Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of the Study Site
2.2. Soil properties
2.3. Farmers Fertilizer Management Practices
2.4. Fertilizer Treatments, Research Design and Crop Management
2.5. PFPN and AEN
2.6. Statistical Analysis
3. Results
3.1. Tomato Yield
3.1.1. Effects of Nutrient Omission
3.1.2. Variable N Rates
3.1.3. N source and Placement
3.2. PFPN and AEN
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Magar, D.B.; Gauchan, D.; Timsina, K.P.; Ghimire, Y.N. Srijana Hybrid Tomato: A Potential Technology for Enterprise Development in Nepal; Socioeconomics & Agricultural Research Policy Division, Nepal Agricultural Research Council: Lalitpur, Nepal, 2016. [Google Scholar]
- Ghimire, N.P.; Kandel, M.; Aryal, M.; Bhattarai, D. Assessmentof Tomato Consumption and Demand in Nepal. J. Agric. Environ. 2017, 18, 83–94. [Google Scholar] [CrossRef]
- Joshi, N.P.; Piya, L. Determinants of Small-Scale Commercial Vegetable Farming among Vegetable Growers in Nepal. Sage Open 2021, 11, 21582440211010170. [Google Scholar] [CrossRef]
- Devkota, K.P.; McDonald, A.J.; Khadka, L.; Khadka, A.; Paudel, G.; Devkota, M. Fertilizers, Hybrids, and the Sustainable Intensification of Maize Systems in the Rainfed Mid-Hills of Nepal. Eur. J. Agron. 2016, 80, 154–167. [Google Scholar] [CrossRef]
- Brown, S.; Schreier, H.; Shah, P.B.; Lavkulich, L.M. Modelling of Soil Nutrient Budgets: An Assessment of Agricultural Sustainability in Nepal. Soil Use Manag. 1999, 15, 101–108. [Google Scholar] [CrossRef]
- Gaihre, Y.K.; Singh, U.; Islam, S.M.M.; Huda, A.; Islam, M.R.; Satter, M.A.; Sanabria, J.; Islam, M.R.; Shah, A.L. Impacts of Urea Deep Placement on Nitrous Oxide and Nitric Oxide Emissions from Rice Fields in Bangladesh. Geoderma 2015, 259, 370–379. [Google Scholar] [CrossRef]
- Naz, M.Y.; Sulaiman, S.A. Slow Release Coating Remedy for Nitrogen Loss from Conventional Urea: A Review. J. Control. Release 2016, 225, 109–120. [Google Scholar] [CrossRef]
- Kokare, V.G.; Kasture, M.C.; Palsande, V.N.; Mhalshi, R.M. Effect of Different Fertilizer Briquettes and Organic Manures on Yield, Nutrients Uptake and Chemical Properties of Soil in Chilli (Capsicum annuum L.) in Lateritic Soils of Konkan. Int. J. Agric. Sci. Res. 2015, 5, 13–18. [Google Scholar]
- Mugwe, J.; Mugendi, D.; Kungu, J.; Muna, M.-M. Maize Yields Response to Application of Organic and Inorganic Input under On-Station and On-Farm Experiments in Central Kenya. Exp. Agric. 2009, 45, 47–59. [Google Scholar] [CrossRef]
- Witt, C.; Dobermann, A. A Site-Specific Nutrient Management Approach for Irrigated, Lowland Rice in Asia. Better Crops Int. 2002, 16, 20–24. [Google Scholar]
- Du, Y.; Cao, H.; Liu, S.; Gu, X.; Cao, Y. Response of Yield, Quality, Water and Nitrogen Use Efficiency of Tomato to Different Levels of Water and Nitrogen under Drip Irrigation in Northwestern China. J. Integr. Agric. 2017, 16, 1153–1161. [Google Scholar] [CrossRef]
- Li, H.; Liu, H.; Gong, X.; Li, S.; Pang, J.; Chen, Z.; Sun, J. Optimizing Irrigation and Nitrogen Management Strategy to Trade off Yield, Crop Water Productivity, Nitrogen Use Efficiency and Fruit Quality of Greenhouse Grown Tomato. Agric. Water Manag. 2021, 245, 106570. [Google Scholar] [CrossRef]
