Managing Sands of the Lower Mekong Basin to Limit Land Degradation: A Review of Properties and Limitations for Crop and Forage Production
Abstract
:1. Introduction
2. Distribution of Sands in the LMB
2.1. Extent and Distribution of Sand
2.2. Geology
2.3. Regional- and District-Scale Soil Resource Mapping
3. Limitations for Agricultural Production on Sands in Cambodia and Southern Laos
3.1. Rainfall
3.2. Cropping Seasons
4. Lowland Sands: Chemical and Physical Characteristics and Degradation Risks
4.1. Nutrient Deficiency and Depletion
4.2. Effect of Hydrology and Water Balance on Physical and Chemical Characteristics of Soils
4.3. Land Suitability
5. Upland Sands: Physical and Chemical Characteristics and Degradation Risks
5.1. Soil Types
5.2. Acidity and Acidification
5.3. Water Availability
5.4. Erosion
5.5. Land Suitability
6. Management Options for Improving Productivity and Avoiding Degradation of Sands
6.1. Crop Management and Nutrition
6.2. Maintaining Organic Matter Levels
6.3. Clay Amelioration
6.4. Land Use Change
7. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Phompilla, C.; Lewis, M.; Ostendorf, B.; Clarke, K. Forest cover changes in Lao tropical forests: Physical and socio-economic factors are the most important drivers. Land 2017, 6, 23. [Google Scholar] [CrossRef]
- Liao, C.; Jung, S.; Brown, D.G.; Agrawal, A. Spatial patterns of large-scale land transactions and their potential socio-environmental outcomes in Cambodia, Ethiopia, Liberia, and Peru. Land Degrad. Dev. 2020, 31, 1241–1251. [Google Scholar] [CrossRef]
- Bell, R.W.; Seng, V.; Schoknecht, N.; Hin, S.; Vance, W.; White, P.F. Land Capability Classification for Non-Rice Crops in Soils of the Sandy Terrain of Tram Kak District, Takeo Province. Report for ACIAR SMCN/2001/051. 2007. CARDI Soil and Water Science Technical Note No. 9. Available online: https://researchrepository.murdoch.edu.au/id/eprint/15627/1/9LandCapability-Takeo-Final1.pdf (accessed on 20 January 2022).
- Seng, V.; Bell, R.W.; Hin, S.; Schoknecht, N.; Vance, W.; White, P.F. Soil factors affecting crop suitability for upland crops in Cambodia. Cambodian J. Agric. 2009, 9, 24–37. [Google Scholar]
- Philp, J.N.M.; Vance, W.; Bell, R.W.; Ty, C.; Boyd, D.; Phimphachanhvongsod, V.; Denton, M.D. Forage options to sustainably intensify smallholder farming systems on tropical sandy soils. A review. Agron. Sustain. Dev. 2019, 39, 1–19. [Google Scholar] [CrossRef]
- Vial, L.K.; Molesworth, A.; Lefroy, R.D.B. Balancing rice and non-rice crops: Managing the risks from soil constraints in Mainland Southeast Asian rice systems. Field Crops Res. 2020, 246, 107677. [Google Scholar] [CrossRef]
- Seng, V.; Bell, R.W.; White, P.F.; Schoknecht, N.; Hin, S.; Vance, W. Sandy soils of Cambodia. In Management of Tropical Sandy Soils for Sustainable Development, Proceedings of the International Conference on the Management of Tropical Sandy Soils, Khon Kaen, Thailand, 27 November–2 December 2005; FAO: Bangkok, Thailand, 2005. [Google Scholar]
- Bell, R.W.; Seng, V. Rainfed lowland rice-growing soils of Cambodia, Laos, and Northeast Thailand. In Water in Agriculture, Proceedings of a CARDI International Conference on Research on Water in Agricultural Production in Asia for the 21st Century Phnom Penh, Cambodia, 25–28 November 2003; Seng, V., Craswell, E., Fukai, S., Fischer, K., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 2004; pp. 161–173. [Google Scholar]
- Nachtergaele, M.; Biancalani, P.R.; Lynden, G.V.; Velthuizen, H.V.; Global Land Degradation Information System (GLADIS) Beta version. An Information database for Land Degradation Assessment at Global Level. 2010. Available online: https://www.fao.org/sustainable-forest-management/toolbox/tools/tool-detail/en/c/411197/ (accessed on 20 January 2022).
- Yagi, K.; Agus, F.; Arao, T.; Aulakh, M.S.; Bai, Z.; Carating, R.; Jung, K.; Kadano, A.; Kawahigashi, M.; Lee, S.H.; et al. Regional assessment of soil changes in Asia. In Status of the World’s Soil Resources (SWSR)—Main Report; Food and Agriculture Organization of the United Nations: Rome, Italy, 2015; pp. 287–329. [Google Scholar]
- Ministry of Agriculture, Forestry and Fisheries (MAFF). Annual Report for Agriculture, Forestry and Fisheries 2017–2018 and Direction 2018–2019. In Proceedings of the MAFF Conference, Phnom Penh, Cambodia, 30 April 2018. 113p. [Google Scholar]
- White, P.F.; Oberthür, T.; Pheav, S. The Soils Used for Rice Production in Cambodia: A Manual for Their Recognition and Management; International Rice Research Institute: Manila, Philippines, 1997; 71p. [Google Scholar]
- SSLCC. Soil Physical and Chemical Properties Analysis of Laos PDR; Soil Survey and Land Classification Center (SLCC): Vientiane, Laos, 1996. [Google Scholar]
- Oberthür, T.; Dobermann, A.; White, P.F. The rice soils of Cambodia. II. Statistical discrimination of soil properties by the Cambodian Agronomic Soil Classification system (CASC). Soil Use Manag. 2000, 16, 20–26. [Google Scholar] [CrossRef]
- White, P.F.; Dobermann, A.; Oberthür, T.; Ros, C. The rice soils of Cambodia. I. Soil classification for agronomists using the Cambodian Agronomic Soil Classification system. Soil Use Manag. 2000, 16, 12–19. [Google Scholar] [CrossRef]
- Seng, V.; Ros, C.; Bell, R.W.; White, P.F.; Hin, S. Nutrient requirements for lowland rice in Cambodia. In Increased Lowland Rice Production in the Mekong Region; Fukai, S., Basnayake, J., Eds.; Australia Centre for International Agricultural Research: Canberra, Australia, 2001; pp. 170–178. [Google Scholar]
- FAOSTAT. Food and Agriculture Organisation of the United Nations. Available online: http://faostat.fao.org (accessed on 17 January 2022).
