Reclamation of Salt-Affected Land: A Review
Abstract
:1. Overview of Soil Salinity Problem
2. Saline-Sodic Soil Reclamation Techniques
2.1. Reducing Salinity by Leaching
2.1.1. Addition of Organic Amendments as Ameliorant
2.1.2. Soil Texture and Leaching Capacity
2.1.3. Addition of Chemical Amendments
2.1.4. Soil Ripping
2.2. Halophytes for Phytoremediation
- Improvement of soil aggregation stability and soil hydraulic properties;
- Deeper reclamation zone compared with other reclamation methods (i.e., gypsum application);
- Improvement of chemical and physical properties of the soils;
- Financial benefits due to a reduction in application of chemical amendments or leaching [103].
2.3. Salt Scraping
3. Identification of the Most Suitable Strategy for Salt-Affected Soil Reclamation
3.1. Models as Predictive Tools to Identify Effective Reclamation Practices
3.2. Model Verification to Identify Effective Reclamation Practices
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
References
- Debez, A.; Huchzermeyer, B.; Abdelly, C.; Koyro, H.W. Current challenges and future opportunities for a sustainable utilization of halophytes. In Sabkha Ecosystems; Öztürk, M., Böer, B., Barth, H.J., Clüsener-Godt, M., Khan, M.A., Breckle, S.W., Eds.; Springer: Amsterdam, The Netherlands, 2010; Volume 46, pp. 59–77. [Google Scholar]
- Szabolcs, I. Soil and salination. In Hand Book of Plant and Crop Stress; Pessarakli, M., Ed.; Marcel, Dekker: New York, NY, USA, 1994; pp. 3–11. [Google Scholar]
- Merrill, S.D.; Lang, K.J.; Doll, E.C. Contamination of soil with oilfield brine and reclamation with calcium chloride. Soil Sci. 1990, 150, 469–475. [Google Scholar] [CrossRef]
- Kharaka, Y.K.; Otton, J.K. Environmental issues related to oil and gas exploration and production—Preface. Appl. Geochem. 2007, 22, 2095–2098. [Google Scholar] [CrossRef]
- Bennett, S.J.; Barrett-Lennard, E.G.; Colmer, T.D. Salinity and waterlogging as constraints to saltland pasture production: A review. Agric. Ecosyst. Environ. 2009, 129, 349–360. [Google Scholar] [CrossRef]
- Prathapar, S.A.; Robbins, C.W.; Meyer, W.S.; Jayawardane, N.S. Models for estimating capillary rise in a heavy clay soil with a saline shallow water table. Irrig. Sci. 1992, 13, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Sharma, B.R.; Minhas, P.S. Strategies for managing saline/alkali waters for sustainable agricultural production in South Asia. Agric. Water Manag. 2005, 78, 136–151. [Google Scholar] [CrossRef]
- Rengasamy, P. World salinization with emphasis on Australia. J. Exp. Bot. 2006, 57, 1017–1023. [Google Scholar] [CrossRef] [Green Version]
- Barzegar, A.R.; Nelson, P.N.; Oades, J.M.; Rengasamy, P. Organic matter, sodicity, and clay type: Influence on soil aggregation. Soil Sci. Soc. Am. J. 1997, 61, 1131–1137. [Google Scholar] [CrossRef]
- United States Salinity Laboratory Staff. Diagnosis and Improvement of Saline and Alkali Soils; U.S. Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Tejada, M.; Garcia, C.; Gonzalez, J.L.; Hernandez, M.T. Use of organic amendment as a strategy for saline soil remediation: Influence on the physical, chemical and biological properties. Soil Biol. Biochem. 2006, 38, 1413–1421. [Google Scholar] [CrossRef]
- Shaygan, M.; Mulligan, D.; Baumgartl, T. The potential of three halophytes (Tecticornia pergranulata, Sclerolaena longicuspis and Frankenia serpyllifolia) for the rehabilitation of brine-affected soils. Land Degrad. Dev. 2018, 29, 2002–2014. [Google Scholar] [CrossRef]
- Hussain, N.; Hassan, G.; Arshadullah, M.; Mujeeb, F. Evaluation of amendments for the improvement of physical properties of sodic soil. Int. J. Agric. Biol. 2001, 3, 319–322. [Google Scholar]
- Ashby, W.C.; Beadle, N.C.W. Studies in halophytes: III. Salinity factors in the growth of Australian saltbushes. Ecology 1957, 38, 344–352. [Google Scholar] [CrossRef]
- Munns, R.; Termaat, A. Whole-plant responses to salinity. Aust. J. Plant Physiol. 1986, 13, 143–160. [Google Scholar] [CrossRef]
- Parveen, S.; Qureshi, R.H.; Aslam, M.; Nawaz, S.; Akhtar, J. Growth response of Atriplex species to salinity and hypoxia. Int. J. Agric. Biol. 2002, 4, 86–88. [Google Scholar]
- Parida, A.K.; Das, A.B. Salt tolerance and salinity effects on plants: A review. Ecotoxicol. Environ. Saf. 2005, 60, 324–349. [Google Scholar] [CrossRef]
- Collis-George, N.; Hector, J.B. Germination of seeds as influenced by matric potential and by area of contact between seed and soil water. Soil Res. 1966, 4, 145–164. [Google Scholar] [CrossRef]
