Comparison of Surface Water or Treated Municipal Wastewater Irrigation on Alfalfa Establishment, Soil Fertility, and Soil Microbial Conditions
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results and Discussion
3.1. Weather
3.2. Water Sources
3.3. Soil Fertility
3.4. Soil Microbial Biomass and Community Composition
3.5. Forage Dry Matter and Plant Chemical Constituents
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shomar, B.; El-Madhou, F.; Yahya, A. Wastewater reuse for alfalfa production in Gaza Strip. Water Air Soil Pollut. 2010, 213, 105–119. [Google Scholar] [CrossRef]
- Adrover, M.; Moya, G.; Vadell, J. Seasonal and depth variation of soil chemical and biological properties in alfalfa crops irrigated with treated wastewater and saline groundwater. Geoderma 2017, 286, 54–63. [Google Scholar] [CrossRef]
- Rekik, I.; Chaabane, Z.; Missaoui, A.; Bouket, A.C.; Luptakova, L.; Elleuch, A.; Belbahri, L. Effects of untreated and treated wastewater at the morphological, physiological and biochemical levels on seed germination and development of sorghum (Sorghum bicolor (L.) Moench), alfalfa (Medicago sativa L.) and fescue (Festuca arundinacea Schreb.). J. Hazard. Mater. 2017, 326, 165–176. [Google Scholar] [CrossRef] [PubMed]
- Elfanssi, S.; Ouazzani, N.; Mandi, L. Soil properties and gro-physiological responses of alfalfa (Medicago sativa L.) irrigated by treated domestic wastewater. Agric. Water Manag. 2018, 202, 231–240. [Google Scholar] [CrossRef]
- Adrover, M.; Farrus, E.; Moya, G.; Vadell, J. Chemical properties and biological activity in soils of Mallorca following twenty years of treated wastewater irrigation. J. Environ. Manag. 2012, 95, 5188–5192. [Google Scholar] [CrossRef] [PubMed]
- Gharaibeh, M.A.; Marschner, B.; Heinze, S. Metal uptake by tomato and alfalfa plants as affected by water source, salinity, and Cd and Zn levels under greenhouse conditions. Environ. Sci. Pollut. Res. 2015, 22, 18894–18905. [Google Scholar] [CrossRef]
- El Moussaoui, T.; Mandi, L.; Wahbi, S.; Masi, S.; Ouazzani, N. Soil properties and alfalfa (Medicago sativa L.) responses to sustainable treated urban wastewater reuse. Arch. Agron. Soil Sci. 2019, 65, 1900–1912. [Google Scholar] [CrossRef]
- Soufan, W.; Okla, M.K.; Al-Ghamdi, A.A. Effects of irrigation with treated wastewater or well water on the nutrient contents of two alfalfa (Medicago sativa L.) cultivars in Riyadh, Saudi Arabia. Agronomy 2019, 9, 729. [Google Scholar] [CrossRef] [Green Version]
- Shigei, M.; Ahrens, L.; Hazaymeh, A.; Dalahmeh, S.S. Per- and polyfluoroalkyl substances in water and soil in wastewater-irrigated farmland in Jordan. Sci. Total Environ. 2020, 716, 137057. [Google Scholar] [CrossRef]
- Carrillo, G.R.; Cajuste, L.J. Heavy metals in soils and alfalfa (Medicago sativa L.) irrigated with three sources of wastewater. J. Environ. Sci. Health Part A 1992, 27, 1771–1783. [Google Scholar]
- Christou, A.; Antoniou, C.; Cristodoulou, C.; Hapeshi, E.; Stavrou, I.; Michael, C.; Fatta-Kassinos, D.; Fotopoulos, V. Stress-related phenomena and detoxification mechanisms induced by common pharmaceuticals in alfalfa (Medicago sativa L.). Sci. Total Environ. 2016, 557–558, 652–664. [Google Scholar] [CrossRef] [PubMed]
- NMED. NMED Ground Water Quality Bureau Guidance: Above Ground Use of Reclaimed Domestic Wastewater; New Mexico Environment Department: Santa Fe, NM, USA, 2007. Available online: https://cloud.env.nm.gov/water/?r=5582&k=cdcde6cbdf (accessed on 26 May 2021).
