Impact of Aboveground Vegetation on Abundance, Diversity, and Biomass of Earthworms in Selected Land Use Systems as a Model of Synchrony between Aboveground and Belowground Habitats in Mid-Himalaya, India
Abstract
:1. Introduction
2. Materials and Methods
2.1. Earthworm Sampling
2.2. Identification of Earthworms
2.3. Statistical Analysis
3. Results
3.1. Physicochemical Analysis of Soil
3.2. Key Used for the Identification of Earthworms
- Genital markings present, spermathecal atrium pear or finger—Drawida japonica.
- Pale- or light pink-colored worms, calciferous sacs present in segment 10—Aporrectodea rosea.
- Worms that are red-colored with yellow transverse stripes, calciferous sacs absent in segment 10—Esenia fetida.
- Ventral most chaetae on segment 8 not enlarged—Lennogaster pusillus.
- Spermathecal pores in intersegmental furrows 5/6/7/8; genital markings absent—Metaphire birmanica.
- Spermathecal pores in furrows 6/7/8/9; genital markings small within copulatory pouches and spermathecal pore invaginations, recognizable internally by the presence of stalked glands—Metaphire houlleti.
- Spermathecal pores, four pairs, at intersegmental furrows 5/6/7/8/9—Amynthas corticis.
3.3. Density and Biomass of Earthworms
3.4. Species-Wise Biomass and Density Status in Different Land Use Systems
3.5. Species-Wise Density and Relative Density Status in Different Land Use Systems
3.6. Diversity Index and Abundance of Earthworm Species in Land Use Systems
3.7. Synchrony of Density and Biomass across Land Use Systems
3.8. Relationship of Density and Biomass with Diversity
4. Discussion
4.1. Physicochemical Analysis Results of Three Different Land Use Systems
4.2. Density and Biomass of Earthworms
4.3. Diversity of Earthworm Species
4.4. Trends of Productivity (Density and Biomass) and Diversity across Land Use Systems
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whalen, J.K. Spatial and temporal distribution of earthworm patches in corn field, hayfield and forest systems of southwestern Quebec, Canada. Appl. Soil Ecol. 2004, 27, 143–151. [Google Scholar] [CrossRef]
- López-Hernández, D. Earthworm populations in savannas of the Orinoco basin. A review of studies in long-term agricultural-managed and protected ecosystems. Agriculture 2012, 2, 87–108. [Google Scholar] [CrossRef]
- Bartz, M.L.; Brown, G.G.; da Rosa, M.G.; Klauberg Filho, O.; James, S.W.; Decaëns, T.; Baretta, D. Earthworm richness in land-use systems in Santa Catarina, Brazil. Appl. Soil Ecol. 2014, 83, 59–70. [Google Scholar] [CrossRef]
- Dey, A.; Chaudhuri, P.S. Species richness, community organization, and spatiotemporal distribution of earthworms in the pineapple agroecosystems of Tripura, India. Int. J. Ecol. 2016, 2016, 3190182. [Google Scholar] [CrossRef] [Green Version]
- Bisht, R.; Pandey, H.; Bharti, D.; Kaushal, B.R. Population dynamics of earthworms (Oligochaeta) in cultivated soils of Central Himalayan tarai region. Trop. Ecol. 2003, 44, 227–232. [Google Scholar]
- Spurgeon, D.J.; Keith, A.M.; Schmidt, O.; Lammertsma, D.R.; Faber, J.H. Land-use and land-management change: Relationships with earthworm and fungi communities and soil structural properties. BMC Ecol. 2013, 13, 46. [Google Scholar] [CrossRef] [Green Version]
- Bhadauria, T.; Kumar, P.; Kumar, R.; Maikhuri, R.K.; Rao, K.S.; Saxena, K.G. Earthworm populations in a traditional village landscape in Central Himalaya, India. Appl. Soil Ecol. 2012, 53, 83–93. [Google Scholar] [CrossRef]