- Collis-George, N.; Sands, J.E. Comparison of the effects of the physical and chemical components of soil water energy on seed germination. Aust. J. Agric. Res. 1962, 13, 575–584. [Google Scholar] [CrossRef]
- Evans, C.E.; Etherington, J.R. The effect of soil water potential on seed germination of some British plants. New Phytol. 1990, 115, 539–548. [Google Scholar] [CrossRef]
- McGinnies, W.J. Effects of moisture stress and temperature on germination of six range grasses. Agron. J. 1960, 52, 159–162. [Google Scholar] [CrossRef]
- Brenstein, L.; Hayward, H.E. Physiology of salt tolerance. Annu. Rev. Plant Physiol. 1958, 9, 25–46. [Google Scholar] [CrossRef]
- Flowers, T.J.; Troke, P.F.; Yeo, A.R. The mechanism of salt tolerance in halophytes. Annu. Rev. Plant Physiol. 1977, 28, 89–121. [Google Scholar] [CrossRef]
- Greenway, H.; Munns, R. Mechanisms of salt tolerance in nonhalophytes. Annu. Rev. Plant Physiol. 1980, 31, 149–190. [Google Scholar] [CrossRef]
- Maathuis, F.J.M.; Amtmann, A. K+ nutrition and Na+ toxicity: The basis of cellular K+/Na+ ratios. Ann. Bot. 1999, 84, 123–133. [Google Scholar] [CrossRef] [Green Version]
- Sai Kachout, S.; Ben Mansoura, A.; Jaffel Hamza, K.; Leclerc, J.C.; Rejeb, M.N.; Ouerghi, Z. Leaf–water relations and ion concentrations of the halophyte Atriplex hortensis in response to salinity and water stress. Acta Physiol. Plant. 2011, 33, 335–342. [Google Scholar] [CrossRef]
- Keiffer, C.H.; Ungar, I.A. Germination and establishment of halophytes on brine-affected soils. J. Appl. Ecol. 2002, 39, 402–415. [Google Scholar] [CrossRef]
- Rengasamy, P.; Olsson, K.A. Sodicity and soil structure. Soil Res. 1991, 29, 935–952. [Google Scholar] [CrossRef]
- So, H.; Aylmore, L. How do sodic soils behave—The effects of sodicity on soil physical behavior. Soil Res. 1993, 31, 761–777. [Google Scholar] [CrossRef]
- Ben-Hur, M.; Yolcu, G.; Uysal, H.; Lado, M.; Paz, A. Soil structure changes: Aggregate size and soil texture effects on hydraulic conductivity under different saline and sodic conditions. Aust. J. Soil Res. 2009, 47, 688–696. [Google Scholar] [CrossRef]
- Shainberg, I.; Letey, J. Response of soils to sodic and saline conditions. Hilgardia 1984, 52, 1–57. [Google Scholar] [CrossRef] [Green Version]
- Shainberg, I.; Rhoades, L.D.; Prather, R.J. Effect of low electrolyte on clay dispersion and hydraulic conductivity of sodic soil. Soil Sci. Soc. Am. 1981, 45, 273–277. [Google Scholar] [CrossRef]
- Hoffman, G.J.; Shannon, M.C. Salinity. In Developments in Agricultural Engineering; Lamm, F.R., Ayars, J.E., Nakayama, F.S., Eds.; Elsevier: Amsterdam, The Netherlands, 2007; Volume 13, pp. 131–160. [Google Scholar]
- Marshall, T.J.; Holmes, J.W.; Rose, C.W. Soil Physics; Cambridge University Press: New York, NY, USA, 1996. [Google Scholar]
- Abdelhadi, Y.M.; Hussain, G. Leaching effects on some saline sodic gypsiferous soils in Saudi Arabia. Arid Soil Res. Rehabil. 1987, 1, 245–251. [Google Scholar] [CrossRef]
- Arnold, S.; Kailichova, Y.; Baumgartl, T. Germination of Acacia harpophylla (Brigalow) seeds in relation to soil water potential: Implications for rehabilitation of a threatened ecosystem. PeerJ 2014, 2, e268. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shaygan, M.; Baumgartl, T.; Arnold, S. Germination of Atriplex halimus seeds under salinity and water stress. Ecol. Eng. 2017, 102, 636–640. [Google Scholar] [CrossRef]
- Pariente, S. Soluble salts dynamics in the soil under different climatic conditions. Catena 2001, 43, 307–321. [Google Scholar] [CrossRef]
- Harker, D.; Mikalson, D. Leaching of a highly saline-sodic soil in southern Alberta: A laboratory study. Can. J. Soil Sci. 1990, 70, 509–514. [Google Scholar] [CrossRef] [Green Version]
- Shaw, R.J.; Thorburn, P.J. Prediction of leaching fraction from soil properties, irrigation water and rainfall. Irrig. Sci. 1985, 6, 73–83. [Google Scholar] [CrossRef]
- Beven, K.; Germann, P. Macropores and water flow in soils. Water Resour. Res. 1982, 18, 1311–1325. [Google Scholar] [CrossRef] [Green Version]
- Bronick, C.J.; Lal, R. Soil structure and management: A review. Geoderma 2005, 124, 3–22. [Google Scholar] [CrossRef]
- Tisdall, J.M.; Oades, J.M. Organic matter and water-stable aggregates in soils. J. Soil Sci. 1982, 33, 141–163. [Google Scholar] [CrossRef]
