Nitrogen Dynamics and Sweet Potato Production under Indigenous Soil Moisture Conservation Practices in the Leeward Kohala Field System, Hawai’i Island
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Experimentation
2.1.1. Site Description
2.1.2. Treatment Design
2.1.3. Soil Moisture and Temperature
2.1.4. Nitrogen Dynamics In Situ
2.1.5. Sweet Potato Assessment
2.2. Incubation Experiment
2.3. Data Analysis
3. Results
3.1. Soil Temperature
3.2. Soil Moisture
3.3. Soil Nitrogen Dynamics
3.4. Sweet Potato Growth and Development
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ladefoged, T.N.; Kirch, P.V.; Gon, S.M., III; Chadwick, O.A.; Hartshorn, A.S.; Vitousek, P.M. Opportunities and constraints for intensive agriculture in the Hawaiian archipelago prior to European contact. J. Archaeol. Sci. 2009, 36, 2374–2383. [Google Scholar] [CrossRef]
- Kagawa, A.K.; Vitousek, P.M. The Ahupua ‘a of Puanui: A Resource for Understanding Hawaiian Rain-Fed Agriculture1. Pac. Sci. 2012, 66, 161–172. [Google Scholar] [CrossRef]
- Marshall, K.; Koseff, C.; Roberts, A.L.; Lindsey, A.; Kagawa-Viviani, A.K.; Lincoln, N.K.; Vitousek, P.M. Restoring people and productivity to Puanui: Challenges and opportunities in the restoration of an intensive rain-fed Hawaiian field system. Ecol. Soc. 2017, 22, 23. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Ladefoged, T.N.; Kirch, P.V.; Hartshorn, A.S.; Graves, M.W.; Hotchkiss, S.C.; Tuljapurkar, S.; Chadwick, O.A. Soils, agriculture, and society in precontact Hawaii. Science 2004, 304, 1665–1669. [Google Scholar] [CrossRef] [PubMed]
- Kagawa-Viviani, A.K.; Lincoln, N.K.; Quintus, S.; Lucas, M.P.; Giambelluca, T.W. Spatial patterns of seasonal crop production suggest coordination within and across dryland agricultural systems of Hawaii Island. Ecol. Soc. 2018, 23, 20. [Google Scholar] [CrossRef]
- Lee, C.T.; Tuljapurkar, S.; Vitousek, P.M. Risky business: Temporal and spatial variation in preindustrial dryland agriculture. Hum. Ecol. 2006, 34, 739–763. [Google Scholar] [CrossRef] [Green Version]
- Coil, J.; Kirch, P.V. An Ipomoean landscape: Archaeology and the sweet potato in Kahikinui, Maui, Hawaiian Islands. Sweet Potato Pac. Reappraisal Ocean. Monogr. 2005, 56, 71–84. [Google Scholar]
- Yen, D.E. The Sweet Potato and Oceania; An Essay in Ethnobotany; Bishop Museum Press: Honolulu, HI, USA, 1974. [Google Scholar]
- Lincoln, N.K.; Vitousek, P. Indigenous Polynesian agriculture in Hawaii. In Oxford Research Encyclopedia of Environmental Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- DiNapoli, R.J.; Morrison, A.E. A spatiotemporal model of risk and uncertainty for Hawaiian dryland agriculture and its implications for ahupua’a community formation. J. Archaeol. Sci. Rep. 2017, 15, 109–119. [Google Scholar] [CrossRef]
- Kamakau, S.M. The Works of the People of Old: Na Hana a ka Po’e Kahiko; Barrère, D.B., Ed.; Bishop Museum Press: Honolulu, HI, USA, 1976. [Google Scholar]
- Malo, D. Hawaiian Antiquities (Moolelo Hawaii); Hawaiian Gazette Company: Honolulu, HI, USA, 1903; Volume 2. [Google Scholar]
- Winter, K.; Lincoln, N.; Berkes, F.; Alegado, R.; Kurashima, N.; Frank, K.; Pascua, P.; Rii, Y.; Reppun, F.; Knapp, I. Ecomimicry in Indigenous resource management: Optimizing ecosystem services to achieve resource abundance, with examples from Hawaii. Ecol. Soc. 2020, 25, 26. [Google Scholar] [CrossRef]