- Dhakal, K.; Baral, B.R.; Pokhrel, K.R.; Pandit, N.R.; Gaihre, Y.K.; Vista, S.P. Optimizing N Fertilization for Increasing Yield and Profits of Rainfed Maize Grown under Sandy Loam Soil. Nitrogen 2021, 2, 359–377. [Google Scholar] [CrossRef]
- Elia, A.; Conversa, G. Agronomic and Physiological Responses of a Tomato Crop to Nitrogen Input. Eur. J. Agron. 2012, 40, 64–74. [Google Scholar] [CrossRef]
- Du, Y.-D.; Zhang, Q.; Cui, B.-J.; Sun, J.; Wang, Z.; Ma, L.-H.; Niu, W.-Q. Aerated Irrigation Improves Tomato Yield and Nitrogen Use Efficiency While Reducing Nitrogen Application Rate. Agric. Water Manag. 2020, 235, 106152. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, Q.; Ma, J.; Zou, P.; Jiang, L. Impact of Controlled-Release Urea on Rice Yield, Nitrogen Use Efficiency and Soil Fertility in a Single Rice Cropping System. Sci. Rep. 2020, 10, 10432. [Google Scholar] [CrossRef] [PubMed]
- Dhital, S.; Raun, W.R. Variability in Optimum Nitrogen Rates for Maize. Agron. J. 2016, 108, 2165–2173. [Google Scholar] [CrossRef]
- Zhang, T.Q.; Tan, C.S.; Liu, K.; Drury, C.F.; Papadopoulos, A.P.; Warner, J. Yield and Economic Assessments of Fertilizer Nitrogen and Phosphorus for Processing Tomato with Drip Fertigation. Agron. J. 2010, 102, 774–780. [Google Scholar] [CrossRef]
- Jones, J.D. Nutrient Use Efficiency—A Metric to Inform 4R Nutrient Stewardship. Crops Soils 2021, 54, 42–48. [Google Scholar] [CrossRef]
- Agyin-Birikorang, S.; Winings, J.H.; Yin, X.; Singh, U.; Sanabria, J. Field Evaluation of Agronomic Effectiveness of Multi-Nutrient Fertilizer Briquettes for Upland Crop Production. Nutr. Cycl. Agroecosyst. 2018, 110, 395–406. [Google Scholar] [CrossRef]
- Singh, U.; Wilkens, P.; Jahan, I.; Sanabria, J.; Kovach, S. Enhanced Efficiency Fertilizers. In Proceedings of the World Congress of Soil Science, Soil Solutions for a Changing World, Brisbane, Australia, 1–6 August 2010; Volume 16. [Google Scholar]
- Bowen, W.T.; Diamond, R.B.; Singth, U.; Thompson, T.R. Urea Deep Placement Increases Yield and Saves Nitrogen Fertilizer in Farmers’ Fields in Bangladesh. In Rice is Life Scientific Perspectives for the 21st Century; International Rice Research Institute: Los Baños, Philippines, 2005. [Google Scholar]
- Baral, B.R.; Pande, K.R.; Gaihre, Y.K.; Baral, K.R.; Sah, S.K.; Thapa, Y.B.; Singh, U. Increasing Nitrogen Use Efficiency in Rice through Fertilizer Application Method under Rainfed Drought Conditions in Nepal. Nutr. Cycl. Agroecosyst. 2020, 118, 103–114. [Google Scholar] [CrossRef]
- Pandit, N.R.; Gaihre, Y.K.; Gautam, S.; Maharjan, S.; Vista, S.P.; Choudhary, D. Enhanced-Efficiency Nitrogen Fertilizer Boosts Cauliflower Productivity and Farmers’ Income: Multi-Location and Multi-Year Field Trials across Nepal. Exp. Agric. 2022, 58, E14. [Google Scholar] [CrossRef]
- Akter, H.; Tarafder, S.K.; Huda, A.; Mahmud, A.A. Effect of Prilled Urea, Urea and NPK Briquettes on the Yield of Bitter Gourd in Two Upazillas of Jessore District. J. Environ. Sci. Nat. Resour. 2015, 8, 157–160. [Google Scholar] [CrossRef]
- Cheng, M.; Wang, H.; Fan, J.; Xiang, Y.; Tang, Z.; Pei, S.; Zeng, H.; Zhang, C.; Dai, Y.; Li, Z. Effects of Nitrogen Supply on Tomato Yield, Water Use Efficiency and Fruit Quality: A Global Meta-Analysis. Sci. Hortic. 2021, 290, 110553. [Google Scholar] [CrossRef]