- Bringhurst, R.M.; Cardon, Z.G.; Gage, D.J. Galactosides in the rhizosphere: Utilization by Sinorhizobium meliloti and development of a biosensor. Proc. Natl. Acad. Sci. USA 2001, 98, 4540–4545. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kizekova, M.; Tomaskin, J.; Cunderlik, J.; Jancova, L.; Martincova, J. The yield stability and quality of legumes during two consecutive, extremely dry years. Agriculture 2013, 59, 167–177. [Google Scholar] [CrossRef] [Green Version]
- Bhandari, K.B.; West, C.P.; Acosta-Martinez, V. Assessing the role of interseeding alfalfa into grass on improving pasture soil health in semi-arid Texas High Plains. Appl. Soil Biol. 2020, 147, 103399. [Google Scholar] [CrossRef]
- Ward Laboratories. Wardguide; Ward Laboratories: Kearney, NE, USA, 2020; Available online: https://www.wardlab.com/resources/ward-guide/ (accessed on 21 June 2022).
- Lauriault, L.M.; Ray, I.; Pierce, C.; Burney, O.; Flynn, R.P.; Marsalis, M.A.; O’Neill, M.K.; West, M. The 2015 New Mexico Alfalfa Variety Test Report; Agricultural Experiment Station, College of Agricultural, Consumer and Environmental Sciences: Las Cruces, NM, USA, 2015; Available online: https://pubs.nmsu.edu/variety_trials/alfalfa_2015.pdf (accessed on 21 June 2022).
- Lauriault, L.M.; Ray, I.; Pierce, C.; Burney, O.; Flynn, R.P.; Marsalis, M.A.; O’Neill, M.K.; Cunningham, A.; Havlik, C.; West, M. The 2016 New Mexico Alfalfa Variety Test Report; Agricultural Experiment Station, College of Agricultural, Consumer and Environmental Sciences: Las Cruces, NM, USA, 2016; Available online: https://pubs.nmsu.edu/variety_trials/alfalfa_2016.pdf (accessed on 21 June 2022).
- SAS Institute. The SAS 9.4 for Windows; SAS Inst., Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Littell, R.C.; Milliken, G.A.; Stroup, W.W.; Wolfinger, R.D. SAS System for Mixed Models; SAS Institute Inc.: Cary, NC, USA, 1996. [Google Scholar]
- Ramsey, F.L.; Schafer, D.W. The Statistical Sleuth: A Course in Methods of Data Analysis, 2nd ed.; Duxbury: Pacific Grove, CA, USA, 2002; p. 42. [Google Scholar]
- Saxton, A.M. A macro for converting mean separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, Nashville, TN, USA, 22–25 March 1998; pp. 1243–1246. [Google Scholar]
- Fribourg, H.A.; Strand, R.H. Influence of seeding dates and methods on establishment of small-seeded legumes. Agron. J. 1973, 65, 804–807. [Google Scholar] [CrossRef]
- Hall, M.H. Plant vigor and yield of perennial cool-season forage crops when summer planting is delayed. J. Prod. Agric. 1995, 8, 233–238. [Google Scholar] [CrossRef]
- Darapuneni, M.K.; Lauriault, L.M.; VanLeeuwen, D.M.; Angadi, S.V. Influence of irrigation regimes on alfalfa dry matter yield and water productivity in a semiarid subtropical environment. Irrig. Drain. 2020, 69, 1063–1071. [Google Scholar] [CrossRef]
- Hopkins, B.G.; Horneck, D.A.; Stevens, R.G.; Elllsworth, J.W.; Sullivan, D.M. PNW-597-E, Managing Irrigation Water Quality; Oregon State University, University of Idaho, and Washington University Cooperative Extension Service and USDA: Corvallis, OR, USA, 2007; Available online: https://catalog.extension.oregonstate.edu/sites/catalog/files/project/pdf/pnw597.pdf (accessed on 21 June 2022).
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture. FAO Irrigation and Drainage Paper 29; FAO: Rome, Italy, 1985; Available online: http://www.fao.org/3/a-t0234e.pdf (accessed on 21 June 2022).
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. Circular 939, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; United States Department of Agriculture: Washington, DC, USA, 1954. [Google Scholar]
- Zong, N.; Shi, P. Soil properties rather than production strongly impact soil bacterial community diversity along a desertification gradient on the Tibetan Plateau. Grassl. Sci. 2020, 66, 197–206. [Google Scholar] [CrossRef]
- Philipp, D.; Jennings, J. Forage Legume Inoculation; University of Arkansas Cooperative Extension State Office: Little Rock, AR, USA, 2012; Available online: https://www.uaex.uada.edu/publications/pdf/FSA-2035.pdf (accessed on 21 June 2022).