- DALRM Soil Project Working Group. Development of soil resources in Cambodia (Draft): World reference base for soil resources 2014. In RDA AFACI Project: Development of Harmonized Digital Soil Information Systems and Soil Resources Atlas for Sustainable Land Management in Cambodia; Department of Agricultural Land Resources Management (DALRM), General Directorate of Agriculture, Ministry of Agriculture, Forestry and Fisheries: Phnom Penh, Cambodia, 2015. [Google Scholar]
- Mekong River Commission. Land Resource Inventory for Agricultural Development (Basinwide) Project. Part III Soil Database Final Report June 2002; Mekong River Commission: Phnom Penh, Cambodia, 2002. [Google Scholar]
- Oberthür, T.; Ros, C.; White, P.F. Soil Map of the Main Rice Growing Area of Cambodia; Cambodia–IRRI–Australia Project: Phnom Penh, Cambodia, 2000. [Google Scholar]
- Buol, S.W.; Sanchez, P.A.; Cate, P.A., Jr.; Granger, M.A. Soil fertility capability classification. In Soil Management in Tropical America; Bornemiza, E., Alvarado, A., Eds.; North Carolina State University: Raleigh, NC, USA, 1973; pp. 126–141. [Google Scholar]
- Linquist, B.; Sengxua, P.; Whitbread, A.; Schiller, J.; Lathvilayvong, P. Evaluating nutrient deficiencies and management strategies in lowland rice in Lao PDR. In Rainfed Lowland Rice: Advances in Nutrient Management Research; Ladha, J.K., Wade, L.J., Dobermann, A., Reichardt, W., Kirk, G.J.D., Piggin, C., Eds.; IRRI: Manila, Philippines, 1998; pp. 59–73. [Google Scholar]
- Food and Agriculture Organization for the United Nations. World Reference Base for Soil Resources; Food and Agriculture Organization for the United Nations: Rome, Italy, 1998. [Google Scholar]
- Lathvilayvong, P.; Schiller, J.M.; Phommasack, T. Soil limitations for rainfed lowland rice in Laos. In Breeding Strategies for Rainfed Lowland Rice in Drought Prone Environments, Proceedings of the International Workshop, Ubon Ratchathani, Thailand, 5–8 November 1996; Australian Centre for International Agricultural Research: Canberra, Australia, 1997; pp. 74–90. [Google Scholar]
- Workman, D.R. Geology of Laos, Cambodia, South Vietnam and the Eastern Part of Thailand—A Review; Institute of Geological Sciences: London, UK, 1972. [Google Scholar]
- Carter, A.; Bristow, C.S. Linking hinterland evolution and continental basin sedimentation by using detrital zircon thermochronology: A study of the Khorat Plateau Basin, eastern Thailand. Basin Res. 2003, 15, 271–285. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO). FAO-UNESCO Soil Map of the World. Revised Legend; World Soil Resources Report No 60; FAO: Rome, Italy, 1988; 119p. [Google Scholar]
- Barr, S.M.; MacDonald, A.S. Geochemistry and geochronology of late Cenozoic basalts of Southeast Asia. Geological Soc. Am. Bull. 1981, 92, 1069–1142. [Google Scholar] [CrossRef]
- Japan International Cooperation Agency and Department of Geology, Ministry of Energy and Mines. Explanatory Notes for the Geological and Mineral Resources Map of Lao People’s Democratic Republic, 1:1,000,000; Japan International Cooperation Agency: Tokyo, Japan, 2008; 14p. [Google Scholar]
- Tawornpruek, S.; Kheoruenromne, I.; Suddhiprakarn, A.; Gilkes, R.J. Microstructure and water retention of Oxisols in Thailand. Aust. J. Soil Res. 2005, 43, 973–986. [Google Scholar] [CrossRef]
- Seng, V.; White, P.F. History of land resource assessment in Cambodia—Lessons learned. In Proceedings of the Land Resource Assessment Forum, CARDI, Phnom Penh, Cambodia, 23–26 September 2004. [Google Scholar]
- Food and Agriculture Organization of the United Nations (FAO). FAO-UNESCO Soil Map of the World 1:5 000 000; Southeast Asia; The United Nations Educational, Scientific and Cultural Organization: Paris, France; FAO: Rome, Italy, 1979; Volume IX, 179p. [Google Scholar]
- Nyi, T.; Philip, V.; Buang, M.I.; Ra, K.; Irianta, B.; Sengxua, P.; Sipaseuth, N.; Harrah, A.A.; Jantan, B.B.; Salguero, S.M.; et al. Regional Guidelines on Soil and Nutrient Management; ASEAN Sectoral Working Group on Crops (ASWGC) on behalf of ASEAN and by the German Federal Ministry for Economic Cooperation and Development (BMZ): Bangkok, Thailand, 2017. [Google Scholar]
- Field, D.; Odgers, N. Soil Capability and Land Suitability, Food Security in the Northern Uplands; Discussion Paper 1; Monash University: Melbourne, Australia, 2016. [Google Scholar]
- Hin, S.; Schoknecht, N.; Vance, W.; Bell, R.W.; Seng, V.; Soil and Landscapes of Sandy Terrain of Tram Kak District, Takeo Province, Kingdom of Cambodia. CARDI Soil and Water Science Technical Note No. 7. 2006. Available online: https://researchrepository.murdoch.edu.au/id/eprint/15625/1/7Soil_and_Landsc_TramK-Final.pdf (accessed on 20 January 2022).