- Smith, R.G.; McSwiney, C.P.; Grandy, A.S.; Suwanwaree, P.; Snider, R.M.; Robertson, G.P. Diversity and abundance of earthworms across an agricultural land-use intensity gradient. Soil Tillage Res. 2008, 100, 83–88. [Google Scholar] [CrossRef]
- McGrath, D.A.; Smith, C.K.; Gholz, H.L.; Oliveira, F.D. Effect of land-use change on soil nutrient dynamics in Amazonia. Ecosystems 2001, 4, 625–645. [Google Scholar] [CrossRef]
- Haokip, S.L.; Singh, T.B. Diversity and distribution of earthworms in a natural reserved and disturbed sub-tropical forest ecosystem of Imphal-West, Manipur, India. Int. Multidiscip. Res. J. 2012, 2, 28–34. [Google Scholar]
- Tellen, V.A.; Yerima, B.P. Effect of land use change on soil physicochemical properties in selected areas in the Northern West region of Cameroon. Environ. Syst. Res. 2018, 7, 3. [Google Scholar] [CrossRef] [Green Version]
- Rombke, J.; Jansch, S.; Didden, W. The use of earthworms in ecological soil classification and assessment concepts. Ecotoxicol. Environ. Saf. 2005, 62, 249–265. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, G.; Zou, X.; Borges, S. Earthworm abundance and species composition in abandoned tropical croplands: Comparisons of tree plantations and secondary forests. Pedobiologia 1996, 40, 385–391. [Google Scholar]
- Melnichuk, R.D.; Tesimen, H.B.; Gorres, J.H. Do the Invasive Earthworms Amynthas agrestis (Oligochaeta: Megascolecidae) and Lumbricus rubellus (Oligochaeta: Lumbricidae) Stimulate Oxalate-Based Browser Defenses in Jack-in-the-Pulpit (Arisaema triphyllum) by Their Presence or Their Soil Biogeochemical Activity? Soil Syst. 2022, 6, 11. [Google Scholar]
- Chaudhuri, P.S.; Bhattacharjee, S.; Dey, A.; Chattopadhyay, S.; Bhattacharya, D. Impact of age of rubber (Hevea brasiliensis) plantation on earthworm communities of West Tripura (India). J. Environ. Biol. 2013, 34, 59. [Google Scholar] [PubMed]
- Sinha, B.; Bhadauria, T.; Ramakrishnan, P.S.; Saxena, K.G.; Maikhuri, R.K. Impact of landscape modification on earthworm diversity and abundance in the Hariyali sacred landscape, Garhwal Himalaya. Pedobiologia 2003, 47, 357–370. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Anderson, J.M.; Ingram, J.S. A handbook of methods. CAB Int. Walling Oxf. Shire 1993, 221, 62–65. [Google Scholar]
- Swift, M.; Bignell, D. Standard Methods for Assessment of Soil Biodiversity and Land Use Practice; International Centre for Research in Agroforestry: Bogor, Indonesia, 2001. [Google Scholar]
- Julka, J.M. The Fauna of India and the Adjacent Countries. Megadrile Oligochaeta (Earth Worms). Haplotaxida: Lumbricina: Megascolecoidea: Octochaetidae; Zoological Survey of India: Calcutta, India, 1988; 400p. [Google Scholar]
- Julka, J.M.; Senapati, B.K. Earthworms (Oligochaeta: Annelida) of Orissa, India. Rec. Zool. Surv. India 1987, 92, 1–44. [Google Scholar]
- Gates, G.E. On a taxonomic puzzle and the classification of the earthworms. Bull. Mus. Comp. Zool. Harv. 1959, 121, 229–261. [Google Scholar]
- Gates, G.E. Burmese earthworms, an introduction to the systematic and biology of the megadrile oligochaetes with special reference to Southeast Asia. Trans. Am. Philos. Soc. 1972, 62, 1–326. [Google Scholar] [CrossRef]
- Blakemore, R.J. Checklist of Indian Earthworms. A Series of Searchable Texts on Earth-Worm Biodiversity, Ecology and Systematics from Various Regions of the World 3rd Edition. 2007. Available online: http://www.annelida.net/earthworm/Indian.pdf (accessed on 15 February 2022).