- Handy, E.S.C.; Handy, E.G.; Pukui, M.K. Native Planters in Old Hawaii: Their Life, Lore, and Environment; Bishop Museum Press: Honolulu, HI, USA, 1972; Volume 233. [Google Scholar]
- Lincoln, N.K.; Kagawa-Viviani, A.; Marshall, K.; Vitousek, P.M. Observations of Sugarcane and Knowledge Specificity in Traditional Hawaiian Cropping Systems; Nova Science Publishers: Hauppauge, NY, USA, 2017. [Google Scholar]
- Chadwick, O.A.; Gavenda, R.T.; Kelly, E.F.; Ziegler, K.; Olson, C.G.; Elliott, W.C.; Hendricks, D.M. The impact of climate on the biogeochemical functioning of volcanic soils. Chem. Geol. 2003, 202, 195–223. [Google Scholar] [CrossRef]
- Lincoln, N.K.; Vitousek, P. Nitrogen fixation during decomposition of sugarcane (Saccharum officinarum) is an important contribution to nutrient supply in traditional dryland agricultural systems of Hawai’i. Int. J. Agric. Sustain. 2016, 14, 214–230. [Google Scholar] [CrossRef]
- Moreno-Vivián, C.; Cabello, P.; Matínez-Luque, M.; Blasco, R.; Castillo, F. Prokaryotic nitrate reduction: Molecular properties and functional distinction among bacterial nitrate reductases. J. Bacteriol. 1999, 181, 6573–6584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cook, F.J.; Orchard, V.A. Relationships between soil respiration and soil moisture. Soil Biol. Biochem. 2008, 40, 1013–1018. [Google Scholar] [CrossRef]
- Dessureault-Rompré, J.; Zebarth, B.J.; Georgallas, A.; Burton, D.L.; Grant, C.A. A biophysical water function to predict the response of soil nitrogen mineralization to soil water content. Geoderma 2011, 167, 214–227. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, Z.H.E.; Wan, S. Predominant role of water in regulating soil and microbial respiration and their responses to climate change in a semiarid grassland. Glob. Change Biol. 2009, 15, 184–195. [Google Scholar] [CrossRef]
- Deenik, J. Nitrogen Mineralization Potential in Important Agricultural Soils of Hawai’i; University of Hawaii: Honolulu, HI, USA, 2006. [Google Scholar]
- Dessureault-Rompré, J.; Zebarth, B.J.; Georgallas, A.; Burton, D.L.; Grant, C.A.; Drury, C.F. Temperature dependence of soil nitrogen mineralization rate: Comparison of mathematical models, reference temperatures and origin of the soils. Geoderma 2010, 157, 97–108. [Google Scholar] [CrossRef]
- Lincoln, N.K.; Rossen, J.; Vitousek, P.; Kahoonei, J.; Shapiro, D.; Kalawe, K.; Pai, M.; Marshall, K.; Meheula, K. Restoration of ‘āina malo ‘o on Hawai‘i Island: Expanding Biocultural Relationships. Sustainability 2018, 10, 3985. [Google Scholar] [CrossRef] [Green Version]
- Giambelluca, T.W.; Chen, Q.; Frazier, A.G.; Price, J.P.; Chen, Y.-L.; Chu, P.-S.; Eischeid, J.K.; Delparte, D.M. Online rainfall atlas of Hawai‘i. Bull. Am. Meteorol. Soc. 2013, 94, 313–316. [Google Scholar] [CrossRef]
- Valenzuela, H.; Fukuda, S.; Arakaki, A. Sweetpotato Production Guides for Hawai’i; University of Hawaii: Honolulu, HI, USA, 1994. [Google Scholar]
- Wickham, H. Elegant graphics for data analysis. Media 2009, 35, 10–1007. [Google Scholar]
- Trapletti, A.; Hornik, K.; LeBaron, B. Tseries: Time Series Analysis and Computational Finance. R Package Version 0.10-47. 2019. Available online: https://cran.r-project.org/web/packages/tseries/index.html (accessed on 8 November 2021).