- Chaney, K.; Swift, R.S. The influence of organic matter on aggregate stability in some British soils. J. Soil Sci. 1984, 35, 223–230. [Google Scholar] [CrossRef]
- El-Shakweer, M.H.A.; El-Sayad, E.A.; Ewees, M.S.A. Soil and plant analysis as a guide for interpretation of the improvement efficiency of organic conditioners added to different soils in Egypt. Commun. Soil Sci. Plant Anal. 1998, 29, 2067–2088. [Google Scholar] [CrossRef]
- Hamblin, A.P.; Davies, D.B. Influence of organic matter on the physical properties of some east anglian soils of high silt content. J. Soil Sci. 1977, 28, 11–22. [Google Scholar] [CrossRef]
- Wahid, A.; Akhtar, S.; Ali, I.; Rasoul, E. Amelioration of saline-sodic soils with organic matter and their use for wheat growth. Soil Sci. Plant Anal. 1998, 29, 2307–2318. [Google Scholar] [CrossRef]
- Badia, D. Straw management effects on organic matter mineralization and salinity in semiarid agricultural soils. Arid Soil Res. Rehabil. 2000, 14, 193–203. [Google Scholar] [CrossRef]
- Hanay, A.; Buyuksonmez, F.; Kiziloglu, F.M.; Canbolat, M.Y. Reclamation of saline-sodic soils with gypsum and MSW compost. Compost. Sci. Util. 2004, 12, 175–179. [Google Scholar] [CrossRef]
- Harris, T.M.; Tapp, B.; Sublette, K.L. Remediation of oil-field brine impacted soil using a subsurface drainage system and hay. Environ. Geosci. 2005, 12, 101–113. [Google Scholar] [CrossRef]
- Mahmoodabadi, M.; Yazdanpanah, N.; Sinobas, L.R.; Pazira, E.; Neshat, A. Reclamation of calcareous saline sodic soil with different amendments (I): Redistribution of soluble cations within the soil profile. Agric. Water Manag. 2013, 120, 30–38. [Google Scholar] [CrossRef]
- Ranjbar, F.; Jalali, M. Effects of plant residues and calcite amendments on soil sodicity. J. Plant Nutr. Soil Sci. 2011, 174, 874–883. [Google Scholar] [CrossRef]
- Robbins, C.W. Sodic calcareous soil reclamation as affected by different amendments and crops. Agron. J. 1986, 78, 916–920. [Google Scholar] [CrossRef] [Green Version]
- Rahman, H.A.A.; Dahab, M.H.; Mustafa, M.A. Impact of soil amendments on intermittent evaporation, moisture distribution and salt residtribution in saline-sodic clay soil columns. Soil Sci. 1996, 161, 793–802. [Google Scholar] [CrossRef]
- Hao, X.; Chang, C. Does long-term heavy cattle manure application increase salinity of a clay loam soil in semi-arid southern Alberta? Agric. Ecosyst. Environ. 2003, 94, 89–103. [Google Scholar] [CrossRef]
- Liebhardt, W.C.; Shortall, J.G. Potassium is responsible for salinity in soils amended with poultry manure. Commun. Soil Sci. Plant Anal. 1974, 5, 385–398. [Google Scholar] [CrossRef]
- Miller, J.J.; Beasley, B.W.; Larney, F.J.; Olson, B.M. Soil salinity and sodicity after application of fresh and composted manure with straw or wood-chips. Can. J. Soil Sci. 2005, 85, 427–438. [Google Scholar] [CrossRef] [Green Version]
- Nemes, A.; Rawls, W.J.; Pachepsky, Y.A. Influence of organic matter on the estimation of saturated hydraulic conductivity. Soil Sci. Soc. Am. J. 2005, 69, 1330–1337. [Google Scholar] [CrossRef]
- Lax, A.; Diaz, E.; Castillo, V.; Albaladejo, J. Reclamation of physical and chemical properties of a salinized soil by organic amendment. Arid Soil Res. Rehabil. 1994, 8, 9–17. [Google Scholar] [CrossRef]
- Li, F.-H.; Keren, R. Calcareous sodic soil reclamation as affected by corn stalk application and incubation: A laboratory study. Pedosphere 2009, 19, 465–475. [Google Scholar] [CrossRef]
- Shaygan, M.; Reading, L.P.; Baumgartl, T. Effect of physical amendments on salt leaching characteristics for reclamation. Geoderma 2017, 292, 96–110. [Google Scholar] [CrossRef]
- Belden, S.E.; Schuman, G.E.; Depuit, E.J. Salinity and miosture responses in wood residue amended bentonite mine spoil1. Soil Sci. 1990, 150, 874–882. [Google Scholar] [CrossRef]
- Shaygan, M.; Baumgartl, T.; Arnold, S.; Reading, L.P. The effect of soil physical amendments on reclamation of a saline-sodic soil: Simulation of salt leaching using HYDRUS-1D. Soil Res. 2018, 56, 829–845. [Google Scholar] [CrossRef]
- Glinski, J.; Lipiec, J. Soil Physical Conditions and Plant Roots; CRC Press: Boca Raton, FL, USA, 1990. [Google Scholar]
- Angers, D.A.; Caron, J. Plant-induced changes in soil structure: Processes and feedbacks. Biogeochemistry 1998, 42, 55–72. [Google Scholar] [CrossRef]
- Wagner, S.; Cattle, S.R.; Scholten, T. Soil-aggregate formation as influenced by clay content and organic-matter amendment. J. Plant Nutr. Soil Sci. 2007, 170, 173–180. [Google Scholar] [CrossRef]