- Blakemore, R.J. Cosmopolitan Earthworms—An Eco-Taxonomic Guide to the Peregrine Species of the World, 5th ed.; Verm Ecology Solutions: Yokohama, Japan, 2012. [Google Scholar]
- Ahmed, S.; Julka, J.M.; Kumar, H. Earthworms (Annelida: Clitellata: Megadrili) of Solan, a constituent of Himalayan Biodiversity Hotspot, India. Trav. Muséum Natl. D’histoire Nat. “Grigore Antipa” 2020, 63, 19–50. [Google Scholar] [CrossRef]
- Csuzdi, C. Earthworm species, a searchable database. Opuscula Zool. Budapest. 2012, 43, 97–99. [Google Scholar]
- Csuzdi, C.; Szederjesi, T.; Sherlock, E. Annotated checklist of earthworm species de- scribed by András Zicsi (Clitellata: Megadrili). Zootaxa 2018, 4496, 11–42. [Google Scholar] [CrossRef]
- Devis, R.O.E.; Bennett, H.H. Grouping of Soil on the Basis of Mechanical Analysis; Dep.Circ.419; U.S. Department of Agriculture: Washington, DC, USA, 1927. [Google Scholar]
- Reynolds, S.G. Gravimetric method of soil moisture determination Part IA study of equipment, and methodological problems. J. Hydrol. 1970, 11, 258–273. [Google Scholar] [CrossRef]
- Walkley, A.; Black, I.A. An examination of the Degtiareff method for determining soil organic matter and proposed modification of the chromic acid titration method. Soil Sci. 1934, 63, 29–38. [Google Scholar] [CrossRef]
- Jackson, M.L. Soil Chemical Analysis; Constable & Co., Ltd.: London, UK, 1962. [Google Scholar]
- Bray, R.H.; Kurtz, L.T. Determination of total, organic, and available forms of phosphorus in soils. Soil Sci. 1945, 59, 39–45. [Google Scholar] [CrossRef]
- Rich, C.I. Elemental analysis by flame photometery. In Methods of Soil Analysis: Part 2 Chemical and Microbiological Properties, 9.2; American Society of Agronomy: Washington, DC, USA, 1965; Volume 9, pp. 849–865. [Google Scholar]
- Margalef, R. Perspectives in Ecological Theory; University of Chicago Press: Chicago, IL, USA, 1968; p. 111. [Google Scholar]
- Pielou, E.C. Species-diversity and pattern-diversity in the study of ecological succession. J. Theor. Biol. 1966, 10, 370–383. [Google Scholar] [CrossRef]
- Shannon, C.E. A mathematical theory of communication. Bell Syst. Tech. J. 1948, 27, 379–423. [Google Scholar] [CrossRef] [Green Version]
- Simpson, E.H. Measurment of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Xu, S.; Lui, L.L.; Sayer, E.J. Variablity of aboveground litter inputs alters soil physicochemical and biological process: A meta-analysis of litterfall-manipulation experiments. Biogeosciences 2013, 10, 7423–7433. [Google Scholar] [CrossRef] [Green Version]