- Constantin, R.J.; Hernandez, T.P.; Jones, L.G. Effects of Irrigation and Nitrogen Fertilization on Quality of Sweet Potatoes; World Vegetable Center: Tainan City, Taiwan, 1974. [Google Scholar]
- Ghuman, B.S.; Lal, R. Growth and plant-water relations of sweet potato (Ipomea batata) as affected by soil moisture regimes. Plant Soil 1983, 70, 95–106. [Google Scholar] [CrossRef]
- Saraswati, P. Physiological and Growth Responses of Selected Sweet Potato (Ipomoea batatas (L.) Lam.) Cultivars to Water Stress. Ph.D. Thesis, James Cook University, Townsville, Australia, 2007. [Google Scholar]
- Ravi, S.; D’Odorico, P.; Over, T.M.; Zobeck, T.M. On the effect of air humidity on soil susceptibility to wind erosion: The case of air-dry soils. Geophys. Res. Lett. 2004, 31, 1–4. [Google Scholar] [CrossRef]
- Freeman, C.; Ostle, N.; Kang, H. An enzymic’latch’on a global carbon store. Nature 2001, 409, 149. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Hall, S.J. Elevated moisture stimulates carbon loss from mineral soils by releasing protected organic matter. Nat. Commun. 2017, 8, 1774. [Google Scholar] [CrossRef] [PubMed]
- Linn, D.M.; Doran, J.W. Effect of water-filled pore space on carbon dioxide and nitrous oxide production in tilled and nontilled soils. Soil Sci. Soc. Am. J. 1984, 48, 1267–1272. [Google Scholar] [CrossRef] [Green Version]
- Burke, I.C.; Lauenroth, W.K.; Parton, W.J. Regional and temporal variation in net primary production and nitrogen mineralization in grasslands. Ecology 1997, 78, 1330–1340. [Google Scholar] [CrossRef]
- Parton, W.J.; Schimel, D.S.; Cole, C.V.; Ojima, D.S. Analysis of factors controlling soil organic matter levels in Great Plains grasslands. Soil Sci. Soc. Am. J. 1987, 51, 1173–1179. [Google Scholar] [CrossRef]
- Lei, L.; McDonald, L.M. Soil moisture and temperature effects on nitrogen mineralization in a high tunnel farming system. Commun. Soil Sci. Plant Anal. 2019, 50, 2140–2150. [Google Scholar] [CrossRef]
- Hu, W.; Tian, S.; Di, Q.; Liu, J.; Zhang, S. Nitrogen mineralization simulation dynamic in tobacco soil. J. Soil Sci. Plant Nutr. 2018, 18, 448–465. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.J.; Smith, C.J.; Chen, D. Predicting soil nitrogen mineralization dynamics with a modified double exponential model. Soil Sci. Soc. Am. J. 2004, 68, 1256–1265. [Google Scholar] [CrossRef]
- Van Donk, S.J.; Tollner, E.W. Apparent thermal conductivity of mulch materials exposed to forced convection. Trans. ASAE 2000, 43, 1117. [Google Scholar] [CrossRef]
- Zimbelman, J.R. The role of porosity in thermal inertia variations on basaltic lavas. Icarus 1986, 68, 366–369. [Google Scholar] [CrossRef]
- Jayalakshmy, M.S.; Philip, J. Thermophysical properties of plant leaves and their influence on the environment temperature. Int. J. Thermophys. 2010, 31, 2295–2304. [Google Scholar] [CrossRef]
- Jury, W.A.; Nielsen, D.R. Nitrate transport and leaching mechanisms. In Developments in Agricultural and Managed Forest Ecology; Elsevier: Amsterdam, The Netherlands, 1989; Volume 21, pp. 139–157. [Google Scholar]
- Brady, N.C.; Weil, R.R.; Weil, R.R. The Nature and Properties of Soils; Prentice Hall: Upper Saddle River, NJ, USA, 2008; Volume 13. [Google Scholar]