- Schachtman, D.P.; Reid, R.J.; Ayling, S.M. Phosphorus uptake by plants: From soil to cell. Plant Physiol. 1998, 116, 447–453. [Google Scholar] [CrossRef] [Green Version]
- Raghothama, K.G.; Karthikeyan, A.S. Phosphate Acquisition. Plant Soil 2005, 27, 37–49. [Google Scholar] [CrossRef]
- Miller, M.H. Arbuscular mycorrhizae and the phosphorus nutrition of maize: A review of Guelph studies. Can. J. Plant Sci. 2000, 80, 47–52. [Google Scholar] [CrossRef]
- Auge, R.M. Arbuscular mycorrhizae and soil/plant water relations. Can. J. Soil Sci. 2004, 84, 373–381. [Google Scholar] [CrossRef] [Green Version]
Year | Jan. | Feb. | Mar. | Apr. | May | June | July | Aug. | Sep. | Oct. | Nov. | Dec. | Annual |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Temperature, °C | |||||||||||||
2017 | 3.9 | 10.0 | 6.7 | 14.4 | 17.8 | 25.6 | 27.8 | 23.9 | 21.1 | 15.6 | 11.9 | 4.8 | 15.3 |
2018 | 3.3 | 6.1 | 11.1 | 13.3 | 22.2 | 27.2 | 27.2 | 25.6 | 22.2 | 14.4 | 6.7 | 3.9 | 15.3 |
Long-term | 3.3 | 5.6 | 9.4 | 14.4 | 18.9 | 24.4 | 26.1 | 25.0 | 21.7 | 15.6 | 8.9 | 3.9 | 14.7 |
Precipitation, mm | |||||||||||||
2017 | 26 | 4 | 55 | 69 | 46 | 25 | 40 | 165 | 67 | 92 | 0 | 0 | 590 |
2018 | 0 | 1 | 4 | 13 | 46 | 14 | 29 | 85 | 20 | 108 | 14 | 16 | 351 |
Long-term | 11 | 13 | 20 | 30 | 51 | 51 | 70 | 73 | 42 | 35 | 19 | 15 | 429 |
Irritation, mm, applied nearly equally to treatments | |||||||||||||
2017 | 0 | 0 | 25 | 51 | 6 | 191 | 146 | 13 | 25 | 0 | 0 | 0 | 457 |
2018 | 0 | 0 | 0 | 0 | 32 | 89 | 85 | 49 | 44 | 0 | 0 | 0 | 299 |
Variable | Canal Water | Wastewater | p-Value | SED |
---|---|---|---|---|
pH | 8.05 | 7.85 | 0.6286 | 0.35 |
SAR | 1.50 | 4.50 | 0.0194 | 0.42 |
AdjSAR | 1.65 | 5.10 | 0.0182 | 0.47 |
TDS, ppm | 416 | 694 | 0.0237 | 44 |
EC, mmho cm−1 | 0.69 | 1.16 | 0.0250 | 0.08 |
Cations, me L−1 | 8 | 13 | 0.0231 | 1 |
Anions, me L−1 | 8 | 15 | 0.1418 | 3 |
Cations:anions | 1.02 | 0.92 | 0.5863 | 0.13 |
Na, ppm | 56 | 171 | 0.0229 | 18 |
K, ppm | 7 | 22 | 0.0358 | 3 |
Ca, ppm | 59 | 40 | 0.1273 | 8 |
Mg, ppm | 26 | 42 | 0.0716 | 5 |
Hardness, ppm CaCO3 | 253 | 271 | 0.0903 | 3 |
NO3-N, ppm | 0.1 | 0.6 | 0.5000 | 0.5 |
SO4-S, ppm | 66 | 73 | 0.7956 | 24 |
Cl, ppm | 18 | 94 | 0.0321 | 14 |
CO3, ppm | 1.0 | 0.5 | 1.0000 | 1.0 |
HCO3, ppm | 177 | 478 | 0.1354 | 65 |
Alkalinity, ppm CaCO3 | 147 | 408 | 0.1540 | 65 |
B, ppm | 0.06 | 0.42 | 0.0274 | 0.06 |
Ortho P, ppm | 0.06 | 3.35 | 0.1769 | 1.61 |
Total P, ppm | 0.05 | 3.36 | 0.1614 | 1.52 |
Variable | 2017 Pre-Planting | 2018 | ||||
---|---|---|---|---|---|---|
Surface Water | Wastewater | Surface Water | Wastewater | SED | p-Value | |
pH | 8.3 | 8.3 | 8.2 | 8.3 | 0.35 | 0.6286 |
Salts, mmho cm−1 | 0.29 | 0.24 | 0.23 | 0.36 | 0.05 | 0.0225 |