- Akinnifesi, F.K.; Makumba, W.; Sileshi, G.; Ajayi, O.C.; Mweta, D. Synergistic Effect of Inorganic N and P Fertilizers and Organic Inputs from Gliricidia Sepium on Productivity of Intercropped Maize in Southern Malawi. Plant Soil 2007, 294, 203–217. [Google Scholar] [CrossRef]
- Rietra, R.P.J.J.; Heinen, M.; Dimkpa, C.O.; Bindraban, P.S. Effects of Nutrient Antagonism and Synergism on Yield and Fertilizer Use Efficiency. Commun. Soil Sci. Plant Anal. 2017, 48, 1895–1920. [Google Scholar] [CrossRef]
- Cheng, Y.; Wang, H.-Q.; Liu, P.; Dong, S.-T.; Zhang, J.-W.; Zhao, B.; Ren, B.-Z. Nitrogen Placement at Sowing Affects Root Growth, Grain Yield Formation, N Use Efficiency in Maize. Plant Soil 2020, 457, 355–373. [Google Scholar] [CrossRef]
- Badr, M.A.; Abou-Hussein, S.D.; El-Tohamy, W.A. Tomato Yield, Nitrogen Uptake and Water Use Efficiency as Affected by Planting Geometry and Level of Nitrogen in an Arid Region. Agric. Water Manag. 2016, 169, 90–97. [Google Scholar] [CrossRef]
- Thompson, R.B.; Martínez-Gaitan, C.; Gallardo, M.; Giménez, C.; Fernández, M.D. Identification of Irrigation and N Management Practices That Contribute to Nitrate Leaching Loss from an Intensive Vegetable Production System by Use of a Comprehensive Survey. Agric. Water Manag. 2007, 89, 261–274. [Google Scholar] [CrossRef]
- Dhakal, K.; Baral, B.R.; Pokhrel, K.R.; Pandit, N.R.; Thapa, S.B.; Gaihre, Y.K.; Vista, S.P. Deep Placement of Briquette Urea Increases Agronomic and Economic Efficiency of Maize in Sandy Loam Soil. Agrivita 2020, 42, 499–508. [Google Scholar] [CrossRef]
- Pandit, N.R.; Gaihre, Y.K.; Choudhary, D.; Subedi, R.; Thapa, S.B.; Maharjan, S.; Khadka, D.; Vista, S.P.; Rusinamhodzi, L. Slow but Sure: The Potential of Slow-Release Nitrogen Fertilizers to Increase Crop Productivity and Farm Profit in Nepal. J. Plant Nutr. 2022, 1–18. [Google Scholar] [CrossRef]
- Ojeniyi, S.O. Effect of Poultry Manure on Selected Soil Physical and Chemical Properties, Growth, Yield and Nutrient Status of Tomato. Afr. J. Agric. Res. 2008, 3, 612–616. [Google Scholar]
- Helyes, L.; Lugasi, A.; Pek, Z. Effect of Irrigation on Processing Tomato Yield and Antioxidant Components. Turk. J. Agric. For. 2012, 36, 702–709. [Google Scholar] [CrossRef]
- Van Ploeg, D.; Heuvelink, E. Influence of Sub-Optimal Temperature on Tomato Growth and Yield: A Review. J. Hortic. Sci. Biotechnol. 2005, 80, 652–659. [Google Scholar] [CrossRef]
- Zhu, Q.; Ozores-Hampton, M.; Li, Y.; Morgan, K.; Liu, G.; Mylavarapu, R.S. Effect of Phosphorus Rates on Growth, Yield, and Postharvest Quality of Tomato in a Calcareous Soil. HortScience 2017, 52, 1406–1412. [Google Scholar] [CrossRef]
- Gautam, S.; Tiwari, U.; Sapkota, B.; Sharma, B.; Parajuli, S.; Pandit, N.R.; Gaihre, Y.K.; Dhakal, K. Field Evaluation of Slow-Release Nitrogen Fertilizers and Real-Time Nitrogen Management Tools to Improve Grain Yield and Nitrogen Use Efficiency of Spring Maize in Nepal. Heliyon 2022, 8, e09566. [Google Scholar] [CrossRef]
Districts | Texture (%) | Textural Class | pH | OM | Total N | P2O5 | K2O | ||
---|---|---|---|---|---|---|---|---|---|
Sand | Silt | Clay | g kg−1 | g kg−1 | (mg kg−1) | (mg kg−1) | |||
Doti | 46 ± 1 | 38 ± 2 | 16 ± 1 | loam | 6.42 ± 0.12 | 31.10 ± 3.54 | 1.74 ± 0.22 | 61.62 ± 15.91 | 134.65 ± 27.92 |
Palpa | 44 ± 2 | 41 ± 1 | 15 ± 1 | loam | 6.51 ± 0.13 | 31.73 ± 2.43 | 1.62 ± 0.16 | 21.34 ± 4.84 | 224.68 ± 70.35 |