- Vitousek, P.M.; Chadwick, O.A. Pedogenic thresholds and soil process domains in basalt-derived soils. Ecosystems 2013, 16, 1379–1395. [Google Scholar] [CrossRef] [Green Version]
- Vitousek, P.M.; Chadwick, O.A.; Hotchkiss, S.C.; Ladefoged, T.N.; Stevenson, C.M. Farming the rock: A biogeochemical perspective on intensive agriculture in Polynesia. J. Pac. Archaeol. 2014, 5, 51–61. [Google Scholar]
- Von Sperber, C.; Chadwick, O.A.; Casciotti, K.L.; Peay, K.G.; Francis, C.A.; Kim, A.E.; Vitousek, P.M. Controls of nitrogen cycling evaluated along a well-characterized climate gradient. Ecology 2017, 98, 1117–1129. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fernandes, A.M.; Assunção, N.S.; Ribeiro, N.P.; Gazola, B.; da Silva, R.M. Nutrient uptake and removal by sweet potato fertilized with green manure and nitrogen on sandy soil. Rev. Bras. Ciênc. Solo 2020, 44, 1–25. [Google Scholar] [CrossRef]
- Nedunchezhiyan, M.; Gangadharan, B.; Susantha, K. Sweet Potato Agronomy. Fruit Veg. Cereal Sci. Biotechnol. 2012, 6, 1–10. [Google Scholar]
- Ravi, V.; Saravanan, R. Physiology of Sweetpotato. Fruit Veg. Cereal Sci. Biotechnol. 2012, 6, 17–29. [Google Scholar]
- Meyers, S.L.; Arancibia, R.A.; Shankle, M.W.; Main, J.; Gajanayake, B.; Reddy, K.R. Sweet Potato Storage Root Initiation; Extension Service; Mississippi State University: Starkville, MS, USA, 2014. [Google Scholar]
- Smith, T.P.; Villordon, A.O. Nitrogen Management in Louisiana Sweet Potatoes; Lousiana State Univeristy Agricultural Center: Baton Rouge, LA, USA, 2009. [Google Scholar]
- Spangenberg, J.E.; Schweizer, M.; Zufferey, V. Shifts in carbon and nitrogen stable isotope composition and epicuticular lipids in leaves reflect early water-stress in vineyards. Sci. Total Environ. 2020, 739, 140343. [Google Scholar] [CrossRef] [PubMed]
- Brugnoli, E.; Hubick, K.T.; von Caemmerer, S.; Wong, S.C.; Farquhar, G.D. Correlation between the carbon isotope discrimination in leaf starch and sugars of C3 plants and the ratio of intercellular and atmospheric partial pressures of carbon dioxide. Plant Physiol. 1988, 88, 1418–1424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cernusak, L.A.; Ubierna, N.; Winter, K.; Holtum, J.A.; Marshall, J.D.; Farquhar, G.D. Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol. 2013, 200, 950–965. [Google Scholar] [CrossRef] [PubMed]
- Farquhar, G.D.; Ehleringer, J.R.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Annu. Rev. Plant Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Robinson, D.; Handley, L.L.; Scrimgeour, C.M.; Gordon, D.C.; Forster, B.P.; Ellis, R.P. Using stable isotope natural abundances (δ 15 N and δ 13 C) to integrate the stress responses of wild barley (Hordeum spontaneum C. Koch.) genotypes. J. Exp. Bot. 2000, 51, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Ngailo, S.; Shimelis, H.; Sibiya, J.; Mtunda, K.; Mashilo, J. Genotype-by-environment interaction of newly-developed sweet potato genotypes for storage root yield, yield-related traits and resistance to sweet potato virus disease. Heliyon 2019, 5, e01448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Management Treatment | Mode of Application |
---|---|
Bare Soil | No ground cover |
Bare Soil with irrigation | No ground cover and manual irrigation administered weekly to meet optimal weekly rainfall for sweet potato production |