- Hin, S.; Bell, R.; Seng, V.; Schoknecht, N.; Vance, W. Soil and Landscapes of Basaltic Terrain in Ponhea Krek District, Kampong Cham Province, Kingdom of Cambodia; CARDI Technical Note No. 14; Soil and Water Science Division: Phnom Penh, Cambodia, 2007. [Google Scholar]
- Hin, S.; Bell, R.W.; Seng, V.; Schoknecht, N.; Vance, W.H. Soil and Landscapes of Sandy Terrain in Kong Pisei District, Kampong Speu Province, Kingdom of Cambodia; Technical Note No. 15; Soil and Water Science Division: Phnom Penh, Cambodia, 2007. [Google Scholar]
- Sanyo Consultants, Inc. Feasibility Report on the Stung Chinit Multipurpose Development Project in the Khmer Republic; Overseas Technical Cooperation Agency: Tokyo, Japan, 1971. [Google Scholar]
- Veng Seng (DALRM, Phnom Penh, Cambodia). Available online: https://vengsengvts.com/ (accessed on 20 January 2022).
- Hin, S.; Bell, R.W.; Newsome, D.; Seng, V. Understanding variability in texture and acidity among sandy soils in Cambodia. In Proceedings of the 19th World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; Gilkes, R.J., Prakongkep, N., Eds.; Soil Science Australia: Brisbane, Australia, 2010; pp. 236–239. [Google Scholar]
- Phengsavanh, P.; Phimphachanhvongsod, V. Environmental Adaptation of Forages in Lao PDR. Available online: http://wanihadi.lecture.ub.ac.id/files/2012/07/UTOMO-EROSION-FORAGE3.pdf#page=41 (accessed on 20 January 2022).
- Schiller, J.M.; Linquist, B.; Douangsila, K.; Inthapanya, P.; Douang Boupha, B.; Inthavong, S.; Sengxua, P. Constraints to Rice Production Systems in Laos. Available online: https://ageconsearch.umn.edu/record/135370/?ln=en (accessed on 20 January 2022).
- Nesbitt, H.J. Topography, climate, and rice production. In Rice Production in Cambodia; Nesbitt, H.J., Ed.; International Rice Research Institute: Manila, Philippines, 1997; pp. 15–19. [Google Scholar]
- Tsujimoto, K.; Ohta, T.; Aida, K.; Tamakawa, K.; So Im, M. Diurnal pattern of rainfall in Cambodia: Its regional characteristics and local circulation. Prog. Earth Planet. Sci. 2018, 5, 39. [Google Scholar] [CrossRef]
- Inthavong, T.; Tsubo, M.; Fukai, S. A water balance model for characterization of length of growing period and water stress development for rainfed lowland rice. Field Crops Res. 2011, 121, 291–301. [Google Scholar] [CrossRef]
- Vance, W.; Bell, R.W. Rainfall Analysis for the Provinces of Battambang, Kampong Cham and Takeo, The Kingdom of Cambodia. 2004. Report for ACIAR Project LWR1/2001/051. Available online: https://researchrepository.murdoch.edu.au/id/eprint/18459/ (accessed on 20 January 2022).
- Food and Agriculture Organization of the United Nations. CLIMWAT. Available online: http://www.fao.org/land-water/databases-and-software/climwat-for-cropwat/en/ (accessed on 14 February 2018).
- WorldClim-Global Climate Data Version 2. Available online: http://worldclim.org/version2 (accessed on 14 February 2018).
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Fukai, S.; Ouk, M. Increased productivity of rainfed lowland rice cropping systems of the Mekong region. Crop Pasture Sci. 2012, 63, 944–973. [Google Scholar] [CrossRef]
- UNESCO. Policy Briefs on Internal Migration in Southeast Asia. 2018. UNESCO, Bangkok. Available online: https://bangkok.unesco.org/content/policy-briefs-internal-migration-southeast-asia (accessed on 20 January 2022).
- Ouk, M.; CARDI, Phnom Penh, Cambodia; Seng, V.; DALRM, Phnom Penh, Cambodia. Personal communication, 2018.
- Lor, B.; White, P.F.; Phaloeun, C. Nutrient Requirements for the Growth of Rice on Cambodian Soils. Available online: https://researchrepository.murdoch.edu.au/id/eprint/13626/ (accessed on 20 January 2022).
- Kong, K.; Hin, S.; Seng, V.; Ismail AMVergera, G.; Choi, I.-R.; Ehara, H.; Kato, Y. Potential yield and nutrient requirements of direct-seeded, dry-season rice in Cambodia. Exp. Agric. 2020, 56, 255–264. [Google Scholar] [CrossRef]
- Kong, K.; Hin, S.; Seng, V.; Ismail, A.M.; Vergara, G.; Choi, I.; Ehara, H.; Kato, Y. Importance of phosphorus and potassium in soil-specific nutrient management for wet-season rice in Cambodia. Exp. Agric. 2020, 56, 204–217. [Google Scholar] [CrossRef]
- Lefroy, R.D.B.; Konboon, Y. Studying nutrient flows to assess sustainability and identify areas of nutrient depletion and imbalance: An example for rainfed rice systems in Northeast Thailand. In Rainfed Lowland Rice: Advances in Nutrient Management Research; Ladha, J.K., Wade, L.J., Dobermann, A., Reichardt, W., Kirk, G.J.D., Piggin, C., Eds.; IRRI: Manila, Philippines, 1998; pp. 77–93. [Google Scholar]
- Pheav, S.; Bell, R.W.; White, P.F.; Kirk, G.J.D. Phosphorus mass balances for successive crops of fertilised rainfed rice on a sandy lowland soil. Nutr. Cycl. Agroecosyst. 2005, 73, 277–292. [Google Scholar] [CrossRef]
- Sharma, R.; Bell, R.W.; Wong, M.T.F. Phosphorus forms in soil solution and leachate of contrasting profiles and its implications for P mobility. J. Soil Sediment 2015, 15, 854–862. [Google Scholar] [CrossRef]
- Kirk, G.J.D. The Biogeochemistry of Submerged Soils; John Wiley and Sons: Chichester, UK, 2004. [Google Scholar]
- Seng, V.; Bell, R.W.; Willett, I.R. Effect of lime and flooding on phosphorus availability and rice growth on two acidic lowland soils. Commun. Soil Sci. Plant Anal. 2006, 37, 313–336. [Google Scholar] [CrossRef]
- Hoang, T.T.H.; Do, D.T.; Do, T.N.; Mann, S.; Bell, R.W. Partial potassium balance under irrigated peanut crops on sands in a tropical monsoonal climate. Nutr. Cycl. Agroecosyst. 2019, 114, 71–83. [Google Scholar] [CrossRef]
- Haefele, S.M.; Nilvong, S.; Sengxua, P.; Phengsouvanna, V.; Vongsouthi, S.; Linquist, B. Soil fertility management in the lowland environments. In Rice in Laos; Schiller, J.M., Chanphengxay, M.B., Linquist, B., Appa Rao, S., Eds.; IRRI: Los Banos, Philippines, 2006; pp. 369–390. [Google Scholar]
- Bell, R.W.; Rerkasem, B.; Keerati-Kasikorn, P.; Phetchawee, S.; Hiranburana, N.; Ratanarat, S.; Pongsakul, P.; Loneragan, J.F. Mineral Nutrition of Food Legumes in Thailand with Particular Reference to Micronutrients; ACIAR Technical Report 19; ACIAR: Canberra, Australia, 1990; 52p.