OM, % | 1.3 | 1.1 | 1.3 | 1.7 | 0.4 | 0.0171 |
P, ppm | 8.4 | 13.3 | 11.3 | 27.3 | 5.0 | 0.0001 |
K, ppm | 253 | 332 | 458 | 720 | 209 | 0.0011 |
S, ppm | 29 | 18 | 6 | 11 | 7 | 0.0689 |
Fe, ppm | 4.8 | 5.8 | 7.1 | 9.1 | 1.1 | 0.1101 |
Mn, ppm | 4.5 | 6.8 | 6.2 | 6.6 | 2.3 | 0.2257 |
Cu, ppm | 0.36 | 0.35 | 0.38 | 0.49 | 0.02 | 0.0015 |
Ca, ppm | 2230 | 1564 | 1787 | 2095 | 754 | 0.0608 |
Mg, ppm | 256 | 287 | 372 | 434 | 32 | 0.0007 |
Na, ppm | 134 | 167 | 48 | 131 | 71 | 0.0030 |
CEC | 14.5 | 11.8 | 13.4 | 16.5 | 4.0 | 0.0112 |
K Saturation, % | 4 | 7 | 9 | 11 | 1 | 0.0195 |
Ca Saturation, % | 77 | 66 | 67 | 63 | 1 | 0.0117 |
Mg Saturation, % | 15 | 20 | 23 | 22 | 5 | 0.4136 |
Na Saturation, % | 4 | 6 | 1.5 | 3.3 | 3 | 0.0203 |
Variable | 2017 | 2018 | SED | p-values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Surface Water | Waste-Water | Surface Water | Waste-Water | Year | Source | Year × Source | ||||||
Total biomass | 1147 | C | 1184 | C | 1961 | B | 4991 | A | 326 | <0.0001 | <0.0001 | <0.0001 |
Total Bacteria | 452 | C | 519 | C | 836 | B | 2225 | A | 125 | <0.0001 | <0.0001 | <0.0001 |
Actinomycetes | 67 | C | 81 | C | 178 | B | 385 | A | 19 | <0.0001 | <0.0001 | 0.0003 |
Gram-Negative | 211 | B | 205 | B | 326 | B | 1102 | A | 90 | <0.0001 | <0.0001 | <0.0001 |
Rhizobia | 0 | 0 | 1 | 31 | 13 | 0.1270 | 0.1480 | 0.1480 | ||||
Total Fungi | 68 | B | 36 | B | 183 | B | 731 | A | 98 | <0.0001 | 0.0030 | 0.0013 |
AM | 14 | C | 0 | C | 66 | B | 174 | A | 13 | <0.0001 | 0.0031 | 0.0006 |
Saprophytes | 54 | B | 36 | B | 117 | B | 558 | A | 87 | 0.0031 | 0.0143 | 0.0096 |
Protozoa | 0 | B | 0 | B | 5 | B | 33 | A | 7 | 0.0071 | 0.0280 | 0.0280 |
Gram-Positive | 241 | C | 314 | C | 510 | B | 1123 | A | 64 | <0.0001 | <0.0001 | <0.0001 |
Undifferentiated | 627 | B | 630 | B | 937 | B | 2002 | A | 155 | <0.0001 | 0.0004 | 0.0004 |
Diversity Index | 1.28 | B | 1.18 | B | 1.47 | A | 1.53 | A | 0.04 | <0.0001 | 0.5616 | 0.0662 |
Variable | 2017 | 2018 | SED | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Surface Water | Waste-Water | Surface Water | Waste-Water | Year | Source | Year × Source | ||||||
Total Bacteria | 43 | 2 | 0.2312 | 0.3076 | 0.5921 | |||||||
Actinomycetes | 6.36 B | 8.52 A | 0.51 | 0.0209 | 0.6740 | 0.1374 | ||||||
Gram-Negative | 18 | AB | 17 | B | 17 | B | 22 | A | 2 | 0.2434 | 0.2424 | 0.0462 |
Rhizobia | 0.00 | 0.00 | 0.06 | 0.59 | 0.25 | 0.1180 | 0.1915 | 0.1915 | ||||
Total Fungi | 6 | BC | 3 | C | 10 | AB | 14 | A | 2 | 0.0004 | 0.5709 | 0.0415 |
AM | 1.12 | B | 0 | C | 3.41 | A | 3.47 | A | 0.38 | <0.0001 | 0.1121 | 0.0553 |
Saprophytes | 5 | B | 3 | B | 6 | B | 11 | A | 2 | 0.0048 | 0.3231 | 0.0528 |
Protozoa | 0.00 B | 0.48 A | 0.16 | 0.0225 | 0.3653 | 0.3653 | ||||||