- Selassie, Y.G.; Ayanna, G. Effect of different land use systems on selected physicochemical properties of soils in Northwestern Ethiopia. J. Agric. Sci. 2013, 5, 112. [Google Scholar]
- Zhang, W.; Ren, C.; Deng, J.; Zhao, F.; Yang, G.; Han, X.; Tong, X.; Feng, Y. Plant functional composition and species diversity affect soil C, N and P during secondary succession of abandoned farmland on loess plateau. Ecol. Eng. 2008, 122, 91–99. [Google Scholar] [CrossRef]
- Ahmed, S.; Marimuthu, N.; Tripathy, B.; Julka, J.M.; Chandra, K. Earthworm community structure and diversity in different land use systems along an elevation gradient in the Western-Himalaya, India. Appl. Soil Ecol. 2022, 176, 104468. [Google Scholar] [CrossRef]
- Lavelle, P.; Blanchart, E.; Martin, A.; Spain, A.V.; Martin, S. Impact of Soil fauna on the properties of soils in the humid tropics. Myth. Sci. Soils Trop. 1992, 29, 157–185. [Google Scholar]
- Dachaine, J.; Ruan, H.; Sanchez-de Leon, Y.; Zou, X. Correlation between earthworms and plant litter decompositions in a tropical wet forest of Puerto Rico. Pedobiologia 2005, 49, 601–607. [Google Scholar] [CrossRef]
- Bottinelli, N.; Hedde, M.; Jouquet, P.; Capowiez, Y. An explicit definition of earthworm ecological categories-Marcel bouche’s triangle revisited. Geoderma 2020, 372, 114361. [Google Scholar] [CrossRef]
- Eggleton, P.; Inward, K.; Smith, J.; Jones, D.T.; Sherlock, E. A six year study of earthworms (Lumbricidae) populations in pasture woodland in southern England shows their responses to soil temperature and soil moisture. Soil Biol. Biochem. 2009, 41, 1857–1865. [Google Scholar] [CrossRef]
- Xu, S.; Johnson-Maynard, J.L.; Prather, T.S. Earthworm density and biomass in relation to plan diversity and soil properties in a Palouse prairie remnant. Appl. Soil Ecol. 2013, 72, 119–127. [Google Scholar] [CrossRef]
- De Deyn, G.B.; Van der Putten, W.H. Linking aboveground and belowground diversity. Trends Ecol. Evol. 2005, 20, 625–633. [Google Scholar] [CrossRef]
- Teng, S.K.; Aziz, N.A.; Anang, N.; Mustafa, M.; Ismael, A.; Yan, Y.W. Earthworms diversity and population density in the Kaki Bukit agroecosystem, Perlis, Peninsular Malasia. Trop. Ecol. 2013, 54, 291–299. [Google Scholar]
Study Site | Plots | Area of Each Plot | No. of Monoliths from Each Plot | Total No. of Monoliths (25 × 25 × 30 cm) | Containers of Earthworm Samples |
---|---|---|---|---|---|
Pa | 3 | 10 m−2 | 5 | 15 | 15 |
SP | 3 | 10 m−2 | 5 | 15 | 15 |
MEF | 3 | 10 m−2 | 5 | 15 | 15 |
Total | 9 | 15 | 45 | 45 |
Seasons | Months |
---|---|
Winter | December–February |
Spring | March–April |
Summer | May–June |