- Wade, L.J.; Fukai, S.; Samson, B.K.; Ali, A.; Mazid, M.A. Rainfed lowland rice: Physical environment and cultivar requirements. Field Crops Res. 1999, 64, 3–12. [Google Scholar] [CrossRef]
- Fukai, S.; Basnayake, J.; Cooper, M. Modelling water availability, crop growth, and yield of rainfed lowland rice genotypes in northeast Thailand. In Characterising and Understanding Rainfed Environments; Tuong, T.P., Kam, S.P., Wade, L., Pandey, S., Bouman, B.A.M., Hardy, B., Eds.; Philippines International Rice Research Institute: Los Banos, Philippines, 2000; pp. 111–130. [Google Scholar]
- Homma, K. Quantifying the Toposequential Distribution of Environmental Resources and Its Relationship with Rice Productivity in Rainfed Lowland in Northeast Thailand. Ph.D. Thesis, Kyoto University, Kyoto, Japan, 2002. [Google Scholar]
- Oberthur, T.; Kam, S.P. Perception, understanding, and mapping of soil variability in the rainfed lowlands of northeast Thailand. In Characterising and Understanding Rainfed Environments; Tuong, T.P., Kam, S.P., Wade, L., Pandey, S., Bouman, B.A.M., Hardy, B., Eds.; International Rice Research Institute: Los Banos, Philippines, 2000; pp. 75–95. [Google Scholar]
- Fukai, S.; Rajatsasereekul, S.; Boonjung, H.; Skulkhu, E. Simulation modelling to quantify the effect of drought for rainfed lowland rice in Northeast Thailand. In Fragile Lives in Fragile Ecosystems, Proceedings of the International Rice Research Conference, Los Baños, Philippines, 13–17 February 1995; International Rice Research Institute: Los Banos, Philippines, 1995; pp. 657–674. [Google Scholar]
- Seng, V.; Bell, R.W.; Nesbitt, H.J.; Willett, I.R. Response of Rainfed Rice to Inorganic and Organic Fertilizers in Southeast Cambodia. Available online: https://researchrepository.murdoch.edu.au/id/eprint/18005/ (accessed on 20 January 2022).
- Seng, V.; Bell, R.W.; Willett, I.R.; Nesbitt, H.J. Phosphorus nutrition of rice in relation to flooding and temporary loss of saturation in two lowland soils in south-east Cambodia. Plant Soil 1999, 207, 121–132. [Google Scholar] [CrossRef]
- Bell, R.W.; Ros, C.; Seng, V. Improving the efficiency and sustainability of fertiliser use in drought- and submergence-prone rainfed lowlands in Southeast Asia. In Increased Lowland Rice Production in the Mekong Region; Fukai, S., Basnayake, J., Eds.; Australian Centre for International Agricultural Research: Canberra, Australia, 2001; pp. 155–169. [Google Scholar]
- Seng, V. Edaphic Factors Limiting Rice Responses to Applied Inorganic Fertilizers in Rainfed Lowland Soils in Southeast Cambodia. Ph.D. Thesis, Murdoch University, Perth, Australia, 2000. [Google Scholar]
- Seng, V.; Bell, R.W.; Willett, I.R. Amelioration of growth reduction of lowland rice caused by a temporary loss of soil water saturation. Plant Soil 2004, 265, 1–16. [Google Scholar] [CrossRef]
- Fukai, S.; Inthapanya, P.; Blamey, F.P.C.; Khunthasavon, S. Genotypic variation in rice grown in low fertility soils and drought-prone, rainfed lowland environments. Field Crops Res. 1999, 64, 121–130. [Google Scholar] [CrossRef]
- Insalud, N.; Bell, R.W.; Colmer, T.D.; Rerkasem, B. Morphological and physiological responses of rice (Oryza sativa L.) to limited phosphorus supply in aerated and stagnant solution culture. Ann. Bot. 2006, 98, 995–1004. [Google Scholar] [CrossRef]
- Bruand, A.; Hartmann, C.; Ratana-Anupap, S.; Sindhusen, P.; Poss, R.; Hardy, M. Composition, fabric, and porosity of an Arenic Haplustalf of Northeast Thailand Soil. Sci. Soc. Am. J. 2004, 68, 185–193. [Google Scholar]
- Hartmann, C.; Poss, R.; Janeau, J.L.; Bourdon, E.; Lesturgez, G.; Ratana-Anupap, S. Use of the granular material theory to interpret structural changes in a sandy soil. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002. [Google Scholar]
- Lesturgez, G.; Poss, R.; Hartmann, C.; Bourdon Enoble, A.D.; Ratana-Anupap, S. Roots of Stylosanthes hamata create macropores in the compact layer of a sandy soil. Plant Soil 2004, 260, 101–109. [Google Scholar] [CrossRef]
- Bell, W.R.; Chon, N.Q.; Cong, P.T. Soil Types, Properties and Limiting Factors in South-Central Coastal Vietnam. Available online: https://researchrepository.murdoch.edu.au/id/eprint/28484/ (accessed on 20 January 2022).