Gram-Positive | 21 | A | 26 | A | 26 | A | 23 | A | 3 | 0.6408 | 0.7772 | 0.0518 |
Undifferentiated | 54 A | 44 B | 3 | 0.0031 | 0.2233 | 0.3692 | ||||||
Fungi:Bacteria | 0.14 | BC | 0.07 | C | 0.22 | AB | 0.32 | A | 0.05 | 0.0007 | 0.7547 | 0.0372 |
GramPos:GramNeg | 1.18 | A | 1.57 | A | 1.60 | A | 1.05 | A | 0.27 | 0.7842 | 0.7048 | 0.0339 |
Saturated:Unsaturated | 3.05 | AB | 3.50 | A | 2.35 | BC | 1.40 | C | 0.50 | 0.0018 | 0.4991 | 0.0701 |
Variable | 2017 | 2018 | SED | p-Values | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Surface Water | Waste-Water | Surface Water | Waste-Water | Year | Source | Year × Source | ||||||
Plants m−2, 2017 | 324 | 330 | -------- | -------- | 51 | -------- | 0.9151 | -------- | ||||
Stand %, 2018 | -------- | -------- | 94 A | 87 B | 2 | -------- | 0.0086 | -------- | ||||
Dry matter, g kg−1 | 267 | A | 260 | B | 232 | D | 240 | C | 3 | <0.0001 | 0.7907 | 0.0043 |
Dry matter, g m−2 | 10.29 B | 26.06 A | 2.81 | 0.0011 | 0.2604 | 0.5251 | ||||||
aNDF, g kg−1 | 283 aA | 236 aB | 199 bA | 172 bB | 7 | <0.0001 | 0.0013 | 0.1821 | ||||
ADF, g kg−1 | 211 | A | 181 | B | 168 | BC | 156 | C | 67 | 0.0002 | 0.0064 | 0.0665 |
Lignin, g kg−1 | 53.7 | A | 44.4 | B | 37.4 | C | 34.2 | C | 1.6 | <0.0001 | 0.0044 | 0.0070 |
Nitrogen, g kg−1 | 37.9 | C | 38.7 | C | 44.8 | B | 50.2 | A | 0.9 | <0.0001 | 0.0005 | 0.0042 |
Phosphorus, g kg−1 | 2.38 | C | 2.73 | B | 2.93 | B | 3.53 | A | 0.10 | <0.0001 | <0.0001 | 0.1089 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauriault, L.M.; Pietrasiak, N.; Darapuneni, M.K.; Dominguez, A.J.; Martinez, G.K. Comparison of Surface Water or Treated Municipal Wastewater Irrigation on Alfalfa Establishment, Soil Fertility, and Soil Microbial Conditions. Soil Syst. 2022, 6, 67. https://doi.org/10.3390/soilsystems6030067
Lauriault LM, Pietrasiak N, Darapuneni MK, Dominguez AJ, Martinez GK. Comparison of Surface Water or Treated Municipal Wastewater Irrigation on Alfalfa Establishment, Soil Fertility, and Soil Microbial Conditions. Soil Systems. 2022; 6(3):67. https://doi.org/10.3390/soilsystems6030067
Chicago/Turabian StyleLauriault, Leonard M., Nicole Pietrasiak, Murali K. Darapuneni, Andrew J. Dominguez, and Gasper K. Martinez. 2022. "Comparison of Surface Water or Treated Municipal Wastewater Irrigation on Alfalfa Establishment, Soil Fertility, and Soil Microbial Conditions" Soil Systems 6, no. 3: 67. https://doi.org/10.3390/soilsystems6030067
APA StyleLauriault, L. M., Pietrasiak, N., Darapuneni, M. K., Dominguez, A. J., & Martinez, G. K. (2022). Comparison of Surface Water or Treated Municipal Wastewater Irrigation on Alfalfa Establishment, Soil Fertility, and Soil Microbial Conditions. Soil Systems, 6(3), 67. https://doi.org/10.3390/soilsystems6030067