Kavre | 45± 1 | 38 ± 1 | 17 ± 1 | loam | 5.89 ± 0.03 | 16.05 ± 0.45 | 0.97 ± 0.04 | 54.92 ± 9.32 | 185.54 ± 30.05 |
Bardiya | 40 ± 2 | 40 ± 1 | 20 ± 1 | Loam | 6.75 ± 0.14 | 19.20 ± 2.51 | 1.13 ± 0.13 | 53.43 ± 9.71 | 86.32 ± 16.03 |
Dang | 42 ± 1 | 37 ± 1 | 21 ± 0 | loam | 6.42 ± 0.02 | 26.35 ± 0.53 | 1.35 ± 0.04 | 47.79 ± 6.86 | 158.48 ± 15.66 |
Surkhet | 40 ± 2 | 45 ± 1 | 15 ± 1 | loam | 6.60 ± 0.08 | 29.28 ± 3.12 | 1.65 ± 0.16 | 64.67 ± 15.62 | 134.36 ± 11.90 |
Treatment | Description | N | P | K | Urea/UB | DAP/SSP | MOP | Urea/UB | DAP/SSP | MOP |
---|---|---|---|---|---|---|---|---|---|---|
kg ha−1 | kg ha−1 | g plot−1 | ||||||||
CK | Control | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
N0 | Nitrogen omission | 0 | 150 | 150 | 0 | 937 | 250 | 0 | 72 | 120 |
P0 | Phosphorous omission | 200 | 0 | 150 | 435 | 0 | 250 | 208 | 0 | 120 |
K0 | Potassium omission | 200 | 150 | 0 | 309 | 326 | 0 | 148 | 157 | 0 |
N-100 | Nitrogen applied at 100 kg ha-1 | 100 | 150 | 150 | 92 | 326 | 250 | 45 | 157 | 120 |
N-150 | Nitrogen applied at 150 kg ha−1 | 150 | 150 | 150 | 200 | 326 | 250 | 96 | 157 | 120 |
N-200 | Nitrogen applied at 200 kg ha−1 | 200 | 150 | 150 | 309 | 326 | 250 | 148 | 157 | 120 |
N-250 | Nitrogen applied at 250 kg ha−1 | 250 | 150 | 150 | 417 | 326 | 250 | 200 | 157 | 120 |
UBN-150 | Nitrogen applied in the form of Urea briquette at 150 kg ha−1 | 150 | 150 | 150 | 200 | 326 | 250 | 96 | 157 | 120 |
Treatments | Doti | Palpa | Kavre | Dang | Surkhet |
---|---|---|---|---|---|
PFPN (kg kg−1) | |||||
N-100 | 468 ± 32 a | 657 ± 53 a | 462 ± 56 a | 619 ± 62 a | 668 ± 7 a |
N-150 | 334 ± 22 b | 555 ± 97 b | 366 ± 30 b | 427 ± 58 b | 484 ± 23 b |
N-200 | 289 ± 17 bc | 429 ±53 b | 293 ± 23 bc | 430 ± 38 b | 403 ± 14 b |
N-250 | 237 ± 15 c | 306 ± 48 c | 194 ± 22 c | 277 ± 36 c | 269 ± 12 c |
UBN-150 | 391 ± 15 b | 561 ± 71 b | 346 ± 30 b | 551 ± 49 a | 471 ± 14 b |
AEN (kg kg−1) | |||||
N-100 | 134 ± 26 ab | 172 ± 97 a | 117 ± 70 ab | 193 ± 66 ab | 158 ± 32 a |
N-150 | 111 ± 15 ab | 231 ± 107 a | 136 ± 31 a | 143 ± 61 ab | 145 ± 26 a |
N-200 | 122 ± 13 ab | 187 ± 65 a | 121 ± 37 ab | 217 ± 37 bc | 148 ± 22 a |
N-250 | 104 ± 14 a | 112 ± 53 a | 57 ± 20 b | 107 ± 38 a | 65 ± 15 b |
UBN-150 | 168 ± 20 b | 239 ± 86 a | 139 ± 50 a | 300 ± 37 c | 176 ± 47 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pandit, N.R.; Choudhary, D.; Maharjan, S.; Dhakal, K.; Vista, S.P.; Gaihre, Y.K. Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal. Soil Syst. 2022, 6, 72. https://doi.org/10.3390/soilsystems6030072
Pandit NR, Choudhary D, Maharjan S, Dhakal K, Vista SP, Gaihre YK. Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal. Soil Systems. 2022; 6(3):72. https://doi.org/10.3390/soilsystems6030072
Chicago/Turabian StylePandit, Naba Raj, Dyutiman Choudhary, Shashish Maharjan, Krishna Dhakal, Shree Prasad Vista, and Yam Kanta Gaihre. 2022. "Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal" Soil Systems 6, no. 3: 72. https://doi.org/10.3390/soilsystems6030072
APA StylePandit, N. R., Choudhary, D., Maharjan, S., Dhakal, K., Vista, S. P., & Gaihre, Y. K. (2022). Optimum Rate and Deep Placement of Nitrogen Fertilizer Improves Nitrogen Use Efficiency and Tomato Yield in Nepal. Soil Systems, 6(3), 72. https://doi.org/10.3390/soilsystems6030072