- Sollins, P.; Radulovich, R. Effects of soil physical structure on solute transport in a weathered tropical soil. Soil Sci. Soc. Am. J. 1988, 52, 1168–1173. [Google Scholar] [CrossRef]
- Tanton, T.W.; Rycroft, D.W.; Wilkinson, F.M. The leaching of salts from saline heavy clay soils: Factors affecting the leaching process. Soil Use Manag. 1988, 4, 133–139. [Google Scholar] [CrossRef]
- Hillel, D. Fundamentals of Soil Physics; Academic Press Inc.: New York, NY, USA, 1980; p. 413. [Google Scholar]
- Rose, C. Salinity and contaminant transport. In An Introduction to the Environmental Physics of Soil, Water and Watersheds; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Horn, R.; Taubner, H.; Wuttke, M.; Baumgartl, T. Soil physical properties related to soil structure. Soil Tillage Res. 1994, 30, 187–216. [Google Scholar] [CrossRef]
- Dexter, A.R. Amelioration of soil by natural processes. Soil Tillage Res. 1991, 20, 87–100. [Google Scholar] [CrossRef]
- Grismer, M.E. Cracks in irrigated clay soil may allow some drainage. Calif. Agric. 1992, 46, 9–11. [Google Scholar] [CrossRef]
- Bouma, J. Influence of soil macroporosity on environmental quality. In Advances in Agronomy; Donald, L.S., Ed.; Academic Press: Cambridge, MA, USA, 1991; Volume 46, pp. 1–37. [Google Scholar]
- Al-Sibai, M.; Adey, M.A.; Rose, D.A. Movement of solute through a porous medium under intermittent leaching. Eur. J. Soil Sci. 1997, 48, 711–725. [Google Scholar] [CrossRef]
- Qian, Y.L.; Koski, A.J.; Welton, R. Amending sand with isolite and zeolite under saline conditions: Leachate composition and salt deposition. HortScience 2001, 36, 717–720. [Google Scholar] [CrossRef]
- Hartmann, A.; Gräsle, W.; Horn, R. Cation exchange processes in structured soils at various hydraulic properties. Soil Tillage Res. 1998, 47, 67–72. [Google Scholar] [CrossRef]
- Ghafoor, A.; Hina, K.; Murtaza, G. Estimation of Gapon exchange coefficient for different textured soils and landforms of Punjab, Pakistan. Pak. J. Agric. Sci. 2004, 41, 25–28. [Google Scholar]
- Al-Qahatam, M.R.A. Effect of addition of sand and soil amendments to loam and brick grit media on the growth of two turfgrass species (Lolium perenne and Festuca rubra). J. Appl. Sci. 2009, 9, 2485–2489. [Google Scholar] [CrossRef] [Green Version]
- McCoy, E.L. Sand and organic amendment influences on soil physical properties related to Turf establishment. Agron. J. 1998, 90, 411–419. [Google Scholar] [CrossRef]
- Paul, J.L.; Masidon, J.H.; Waldron, L. Effects of organic and inorganic amendments on the hydraulic conductivity of three sands used for turfgrass soil. J. Sports Turf Res. Ind. 1970, 46, 22–32. [Google Scholar]
- Hamdi, H.; Youssef, S.; Abdel Samie, A.G.; Batra, F. The effect of sanding on the leaching and distribution of salts in the soils of Kharga Oasis. J. Soil Sci. United Arab. Repub. 1963, 3, 31–58. [Google Scholar]
- Ahmad, N.; Qureshi, R.H.; Qadir, M. Amelioration of calcareous saline-sodic soil by gypsum and forage plants. Land Degrad. Rehabil. 1990, 2, 277–284. [Google Scholar] [CrossRef]
- Gonçalo Filho, F.; da Silva Dias, N.; Suddarth, S.R.P.; Ferreira, J.F.; Anderson, R.G.; dos Santos Fernandes, C.; de Lira, R.B.; Neto, M.F.; Cosme, C.R. Reclaiming tropical saline-sodic soils with gypsum and cow manure. Water 2020, 12, 57. [Google Scholar] [CrossRef] [Green Version]
- Oster, J.D. Gypsum usage in irrigated agriculture: A review. Fertil. Res. 1982, 3, 73–89. [Google Scholar] [CrossRef]
- Ilyas, M.; Qureshi, R.H.; Qadir, M. Chemical changes in a saline-sodic soil after gypsum application and cropping. Soil Technol. 1997, 10, 247–260. [Google Scholar] [CrossRef]
- Ilyas, M.; Miller, R.W.; Qureshi, R.H. Hydraulic conductivity of saline-sodic soil after gypsum application and cropping. Soil Sci. Soc. Am. J. 1993, 57, 1580–1585. [Google Scholar] [CrossRef]
- Qadir, M.; Qureshi, R.H.; Ahmad, N. Reclamation of a saline sodic soils by gypsum and Leptochloa fusca. Geoderma 1996, 74, 207–217. [Google Scholar] [CrossRef]
- Zia, M.; Saifullah; Sabir, M.; Ghafoor, A.; Murtaza, G. Effectiveness of sulphuric acid and gypsum for the reclamation of a calcareous saline-sodic soil under four crop rotations. J. Agron. Crop Sci. 2007, 193, 262–269. [Google Scholar] [CrossRef]
- Oster, J.; Frenkel, H. The chemistry of the reclamation of sodic soils with gypsum and lime. Soil Sci. Soc. Am. J. 1980, 44, 41–45. [Google Scholar] [CrossRef]