Monsoon | July–September |
Autumn | October–November |
Soil Parameter | Different Land Use Systems | ||
---|---|---|---|
Pa Mean ± SD | SP Mean ± SD | MEF Mean ± SD | |
Sand | 22.6 ± 2.27 | 23.3 ± 2.49 | 20.3 ± 2.21 |
Silt | 43.4 ± 3.20 | 43.2 ± 1.98 | 51.2 ± 2.04 |
Clay | 34 ± 3.71 | 33.5 ± 3.30 | 28.5 ± 3.40 |
Temperature (°C) | 19.91 ± 2.27 | 18.17 ± 1.72 | 16.87 ± 1.91 |
Moisture (%) | 21.08 ± 3.59 | 25.47 ± 4.18 | 29.47 ± 5.69 |
pH | 5.82 ± 0.12 | 6.08 ± 0.12 | 6.14 ± 0.12 |
Organic Carbon (%) (C) | 1.378 ± 0.09 | 1.964 ± 0.12 | 2.132 ± 0.09 |
Available Nitrogen (N) (kg/ha) | 252.53 ± 6.80 | 272.47 ± 1.64 | 272.83 ± 1.43 |
Available Phosphorus (P) (kg/ha) | 12.36 ± 0.24 | 14.84 ± 0.18 | 15.79 ± 0.14 |
Available Potassium (K) (kg/ha) | 89.62 ± 9.75 | 150.21 ± 4.16 | 143.25 ± 7.81 |
Seasons | R |
---|---|
Winter | −0.4820 |
Spring | −0.8156 |
Summer | 0.0375 |
Monsoon | 0.1164 |
Autumn | 0.2946 |
Nutrients | Source | Partial SS | Df | MS | F | p-Value |
C | Model | 14.167682 | 12 | 1.1806402 | 7.83 | 0.0000 |
Season-wise | 3.0165 | 4 | 0.754125 | 5.00 | 0.0012 | |
Land use-wise | 11.151182 | 8 | 1.3938978 | 9.25 | 0.0000 | |
K | Model | 118,784.11 | 12 | 9898.6762 | 7.56 | 0.0000 |
Season-wise | 19,008.19 | 4 | 4752.0474 | 3.63 | 0.0092 | |
Land use-wise | 99,775.925 | 8 | 12,471.991 | 9.52 | 0.0000 | |
P | Model | 204.79726 | 12 | 17.066438 | 23.94 | 0.0000 |
Season-wise | 11.573649 | 4 | 2.8934122 | 4.06 | 0.0049 | |
Land use-wise | 193.22361 | 8 | 24.152951 | 33.88 | 0.0000 | |
N | Model | 18,030.726 | 12 | 1502.5605 | 9.59 | 0.0000 |
Season-wise | 623.00875 | 4 | 155.75219 | 0.99 | 0.4160 | |
Land use-wise | 17,407.717 | 8 | 2175.9647 | 13.89 | 0.0000 |
Nutrients | Pair-Wise Comparison of Land Use Systems | Contrast | St. Error | Tukey | |
---|---|---|---|---|---|
t | p-Value | ||||
C | Pa1 vs. MEF1 | −1.203 | 0.189996 | −6.33 | 0.000 |
Pa2 vs. MEF1 | −0.836 | 0.189996 | −4.40 | 0.001 | |
Pa1 vs. MEF2 | −0.982 | 0.189996 | −5.17 | 0.000 | |
Pa2 vs. MEF2 | −0.615 | 0.189996 | −3.24 | 0.044 | |
Pa1 vs. MEF3 | −0.938 | 0.189996 | −4.94 | 0.000 | |
SP1 vs. Pa1 | 0.859 | 0.189996 | 4.52 | 0.001 | |
SP2 vs. Pa1 | 0.818 | 0.189996 | 4.31 | 0.001 | |
SP3 vs. Pa1 | 0.931 | 0.189996 | 4.90 | 0.001 | |
K | SP3 vs. MEF1 | 73.761 | 17.20404 | 4.29 | 0.002 |
Pa2 vs. MEF2 | −56.356 | 17.20404 | −3.28 | 0.039 | |
Pa3 vs. MEF2 | −80.001 | 17.20404 | −4.65 | 0.000 | |
Pa3 vs. MEF3 | −75.333 | 17.20404 | −4.38 | 0.001 | |
SP3 vs. Pa1 | 81.344 | 17.20404 | 4.73 | 0.000 | |
SP3 vs. Pa2 | 99.919 | 17.20404 | 5.81 | 0.000 | |
SP3 vs. Pa3 | 123.564 | 17.20404 | 7.18 | 0.000 | |