- Bell, R.W.; Seng, V.; Schoknecht, N.; Vance, W.; Hin, S. Assessing land suitability for crop diversification in Cambodia. In Proceedings of the Land Resource Assessment Forum, CARDI, Phnom Penh, Cambodia, 23–26 September 2004. [Google Scholar]
- Hin, S. Acid Sands of South-Eastern Cambodia: Their Origin, Properties and Management for Upland Crops. Ph.D. Thesis, Murdoch University, Perth, Australia, 2018. [Google Scholar]
- Scanlan, C.A.; Holmes, K.W.; Bell, R.W. Chapter 10. Sand and gravel subsoils. In Subsoil Constraints for Crop Production; Oliveira, T.S., Bell, R.W., Eds.; Springer Nature: Chennai, India, 2022. [Google Scholar]
- Bell, R.W.; Oliveira, T.S. Chapter 16. Subsoil constraints for crop production: Recent advances, new technologies and priorities for further research. In Subsoil Constraints for Crop Production; Oliveira, T.S., Bell, R.W., Eds.; Springer Nature: Chennai, India, 2022. [Google Scholar]
- Dierolf, T.; Fairhurst, T.; Mutert, E. Soil Fertility Kit. A Toolkit for Acid, Upland Soil Fertility Management in Southeast Asia; GTZ-GmbH: Bonn, Germany; FAO: Rome, Italy; PT Jasa Katom: Bukittinggi, Indonesia; PPI/PPIC: San Francisco, CA, USA, 2001. [Google Scholar]
- Noble, A.D.; Gillman, G.P.; Ruaysoongnern, S. A cation exchange index for assessing degradation of acid soil by further acidification under permanent agriculture in the tropics. Eur. J. Soil Sci. 2000, 51, 233–243. [Google Scholar] [CrossRef]
- Eastick, R.; Seng, V.; Ouk, M.; Chea, S.; Som, B.; Chea, V.; Mitchell, J.; Fukai, S. Development of sustainable legume production in rice-based farming systems in Cambodia. In Food Security from Sustainable Agriculture, Proceedings of the 15th Australian Agronomy Conference, Australian Society of Agronomy, Lincoln, New Zealand, 15–18 November 2010; The Regional Institute: Gosford, Australia, 2010. [Google Scholar]
- Ministry of Agriculture, Forestry and Fisheries. Land Degradation Neutrality—Target Setting Program; National Report on LDN Target Setting Program; Ministry of Agriculture, Forestry and Fisheries: Phnom Penh, Cambodia, 2018; 35p. [Google Scholar]
- Chaplot, V.; Rumpel, C.; Valentin, C. Water erosion impact on soil and carbon redistributions within uplands of Mekong River. Glob. Biogeochem. Cycles 2005, 19, 1–13. [Google Scholar] [CrossRef]
- Sanchez, P.A.; Palm, C.A.; Buol, S.W. Fertility capability soil classification: A tool to help assess soil quality in the tropics. Geoderma 2003, 114, 157–185. [Google Scholar] [CrossRef]
- Sys, C.; van Ranst, E.; Debaveye, J.; Beernaert, F. Land Evaluation. Part III: Crop Requirements; Agricultural Publications No. 7; General Administration for Development Cooperation: Brussels, Belgium, 1993. [Google Scholar]
- Philp, J.M.N.; Cornish, P.; Kim, S.H.T.; Bell, R.W.; Vance, W.; Lim, V.; Li, X.; Kamphayae, S.; Denton, M.D. Insufficient potassium and sulfur supply threatens the productivity of smallholder perennial forage grasses on tropical sandy soils. Plant Soil 2021, 461, 617–630. [Google Scholar] [CrossRef]
- Hoang, M.T.; Nhan, D.T.; Nguyen, T.T.; Hoang, V.; Hoang, T.T.H.; Chen, W.; Thinh, T.; Dinh, Q.L.; Mann, S.; Bell, R.W. Diagnosing Multiple Nutrient Deficiencies that Limit Crop Growth and Yields on Sands in South Central Coast of Vietnam. Available online: https://researchrepository.murdoch.edu.au/id/eprint/28485/ (accessed on 20 January 2022).