- Niazi, B.; Ahmed, M.; Hussain, N.; Salim, M. Comparison of sand, gypsum and sulphuric acid to reclaim a dense saline sodic soil. Int. J. Agric. Biol. 2001, 3, 316–318. [Google Scholar]
- Sadiq, M.; Hassan, G.; Mehdi, S.M.; Hussain, N.; Jamil, M. Amelioration of saline-sodic soils with tillage implements and sulfuric acid application. Pedosphere 2007, 17, 182–190. [Google Scholar] [CrossRef]
- Amezketa, E.; Aragüés, R.; Gazol, R. Efficiency of sulfuric acid, mined gypsum, and two gypsum by-products in soil crusting prevention and sodic soil reclamation. Agron. J. 2005, 97, 983–989. [Google Scholar] [CrossRef]
- Mace, J.E.; Amrhein, C.; Oster, J.D. Comparison of gypsum and sulfuric acid for sodic soil reclamation. Arid Soil Res. Rehabil. 1999, 13, 171–188. [Google Scholar] [CrossRef]
- González, N. Management strategies to remediate sodic soils. Proc. Undergrad. Res. Exp. 2016, 78–88. [Google Scholar]
- Abdel-Fattah, M.K. Reclamation of saline-sodic soils for sustainable agriculture in Egypt. In Sustainability of Agricultural Environment in Egypt: Part II; Springer: Cham, Switzerland, 2018; pp. 69–92. [Google Scholar]
- Khalaf, M.; Sekina, I.; Moussa, M. Efficiency of different chemical amendments for reclaiming saline sodic soils in Wadi El-Natron. Egypt J. Appl. Sci. 1995, 10, 847–854. [Google Scholar]
- Bradshaw, A. Restoration of mined lands—using natural processes. Ecol. Eng. 1997, 8, 255–269. [Google Scholar] [CrossRef]
- Shaygan, M.; Reading, L.P.; Arnold, S.; Baumgartl, T. Modeling the effect of soil physical amendments on reclamation and revegetation success of a saline-sodic soil in a semi-arid environment. Arid. Land Res. Manag. 2018, 32, 379–406. [Google Scholar] [CrossRef]
- Jayawardane, N.; Chan, K. The management of soil physical properties limiting crop production in Australian sodic soils—A review. Soil Res. 1994, 32, 13–44. [Google Scholar] [CrossRef]
- Manousaki, E.; Kalogerakis, N. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res. 2011, 50, 656–660. [Google Scholar] [CrossRef]
- Glenn, E.P.; Brown, J.J.; Blumwald, E. Salt tolerance and crop potential of halophytes. Crit. Rev. Plant Sci. 1999, 18, 227–255. [Google Scholar] [CrossRef]
- Qadir, M.; Oster, J.D. Crop and irrigation management strategies for saline-sodic soils and waters aimed at environmentally sustainable agriculture. Sci. Total Environ. 2004, 323, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Batra, L.; Kumar, A.; Manna, M.C.; Chhabra, R. Microbiological and chemical amelioration of alkaline soil by growing Karnal grass and gypsum application. Exp. Agric. 1997, 33, 389–397. [Google Scholar] [CrossRef]
- Ghaly, F.M. Role of natural vegetation in improving salt-affected soil in northern Egypt. Soil Tillage Res. 2002, 64, 173–178. [Google Scholar] [CrossRef]
- Helalia, A.M.; El-Amir, S.; Abou-Zeid, S.T.; Zaghloul, K.F. Bio-reclamation of saline-sodic soil by Amshot grass in Northern Egypt. Soil Tillage Res. 1992, 22, 109–115. [Google Scholar] [CrossRef]
- Kausar, M.A.; Muhammed, S. Comparision of biological and chemical methods for reclaiming saline- sodic soils. Pak. J. Sci. Resour. 1972, 24, 252–261. [Google Scholar]
- Kelly, W.P.; Brown, S.M. Principles governing the reclamation of alkali soils. Hilgardia 1934, 8, 149–177. [Google Scholar] [CrossRef] [Green Version]
- Muhammed, S.; Ghafoor, A.; Hussain, T.; Rauf, A. Comparision of biological, physiological and chemical methods of reclaiming salt-affected soils with brackish groundwater. In Proceedings of the Second National Congress of Soil Science, Faisalabad, Pakistan, 20–22 December 1988; pp. 35–42. [Google Scholar]
- Qadir, M.; Qureshi, R.H.; Ahmad, N. Amelioration of calcareous saline- sodic soils through phytoremediation and chemical strategies. Soil Use Manag. 2002, 18, 381–385. [Google Scholar] [CrossRef]
- Singh, M.V.; Singh, S.K. Reclamation techniques for improvement of sodic soils and crop yield. Indian J. Agric. Sci. 1989, 59, 495–500. [Google Scholar]
- Flowers, T.J.; Hajibagheri, M.A.; Clipson, N.J.W. Halophytes. Q. Rev. Biol. 1986, 61, 313–337. [Google Scholar] [CrossRef]
- Khan, M.A.; Gul, B. Halophyte seed germination. In Ecophysiology of High Salinity Tolerant Plants; Springer: Cham, Switzerland, 2006; pp. 11–30. [Google Scholar]
- Webb, K.L. NaCl effects on growth and transpiration in Salicornia bigelovii a salt-marsh halophyte. Plant Soil 1966, 24, 261–268. [Google Scholar] [CrossRef]