Rock Mulch | 100% ground cover of rock to a depth of ~10 cm (Figure 2a) |
Sugarcane Leaf Mulch | 100% ground cover using ~3 kg non-senesced leaves (Figure 2b) |
Rock/Cane Mulch | Sugarcane leaf mulch treatment, covered with Rock Mulch treatment |
Treatments | |||||
Soil Moisture (m3/m3) | Control | Irrigation | Rock Mulch | Sugarcane | Rock-Cane |
Continuous | 0.190 e | 0.262 a | 0.218 c | 0.207 d | 0.250 b |
Fortnight | 0.139 b | 0.185 a | 0.171 a | 0.116 b | 0.174 a |
Soil Temperature (°C) | |||||
Mean | 25.0 a | 24.3 b | 23.2 e | 24.0 c | 23.6 d |
Maximum | 35.5 | 31.3 | 28.6 | 27.6 | 25.0 |
Soil-Air Lag Time (h) | 1.5 | 5.0 | 5.5 | 4.0 | 4.0 |
Soil Nitrogen (ppm) | |||||
NO3ss | 18.45 a | 5.36 b | 16.99 a | 17.90 a | 18.48 a |
NH4ss | 7.03 a | 1.63 b | 2.33 b | 5.53 a | 3.61 b |
NO3ix | 14.01 b | 71.67 a | 73.83 a | 12.98 b | 103.94 a |
NH4ix | 6.76 | 8.33 | 11.18 | 8.24 | 10.81 |
Soil Total C and N | |||||
Nitrogen (%) | 0.98 | 0.92 | 1.02 | 1.03 | 1.04 |
Carbon (%) | 10.35 | 9.81 | 10.87 | 10.93 | 11.03 |
Sweet Potato Biomass (z-score) | |||||
Above Ground | −0.17 b | 0.96 a | 0.12 ab | −0.42 b | −0.21 b |
Pencil Tuber | −0.15 ab | 0.78 a | 0.30 ab | −0.71 b | −0.06 ab |
Storage Tubers | 0.16 | −0.05 | −0.05 | −0.03 | 0.11 |
Plant Nitrogen | |||||
Foliar N (%) | 1.63 | 1.75 | 1.73 | 1.82 | 1.72 |
Total Plant N (mg/m2) | 273.3 | 500.0 | 298.3 | 165.4 | 232.0 |
Inorganic N balance (mg/m2) | 3.7 | 19.2 | 20.3 | 3.2 | 27.5 |
Plant Physiology | |||||
SPAD | 50.3 a | 41.1 b | 47.7 a | 47.3 ab | 49.1 a |
δ13C (‰) | −27.41 | −27.26 | −27.55 | −27.18 | −28.06 |
δ15N (‰) | 4.28 | 5.69 | 4.35 | 4.94 | 5.34 |
NO3-N | NH4-N | Inorganic N | ||
Moisture | 10 | 0.34 c | 0.20 a | 0.55 a |
30 | 0.41 b | 0.02 b | 0.43 b | |
40 | 0.47 a | 0.00 b | 0.47 ab | |
Temperature | 20 | 0.25 c | 0.04 a | 0.30 c |
26 | 0.30 b | 0.04 a | 0.30 c | |
30 | 0.45 a | 0.08 a | 0.53 a | |
Site | 1 | 0.78 a | 0.07 a | 0.85 a |
2 | 0.06 c | 0.00 a | 0.06 c | |
3 | 0.16 b | 0.09 a | 0.24 b |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sirabis, W.C.L.; Kantar, M.B.; Radovich, T.; Lincoln, N.K. Nitrogen Dynamics and Sweet Potato Production under Indigenous Soil Moisture Conservation Practices in the Leeward Kohala Field System, Hawai’i Island. Soil Syst. 2022, 6, 16. https://doi.org/10.3390/soilsystems6010016
Sirabis WCL, Kantar MB, Radovich T, Lincoln NK. Nitrogen Dynamics and Sweet Potato Production under Indigenous Soil Moisture Conservation Practices in the Leeward Kohala Field System, Hawai’i Island. Soil Systems. 2022; 6(1):16. https://doi.org/10.3390/soilsystems6010016
Chicago/Turabian StyleSirabis, William C. L., Michael B. Kantar, Theodore Radovich, and Noa K. Lincoln. 2022. "Nitrogen Dynamics and Sweet Potato Production under Indigenous Soil Moisture Conservation Practices in the Leeward Kohala Field System, Hawai’i Island" Soil Systems 6, no. 1: 16. https://doi.org/10.3390/soilsystems6010016
APA StyleSirabis, W. C. L., Kantar, M. B., Radovich, T., & Lincoln, N. K. (2022). Nitrogen Dynamics and Sweet Potato Production under Indigenous Soil Moisture Conservation Practices in the Leeward Kohala Field System, Hawai’i Island. Soil Systems, 6(1), 16. https://doi.org/10.3390/soilsystems6010016