- Hoang, T.T.H.; Do, D.T.; Nguyen, H.N.; Nguyen, V.B.; Mann, S.; Bell, R.W. Sulfur management strategies to improve partial sulfur balance with irrigated peanut production on deep sands. Arch. Agron. Soil Sci. 2021, 67, 1465–1478. [Google Scholar] [CrossRef]
- Chua, M.F.; Youbee, L.; Oudthachit, S.; Khanthavong, P.; Veneklaas, E.J.; Malik, A.I. Potassium fertilization is required to sustain cassava yield and soil fertility. Agronomy 2020, 10, 1103. [Google Scholar] [CrossRef]
- Ragland, J.; Boonpukdee, L. Fertilizer responses in northeast Thailand. I. Literature review and rationale. Thai J. Soils Fertil. 1987, 9, 65–79. [Google Scholar]
- Sengxua, P.; Linquist, B. On-farm residue effects on rainfed rice productivity in Laos. In Proceedings of the 17th World Congress of Soil Science, Bangkok, Thailand, 14–21 August 2002; pp. 1–8. [Google Scholar]
- Montgomery, S.C.; Tighe, M.K.; Guppy, C.; Wright, G.; Flavel, R.J.; Phan, S.; Im, S.; Martin, R.J. Yield responses of maize and sunflower to mulch under no-till farming conditions in Northwest Cambodia. Asian J. Crop Sci. 2016, 8, 71–86. [Google Scholar] [CrossRef]
- Merkuria, W.; Noble, A.; McCartney, M.; Hoanh, C.T.; Douangsavanh, S.; Langan, S. Soil management for raising crop water productivity in rainfed production systems in Lao PDR. Arch. Agron. Soil Sci. 2016, 62, 53–68. [Google Scholar] [CrossRef]
- Schiller, J.M.; Lathvilayvong, P.; Phommasack, T. Current use of and requirements for sustainable food production in the Lao PDR. In Nutrient Management for Sustainable Crop Production in Asia; Johnston, A.E., Syers, J.K., Eds.; CAB International: Wallingford, UK, 1998; pp. 321–332. [Google Scholar]
- Lienhard, P.; Lestrelin, G.; Phanthanivong, I.; Kiewvongphachan, X.; Leudphanane, B.; Lairez, J.; Quoc, H.T.; Castella, J.-C. Opportunities and constraints for adoption of maize-legume mixed cropping systems in Laos. Int. J. Agric. Sustain. 2020, 18, 427–443. [Google Scholar] [CrossRef]
- Hok, L.; de Moraes Sa, J.C.; Boulakia, S.; Reyes, M.; Leng, V.; Kong, R.; Tivet, F.; Briedis, C.; Hartman, D.; Ferreira, L.A.; et al. Short-term conservation agriculture and biomass-C input impacts on soil C dynamics in a savanna ecosystem in Cambodia. Agric. Ecosyst. Environ. 2015, 214, 54–67. [Google Scholar] [CrossRef]
- Lienhard, P.; Tivet, F.; Chabanne, A.; Dequiedt, S.; Lelièvre, M.; Sayphoummie, S.; Leudphanane, B.; Prévost-Bouré, N.C.; Séguy, L.; Maron, P.-A.; et al. No-till and cover crops shift soil microbial abundance and diversity in Laos tropical grasslands. Agron. Sustain. Dev. 2013, 33, 375–384. [Google Scholar] [CrossRef] [Green Version]
- Noble, A.D.; Suzuki, S. Improving the productivity of degraded cropping systems in Northeast Thailand: Improving farmer practices with innovative approaches. In Proceedings of the International Conference on Management of Paddy and Water Environment for Sustainable Rice Production, Kyoto, Japan, 7–8 September 2005. [Google Scholar]
- Noble, A.D.; Ruaysoongnern, S.; Penning de Vries, F.W.T.; Webb, M. Enhancing the agronomic productivity of degraded soils in Northeast Thailand through clay-based interventions. In Proceeding of the International Conference on Research on Water in Agricultural Production in Asia for the 21st Century, CARDI, Phnom Penh, Cambodia, 25–28 November 2003. [Google Scholar]
- Ruaysoongnern, S. (Khon Kaen University, Khon Kaen, Thailand). Personal Communication, 2007.
- Hall, D.J.M.; Jones, H.R.; Crabtree, W.L.; Daniels, T.L. Claying and deep ripping can increase crop yields and profits on water repellent sands with marginal fertility in southern Western Australia. Aust. J. Soil Res. 2010, 48, 178–187. [Google Scholar] [CrossRef]
- Hall, D.; Bell, R.; Sochacki, S.; Davies, S. Long Term Effects of Claying on Non-Wetting and Plant Nutrition. Available online: https://grdc.com.au/resources-and-publications/grdc-update-papers/tab-content/grdc-update-papers/2015/02/long-term-effects-of-claying-on-nonwetting-and-plant-nutrition (accessed on 20 January 2022).
- Mekuria, W.; Noble, A.; Sengtaheuanghoung, O.; Hoanh, C.T.; Bossio, D.; Sipaseuth, N.; McCartney, M.; Langan, S. Organic and clay-based soil amendments increase maize yield, total nutrient uptake, and soil properties in Lao PDR. Agroecol. Sustain. Food Syst. 2014, 38, 939–961. [Google Scholar] [CrossRef]
- Sengxua, P.; Bouahom, B.; Sihathep, V.; Thiravong, K.; Wade, L.; Kato, Y.; Samson, B. Agricultural intensification for food security in rainfed rice-based systems of southern Lao PDR. In A Policy Dialogue on Rice Futures: Rice-Based Farming Systems Research in the Mekong Region, Proceedings of the ACIAR No. 142, Phnom Penh, Cambodia, 7–9 May 2014; Australian Centre for International Agricultural Research: Canberra, Australia, 2014; 158p. [Google Scholar]
- Inthavong, T.; Tsubo, M.; Fukai, S. Soil clay content, rainfall, and toposequence positions determining spatial variation in field water availability as estimated by a water balance model for rainfed lowland rice. Crop Pasture Sci. 2012, 63, 529–538. [Google Scholar] [CrossRef]
- Eswaran, H.; Lal, R.; Reich, P.F. Land Degradation: An overview. Available online: https://www.scirp.org/(S(oyulxb452alnt1aej1nfow45))/reference/ReferencesPapers.aspx?ReferenceID=1702278 (accessed on 20 January 2022).