- Al-Nasir, F. Bioreclamation of saline sodic soil in a semi arid region/Jordan. Am.-Eurasian J. Agric. Environ. Sci. 2009, 5, 701–706. [Google Scholar]
- Chaudhri, I.I.; Shah, B.H.; Naqvi, N.; Mallick, I.A. Investigations on the role of Suaeda fruticosa Forsk in the reclamation of saline and alkaline soils in West Pakistan plains. Plant Soil 1964, 21, 1–7. [Google Scholar] [CrossRef]
- Devi, S.; Rani, C.; Datta, K.S.; Bishnoi, S.K.; Mahala, S.C.; Angrish, R. Phytoremediation of soil salinity using salt hyperaccumulator plants. Indian J. Plant Physiol. 2008, 13, 347–356. [Google Scholar]
- Ke-Fu, Z. Desalinization of saline soils by Suaeda salsa. Plant Soil 1991, 135, 303–305. [Google Scholar] [CrossRef]
- Keiffer, C.H.; Ungar, I.A. The effect of competition and edaphic conditions on the establishment of halophytes on brine effected soils. Wetl. Ecol. Manag. 2001, 9, 469–481. [Google Scholar] [CrossRef]
- Qadir, M.; Oster, J.D.; Schubert, S.; Noble, A.D.; Sahrawat, K.L. Phytoremediation of sodic and saline sodic soils. In Advances in Agronomy; Donald, L.S., Ed.; Academic Press: Cambridge, MA, USA, 2007; Volume 96, pp. 197–247. [Google Scholar]
- Ravindran, K.C.; Venkatesan, K.; Balakrishnan, V.; Chellappan, K.P.; Balasubramanian, T. Restoration of saline land by halophytes for Indian soils. Soil Biol. Biochem. 2007, 39, 2661–2664. [Google Scholar] [CrossRef]
- Semple, W.S.; Dowling, P.M.; Koen, T.B. Tall wheat grass (Thinopyrum ponticum) and puccinellia (Puccinellia ciliata) may not be the answer for all saline sites: A case study from the Central Western Slopes of New South Wales. Aust. J. Agric. Res. 2008, 59, 814–823. [Google Scholar] [CrossRef]
- Shekhawat, V.P.S.; Kumar, A.; Neumann, K.-H. Bio-reclamation of secondary salinized soils using halophytes. In Biosaline Agriculture and Salinity Tolerance in Plants; Öztürk, M., Waisel, Y., Khan, M.A., Görk, G., Eds.; Birkhäuser: Basel, Switzerland, 2006; pp. 147–154. [Google Scholar] [CrossRef]
- Manousaki, E.; Kalogerakis, N. Halophytes—An emerging trend in phytoremediation. Int. J. Phytoremediat. 2011, 13, 959–969. [Google Scholar] [CrossRef]
- Rabhi, M.; Talbi, O.; Atia, A.; Abdelly, C.; Smaoui, A. Selection of a halophyte that could be used in the bioreclamation of salt-affected soils in arid and semi-arid regions. In Biosaline Agriculture and High Salinity Tolerance; Abdelly, C., Öztürk, M., Ashraf, M., Grignon, C., Eds.; Birkhäuser: Basel, Switzerland, 2008; pp. 241–246. [Google Scholar]
- Flowers, T.J.; Colmer, T.D. Salinity tolerance in halophytes. New Phytol. 2008, 179, 945–963. [Google Scholar] [CrossRef]
- Gorham, J. Mechanisms of salt tolerance of halophytes. In Halophytes and Biosaline Agriculture; Choukr-Allah, R., Malcolm, C.V., Hamdy, A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1996; p. 376. [Google Scholar]
- Le Houérou, H.N. The role of saltbushes (Atriplex spp.) in arid land rehabilitation in the Mediterranean Basin: A review. Agrofor. Syst. 1992, 18, 107–148. [Google Scholar] [CrossRef]
- Black, R.F. Effects of NaCl on the ion uptake and growth of Atriplex vesicaria heward. Aust. J. Biol. Sci. 1960, 13, 249–266. [Google Scholar] [CrossRef]
- Glenn, E.; Pfister, R.; Brown, J.J.; Thompson, T.L.; O’Leary, J. Na and K accumulation and salt tolerance of Atriplex canescens (Chenopodiaceae) genotypes. Am. J. Bot. 1996, 83, 997–1005. [Google Scholar] [CrossRef]
- Greenway, H.; Osmond, C.B. Ion relations, growth and metabolism of Atriplex at high external, electrolyte concentrations. In The Biology of Atriplex; Jones, R., Ed.; Division of Plant Industry: Canberra, Australia, 1970. [Google Scholar]
- Keyes, K.L.; Mott, J.B.; Barnes, S.S.; Jensen, D.A. Remediation of brine contaminated soil using Atriplex spp. (Chenopodiaceae). In Proceedings of the International Oil Spill Conference, Seattle, WA, USA, 7–12 March 1999; pp. 757–764. [Google Scholar]
- Osmond, C.B.; Bjorkman, O.; Anderson, D.J. Absorption of ions and nutrients. In Physiological Processes in Plant Ecology; Osmond, C.B., Bjorkman, O., Anderson, D.J., Eds.; Springer: New York, NY, USA, 1980. [Google Scholar]
- Ullah, M.; Naseemi, A.R.; Rafiq, M.K.; Razzaq, A. Correlations of Atriplex amnicola and soil properties. Int. J. Agric. Biol. 2006, 8, 394–397. [Google Scholar]
- Siyal, A.A.; Siyal, A.G.; Abro, Z.A. Salt-affected soils their identification and reclamation. Pak. J. Appl. Sci. 2002, 2, 537–540. [Google Scholar]
