Jerzy, Rose Mumbi, Avedananda Ray, Sudipta Rakshit, Michael E. Essington, and Dibyendu Sarkar. 2021. "Antimony (V) Adsorption at the Hematite–Water Interface: A Macroscopic and In Situ ATR-FTIR Study" Soil Systems 5, no. 1: 20. https://doi.org/10.3390/soilsystems5010020
APA StyleMierzwa, J., Mumbi, R., Ray, A., Rakshit, S., Essington, M. E., & Sarkar, D. (2021). Antimony (V) Adsorption at the Hematite–Water Interface: A Macroscopic and In Situ ATR-FTIR Study. Soil Systems, 5(1), 20. https://doi.org/10.3390/soilsystems5010020