- Chaplot, V.; Bouahom, B.; Valentin, C. Soil organic carbon stocks in Laos: Spatial variations and controlling factors. Glob. Change Biol. 2009, 16, 1380–1393. [Google Scholar] [CrossRef]
Property | Deep Sands Cambodia | Sand over Clay Cambodia | Sands S. Laos | Loamy Sands S. Laos |
---|---|---|---|---|
Sand (g kg−1) | 730 | 500 | 890 | 820 |
Silt (g kg−1) | 220 | 370 | 66 | 122 |
Clay (g kg−1) | 50 | 130 | 44 | 58 |
pH (1:1 H2O) | 5.6 | 4.0 | 5.5 | 5.4 |
Organic C (g kg−1) | 4.7 | 2.9 | 6.0 | 7.3 |
Total N (g kg−1) | 0.5 | 0.3 | 0.5 | 0.6 |
Exchangeable K (cmol kg−1) | 0.04 | 0.08 | 0.10 | 0.10 |
Exchangeable Na (cmol kg−1) | 0.05 | 0.55 | 0.12 | 0.17 |
Exchangeable Ca (cmol kg−1) | 0.61 | 1.2 | 0.79 | 1.13 |
Cation-exchange capacity (cmol kg−1) | 1.45 | 3.71 | 1.61 | 2.25 |
Olsen-extractable P (mg kg−1) | 1.3 | 0.4 | 6.5 | 8.3 |
Depth (cm) | Description |
---|---|
0–20 | Pinkish grey (7.5YR 6/2 moist), dark reddish grey (5YR 4/2 dry) fine sand; no mottles; very friable dry consistence, non-sticky, non-plastic; weak, fine, granular structure; common roots, fine; no coarse fragments; few, fine, low porosity, vughs void; clear, smooth boundary. |
20–45 | Light reddish brown (5YR 6/3 moist) fine sand; no mottles; very friable moderately moist consistence, non-sticky, non-plastic; weak, fine, granular structure; few roots, fine; no coarse fragments; very few, fine, very low porosity, vughs void; clear, wavy boundary. |
45–65 | Strong brown (7.5YR 5/6 moist) loamy sand; very few very fine reddish brown (2.5YR 5/4 moist) redox mottles; firm moderately moist consistence, non-sticky, non-plastic; moderate, medium, subangular blocky structure; no roots; very few, fine, very low porosity, vughs void; gradual, wavy boundary. |
65–95 | Yellowish red (5YR 5/8 moist) sandy clay loam; red (2.5YR 5/6 moist) redox mottles; friable moist consistence, slightly sticky, slightly plastic; massive structure; no roots; very few, fine, very low porosity, vughs void; gradual, smooth boundary. |
95–160 | Light reddish brown (2.5YR 7/4 moist) sandy clay loam; many coarse red (2.5YR 5/6 moist) redox mottles; friable moist consistence, slightly sticky, slightly plastic; massive structure; no roots; very few, fine and very fine, very low porosity, vughs void. |
Lower | Middle | Upper | |
---|---|---|---|
Total dry matter (t ha−1) | 8.4 ± 2.4 | 7.2 ± 2.3 | 4.1 ± 2.4 |
Yield (t ha−1) | 2.6 ± 0.6 | 2.5 ± 0.9 | 1.1 ± 1.0 |
Flooded days | 88 ± 3 3 | 66 ± 29 | 7 ± 15 |
Organic C (g kg−1) | 13.1 ± 4.9 | 6.7 ± 2.4 | 3.9 ± 2.2 |
Clay (g kg−1) | 26 ± 13.3 | 10 ± 12.0 | 3 ± 0.9 |
Soil Group | Parent Material | Profile | Main Constraints | Opportunities |
---|---|---|---|---|
Prey Khmer | Old alluvial/colluvial from sandstone, granitic detritus | Sandy to 40–100 cm | NPKS deficiency, S, Fe toxicity, low water-holding capacity, leaching, transplanting difficulties as sand settles, coarse sandy phase | Alleviate subsoil compaction, apply fertilizer in small doses, deep-rooted cultivars, direct seeding, clay layer at depth, use high-tannin green manures that break down slowly, N placement, timing, depth |
Prateah Lang | Old alluvial/colluvial from sandstone and other mixed detritus | Sandy to 10–25 cm on clay subsoil | NPKS (Mg, B) deficiency, S and Fe toxicity, low water-holding capacity, leaching, hard setting, shallow phase, ironstone, transplanting difficulties as sand settles | Upland crops on loamy phase, drainage, direct seeding, post-rice crops, supplementary irrigation, split fertilizer, deeper cultivation, use high-tannin green manures that break down slowly, N placement at depth |
Site | Depth | Total N | Olsen P | KCl40 S | DTPA Cu | DTPA Zn | DTPA Mn | Hot CaCl2 B |
---|---|---|---|---|---|---|---|---|
(cm) | (g kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | (mg kg−1) | |
6 | 0–12 | 0.05 | 7 | 1.5 | 0.24 | 0.38 | 30.7 | 0.3 |
12–60 | <0.2 | 4 | <1 | 0.27 | 0.18 | 5.46 | 0.3 | |
60–100 | <0.2 | <1 | <1 | 0.32 | 0.15 | 1.81 | 0.3 | |
100–120 | <0.2 | <1 | <1 | 0.27 | 0.17 | 1.55 | 0.3 | |
4 | 0–12 | <0.2 | 14 | 3.3 | 0.51 | 0.42 | 27.9 | 0.2 |
12–30 | <0.2 | 4 | 8.9 | 0.6 | 0.51 | 24.1 | 0.3 | |
30–70 | <0.2 | 4 | 3.0 | 0.5 | 0.12 | 7.49 | 0.2 | |
70–110 | <0.2 | 1 | 4.3 | 0.64 | 0.19 | 2.32 | 0.4 |
Soil Type | Depth | Phase | pH | Exch. Al | ECEC | Al Saturation |
---|---|---|---|---|---|---|
(cm) | CaCl2 | (cmol kg−1) | (cmol kg−1) | (%) | ||
Prey Khmer | 0–6 | 4.3 | 0.14 | 0.45 | 31 | |
(Site 5) | 6–20 | 4.3 | 0.29 | 0.56 | 52 | |
20–60 | 4.5 | 0.32 | 0.65 | 49 | ||