- Endo, A.; Kang, D.-J. Salt removal from salt-damaged agricultural land using the scraping method combined with natural rainfall in the Tohoku district, Japan. Geoderma Reg. 2015, 4, 66–72. [Google Scholar] [CrossRef]
- Tanji, K.K. Salinity in the soil environment. In Salinity: Environment-Plants-Molecules; Lauchli, A., Luttge, U., Eds.; Kluwer Academic Publishers: London, UK; Boston, MA, USA; Dordrecht, The Netherlands, 2002. [Google Scholar]
- Halwatura, D.; Lechner, A.M.; Arnold, S. Drought severity-duration-frequency curves: A foundation for risk assessment and planning tol for ecosystem establishment in post-mining landscapes. Hydrol. Earth Syst. Sci. 2015, 19, 1069–1091. [Google Scholar] [CrossRef] [Green Version]
- Duan, R.; Fedler, C.B.; Sheppard, C.D. Field study of salt balance of a land application system. Water Air Soil Pollut. 2011, 215, 43–54. [Google Scholar] [CrossRef]
- Shimojimaa, E.; Yoshioka, R.; Tamagawa, I. Salinization owing to evaporation from bare-soil surfaces and its influences on the evaporation. J. Hydrol. 1996, 178, 109–136. [Google Scholar] [CrossRef]
- Baumgartl, T.; Richards, B. Evaporation and salt transport under variable conditions. In Proceedings of the Life of Mine Conference, Maximising Rehabilitation Outcomes, Brisbane, Australia, 10–12 July 2012; pp. 179–186. [Google Scholar]
- Baumgartl, T.; Shaygan, M.; Edraki, M.; Richards, B.G. The impact of salinity on the calculation of evaporation from tailings. In Proceedings of the Enviromine, 5th international Seminar on Environmental Issues in Mining, Santiago, Chile, 8–10 November 2017; pp. 1–8. [Google Scholar]
- Breckle, S. How do halophytes overcome salinity. Biol. Salt Toler. Plants 1995, 23, 199–203. [Google Scholar]
- Choukr-Allah, R. The potential of halophytes in the development and rehabilitation of arid and semi-arid zones. In Halophytes and Biosaline Agriculture; Choukr-Allah, R., Malcolm, C.V., Hamdy, A., Eds.; Marcel Dekker, Inc.: New York, NY, USA, 1996; p. 376. [Google Scholar]
- Shaygan, M. Evaluating the Leaching of Salt-Affected Soils for the Purpose of Reclmation and Revegetation. Ph.D. Thesis, The University of Queensland, Sustainable Minerals Institute, Brisbane, Australia, 2016. [Google Scholar]
- Shaaban, M.; Abid, M.; Abou-Shanab, R. Amelioration of salt-affected soils in rice paddy system by application of organic and inorganic amendments. Plant Soil Environ. 2013, 59, 227–233. [Google Scholar] [CrossRef] [Green Version]
- Alcívar, M.; Zurita-Silva, A.; Sandoval, M.; Muñoz, C.; Schoebitz, M. Reclamation of saline–sodic soils with combined amendments: Impact on quinoa performance and biological soil quality. Sustainability 2018, 10, 3083. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, B.T.; Trinh, N.N.; Le, C.M.T.; Nguyen, T.T.; Tran, T.V.; Thai, B.V.; Le, T.V. The interactive effects of biochar and cow manure on rice growth and selected properties of salt-affected soil. Arch. Agron. Soil Sci. 2018, 64, 1744–1758. [Google Scholar] [CrossRef]
- Shaygan, M.; Baumgartl, T. Simulation of the effect of climate variability on reclmation success of brine affected soil in semi-arid environments. Sustainability 2020, 12, 371. [Google Scholar] [CrossRef] [Green Version]
- Rasouli, F.; Kiani Pouya, A.; Šimůnek, J. Modeling the effects of saline water use in wheat-cultivated lands using the UNSATCHEM model. Irrig. Sci. 2013, 31, 1009–1024. [Google Scholar] [CrossRef] [Green Version]
- Gonçalves, M.C.; Šimůnek, J.; Ramos, T.B.; Martins, J.C.; Neves, M.J.; Pires, F.P. Multicomponent solute transport in soil lysimeters irrigated with waters of different quality. Water Resour. Res. 2006, 42, W08401. [Google Scholar] [CrossRef] [Green Version]
- Ramos, T.B.; Šimůnek, J.; Gonçalves, M.C.; Martins, J.C.; Prazeres, A.; Castanheira, N.L.; Pereira, L.S. Field evaluation of a multicomponent solute transport model in soils irrigated with saline waters. J. Hydrol. 2011, 407, 129–144. [Google Scholar] [CrossRef]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The Hydrus-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.16; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2013; p. 340. [Google Scholar]
- Reading, L.P.; Baumgartl, T.; Bristow, K.L.; Lockington, D.A. Applying HYDRUS to flow in a sodic clay soil with solution composition–dependent hydraulic conductivity. Vadose Zone J. 2012, 11, vzj2011-0137. [Google Scholar] [CrossRef]
- Šimůnek, J.; van Genuchten, M.T.; Šejna, M. Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J. 2008, 7, 587–600. [Google Scholar] [CrossRef] [Green Version]
- Šimůnek, J.; Šejna, M.; Saito, H.; Sakai, M.; van Genuchten, M.T. The HYDRUS-1D Software Package for Simulating the Movement of Water, Heat, and Multiple Solutes in Variably Saturated Media, Version 4.0; HYDRUS Software; Department of Environmental Sciences, University of California Riverside: Riverside, CA, USA, 2008. [Google Scholar]
- Šimůnek, J.; Suarez, D.L. Sodic soil reclamation using multicomponent transport modeling. J. Irrig. Drain. Eng. 1997, 123, 367–376. [Google Scholar] [CrossRef]
- Hutson, J.L.; Wagenet, R. LEACHM: Leaching Estimation and Chemistry Model; a Process-Based Model of Water and Solute Movement, Transformations, Plant Uptake and Chemical Reactions in the Unsaturated Zone, Version 2; Cornell University, Center for Environmental Research: New York, NY, USA, 1989. [Google Scholar]
- GEO-SLOPE. Vadose Zone Modeling with Vadose/W 2007: An Engineering Methodology; Geo-Slope International Ltd.: Calgary, AB, Canada, 2008. [Google Scholar]
- Suarez, D.L.; Šimůnek, J. UNSATCHEM: Unsaturated water and solute transport model with equilibrium and kinetic chemistry. Soil Sci. Soc. Am. J. 1997, 61, 1633–1646. [Google Scholar] [CrossRef]
- Šimůnek, J.; Suarez, D.L. Two-dimensional transport model for variably saturated porous media with major ion chemistry. Water Resour. Res. 1994, 30, 1115–1133. [Google Scholar] [CrossRef]
- Šimůnek, J.; Suarez, D.; Šejna, M. The UNSATCHEM software package for simulating one-dimensional variably saturated water flow, heat transport, carbon dioxide production and transport, and multicomponent solute transport with major ion equilibrium and kinetic chemistry. Res. Rep 1996, 141, 186. [Google Scholar]
- Zeng, W.; Xu, C.; Wu, J.; Huang, J. Soil salt leaching under different irrigation regimes: HYDRUS-1D modelling and analysis. J. Arid. Land 2014, 6, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Suarez, D.L.; Šimůnek, J. Solute transport modeling under variably saturated water flow conditions. Rev. Mineral. Geochem. 1996, 34, 229–268. [Google Scholar]
- Corwin, D.L.; Rhoades, J.D.; Šimůnek, J. Leaching requirement for soil salinity control: Steady-state versus transient models. Agric. Water Manag. 2007, 90, 165–180. [Google Scholar] [CrossRef]
- Dabach, S.; Lazarovitch, N.; Šimůnek, J.; Shani, U. Numerical investigation of irrigation scheduling based on soil water status. Irrig. Sci. 2013, 31, 27–36. [Google Scholar] [CrossRef]
- Neumann, L.E.; Šimůnek, J.; Cook, F.J. Implementation of quadratic upstream interpolation schemes for solute transport into HYDRUS-1D. Environ. Model. Softw. 2011, 26, 1298–1308. [Google Scholar] [CrossRef]
- Shaygan, M.; Usher, B.; Baumgartl, T. Modelling Hydrological Performance of a Bauxite Residue Profile for Deposition Management of a Storage Facility. Water 2020, 12, 1988. [Google Scholar] [CrossRef]
- Schwartz, M.; Schippers, A.; Hahn, L. Hydrochemical models of the sulphidic tailings dumps at Matchless (Namibia) and Selebi-Phikwe (Botswana). Environ. Geol. 2006, 49, 504–510. [Google Scholar] [CrossRef]
- Gonzales, C. The Potential Use of Mine Wastes as Cover Materials in a Water-Shedding Cover Configuration as Applied in a Seasonally Wet but Arid Environment Setting; University of Queensland: St. Lucia, Australia, 2016. [Google Scholar]
- Gonzales, C.; Baumgartl, T.; Scheuermann, A.; Soliman, A. Soil moisture profile of a water-shedding cover design in central Queensland. In Unsaturated Soils: Research & Applications; CRC Press: Boca Raton, FL, USA, 2020; pp. 1403–1408. [Google Scholar]
- Lü, H.; Yu, Z.; Horton, R.; Zhu, Y.; Zhang, J.; Jia, Y.; Yang, C. Effect of gravel-sand mulch on soil water and temperature in the semiarid loess region of northwest China. J. Hydrol. Eng. 2013, 18, 1484–1494. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shaygan, M.; Baumgartl, T. Reclamation of Salt-Affected Land: A Review. Soil Syst. 2022, 6, 61. https://doi.org/10.3390/soilsystems6030061
Shaygan M, Baumgartl T. Reclamation of Salt-Affected Land: A Review. Soil Systems. 2022; 6(3):61. https://doi.org/10.3390/soilsystems6030061
Chicago/Turabian StyleShaygan, Mandana, and Thomas Baumgartl. 2022. "Reclamation of Salt-Affected Land: A Review" Soil Systems 6, no. 3: 61. https://doi.org/10.3390/soilsystems6030061
APA StyleShaygan, M., & Baumgartl, T. (2022). Reclamation of Salt-Affected Land: A Review. Soil Systems, 6(3), 61. https://doi.org/10.3390/soilsystems6030061