60–85 | 4.1 | 3.24 | 5.6 | 58 | ||
85–100 | 6.4 | 0 | 10.7 | 0 | ||
Prey Khmer | 0–12 | fine sandy | 4.5 | 0.28 | 1.83 | 15 |
(Site 6) | 12–60 | 4.2 | 1.57 | 1.81 | 87 | |
60–100 | 4.1 | 1.4 | 1.6 | 88 | ||
100–120 | 4.2 | 1.32 | 1.48 | 89 | ||
Prateah Lang | 0–12 | loamy subsoil | 4.2 | 0.4 | 1.6 | 26 |
(Site 4) | 12–30 | 4.2 | 0.48 | 1.7 | 29 | |
30–70 | 5.7 | 0 | 2.8 | 0 | ||
70–110 | 8.2 | 0 | 5.6 | 0 |
Texture | Topsoil | Subsoil | ||
---|---|---|---|---|
Clay (g kg−1) | PAWC (mm in 20 cm) | Clay | PAWC (mm in 80 cm) | |
Clay | 440 | - | nr | 104 |
Clay loam | 250–330 | 35 | 82 | |
Loam | 160–180 | 26 | 97 | |
Sandy loam | 90–120 | 17 | 63 | |
Loamy sand | 60–70 | 11 | 45 | |
Sand | 40 | 9 | 37 |
Land Qualities | Prey Khmer Sand (Fine Sand Phase) | Prey Khmer Sand (Medium Sand Phase) | Prateah Lang (Clay Subsoil Phase) | Prateah Lang (Loamy Subsoil Phase) | ||||
---|---|---|---|---|---|---|---|---|
Values | Capability | Values | Capability | Values | Capability | Values | Capability | |
Soil workability | Good, fair | Very high | Good, fair | Very high | Good–poor | Fair | Good–poor | Very high–fair |
Surface condition | Soft, firm | Very high | Soft, firm | Very high | Hardsetting | Low | Hardsetting | Low |
Surface soil structure decline susceptibility | Moderate | High | Moderate | High | High | Fair | High | Fair |
pH(CaCl2) (0–20 cm) | 4.3–4.5 | Fair | 4.6–5 or 4.3–4.5 | High–fair | 4.6–5 | High | From 4.6–5 to <4.3 | High–low |
pH (CaCl2) (20–50 cm) | <4.3 | Low | 4.6–5 or 4.3–4.5 | High–fair | 4.3–4.5 | Fair | From 5–8 to 4.3–4.5 | Very high–fair |
Nutrient availability | High leaching, low P retention | Fair | High leaching, low P retention | Fair | Moderate leaching | High | Moderate leaching | High |
Waterlogging | Very low | Very high | Nil, very low | Very high | Moderate | Fair | Moderate–high | Fair–low |
Inundation | Low | Very high | Nil, low | Very high | >50 cm | Very high | Moderate | High |
Soil–water storage (SW) (mm m−1) | 35–50 | High | 35–50 | Fair | High | Low | Low | |
Rooting depth | >50 cm | Very high | >50 cm | Very high | Moderate–High | Fair–Low | >50 cm | Very high |
Water erosion risk | Moderate–high | High–fair | Moderate | High | Very low | Very high | Low | Very high |
P export | High | Fair | High | Fair | Low–Moderate | High | Low–moderate | Very high–high |
Overall land capability | Subsoil acidity | Low | High leaching, low SW, acidity | Fair | Hardsetting, waterlogging, inundation | Low | Hardsetting, waterlogging, acidity, low SW | Low |
Soil Group | EWS 2004 | EWS 2005 | MWS 2004 | MWS 2005 | Mean |
---|---|---|---|---|---|
Peanut | |||||
Prey Khmer | 2.50 | 0.28 | 1.59 | 2.04 | 1.67 |
Prateah Lang | 0 | 1.13 | 1.28 | 1.72 | 1.03 |
Mean of all soils | 1.44 | 1.85 | 1.84 | 2.25 | 1.85 |
Mung bean | |||||
Prey Khmer | 1.76 | 0.65 | 0.3 | 1.03 | 0.93 |
Prateah Lang | 0 | 0 | 0 | 0 | 0 |
Mean of all soils | 0.6 | 0.22 | 0.56 | 0.71 | 0.52 |
Maize | |||||
Prey Khmer | 1.5 | 1.13 | 1.14 | 1.40 | 1.29 |
Prateah Lang | 0 | 0 | 0.78 | 0 | 0.2 |
Mean of all soils | 1.88 | 0.86 | 2.13 | 1.31 | 1.55 |
Soybean | |||||
Prey Khmer | 1.03 | 0.26 | 0.35 | 1.23 | 0.78 |
Prateah Lang | 0 | 0 | 0.90 | 0.53 | 0.72 |
Mean of all soils | 0.35 | 0.2 | 1.43 | 1.20 | 1.31 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bell, R.W.; Seng, V.; Vance, W.H.; Philp, J.N.M.; Hin, S.; Touch, V.; Denton, M.D. Managing Sands of the Lower Mekong Basin to Limit Land Degradation: A Review of Properties and Limitations for Crop and Forage Production. Soil Syst. 2022, 6, 58. https://doi.org/10.3390/soilsystems6030058
Bell RW, Seng V, Vance WH, Philp JNM, Hin S, Touch V, Denton MD. Managing Sands of the Lower Mekong Basin to Limit Land Degradation: A Review of Properties and Limitations for Crop and Forage Production. Soil Systems. 2022; 6(3):58. https://doi.org/10.3390/soilsystems6030058
Chicago/Turabian StyleBell, Richard W., Vang Seng, Wendy H. Vance, Joshua N. M. Philp, Sarith Hin, Veasna Touch, and Matthew D. Denton. 2022. "Managing Sands of the Lower Mekong Basin to Limit Land Degradation: A Review of Properties and Limitations for Crop and Forage Production" Soil Systems 6, no. 3: 58. https://doi.org/10.3390/soilsystems6030058
APA StyleBell, R. W., Seng, V., Vance, W. H., Philp, J. N. M., Hin, S., Touch, V., & Denton, M. D. (2022). Managing Sands of the Lower Mekong Basin to Limit Land Degradation: A Review of Properties and Limitations for Crop and Forage Production. Soil Systems, 6(3), 58. https://doi.org/10.3390/soilsystems6030058