SP3 vs. SP1 | 74.255 | 17.20404 | 4.32 | 0.001 | |
SP3 vs. SP2 | 64.879 | 17.20404 | 3.77 | 0.009 | |
P | Pa1 vs. MEF1 | −3.897 | 0.4051041 | −9.62 | 0.000 |
Pa2 vs. MEF1 | −3.618 | 0.4051041 | −8.93 | 0.000 | |
Pa3 vs. MEF1 | −3.347 | 0.4051041 | −8.26 | 0.000 | |
SP1 vs. MEF1 | −1.563 | 0.4051041 | −3.86 | 0.007 | |
Pa1 vs. MEF2 | −2.902 | 0.4051041 | −7.16 | 0.000 | |
Pa2 vs. MEF2 | −2.623 | 0.4051041 | −6.47 | 0.000 | |
Pa3 vs. MEF2 | −2.352 | 0.4051041 | −5.81 | 0.000 | |
Pa1 vs. MEF3 | −4.051 | 0.4051041 | −10.00 | 0.000 | |
Pa2 vs. MEF3 | −3.772 | 0.4051041 | −9.31 | 0.000 | |
Pa3 vs. MEF3 | −3.501 | 0.4051041 | −8.64 | 0.000 | |
SP1 vs. MEF3 | −1.717 | 0.4051041 | −4.24 | 0.002 | |
SP1 vs. Pa1 | 2.334 | 0.4051041 | 5.76 | 0.000 | |
SP2 vs. Pa1 | 2.739 | 0.4051041 | 6.76 | 0.000 | |
SP3 vs. Pa1 | 3.182 | 0.4051041 | 7.85 | 0.000 | |
SP1 vs. Pa2 | 2.055 | 0.4051041 | 5.07 | 0.000 | |
SP2 vs. Pa2 | 2.46 | 0.4051041 | 6.07 | 0.000 | |
SP3 vs. Pa2 | 2.903 | 0.4051041 | 7.17 | 0.000 | |
SP1 vs. Pa3 | 1.784 | 0.4051041 | 4.40 | 0.001 | |
SP2 vs. Pa3 | 2.189 | 0.4051041 | 5.40 | 0.000 | |
SP3 vs. Pa3 | 2.632 | 0.4051041 | 6.50 | 0.000 | |
N | Pa1 vs. MEF1 | −38.79 | 5.596977 | −6.93 | 0.000 |
Pa1 vs. MEF2 | −45.736 | 5.596977 | −8.17 | 0.000 | |
Pa2 vs. MEF2 | −25.783 | 5.596977 | −4.61 | 0.000 | |
Pa3 vs. MEF2 | −21.937 | 5.596977 | −3.92 | 0.006 | |
Pa1 vs. MEF3 | −37.81 | 5.596977 | −6.76 | 0.000 | |
Pa2 vs. Pa1 | 19.953 | 5.596977 | 3.56 | 0.017 | |
Pa3 vs. Pa1 | 23.799 | 5.596977 | 4.25 | 0.002 | |
SP1 vs. Pa1 | 32.126 | 5.596977 | 5.74 | 0.000 | |
SP2 vs. Pa1 | 36.589 | 5.596977 | 6.54 | 0.000 | |
SP3 vs. Pa1 | 46.809 | 5.596977 | 8.36 | 0.000 | |
SP3 vs. Pa2 | 26.856 | 5.596977 | 4.80 | 0.000 | |
SP3 vs. Pa3 | 23.01 | 5.596977 | 4.11 | 0.003 |
Season and Land Use System | 2019–2020 | 2019–2020 |
---|---|---|
Mean Density (Ind·m−2) ± SE | Mean Biomass (g m−2) ± SE | |
Winter | ||
Pa | 6.4 ± 0.16 | 4.5 ± 0.11 |
SP | 87.47 ± 1.05 | 20.63 ± 0.29 |
MEF | 64 ± 0.85 | 24.7 ± 0.27 |
Spring | ||
Pa | 35.2 ± 0.47 | 12.98 ± 0.24 |
SP | 60.8 ± 1.38 | 16.75 ± 0.22 |
MEF | 120.54 ± 0.50 | 20.08 ± 0.28 |
Summer | ||
Pa | 3.2 ± 0.14 | 1.54 ± 0.05 |
SP | 37.32 ± 0.44 | 24.85 ± 0.39 |
MEF | 157.87 ± 1.76 | 35.75 ± 0.31 |
Monsoon | ||
Pa | 22.4 ± 0.46 | 3.93 ± 0.11 |
SP | 68.27 ± 0.94 | 36.91 ± 0.56 |
MEF | 230.4 ± 2.38 | 43.06 ± 0.51 |
Autumn | ||
Pa | 10.67 ± 0.41 | 8.87 ± 0.21 |
SP | 52.27 ± 0.52 | 25.7 ± 0.23 |
MEF | 181.34 ± 2.75 | 32.43 ± 0.20 |
Total | 1138.15 ind·m−2 | 312.68 g m−2 |
Earthworm Species | Pa | SP | MEF | |||
---|---|---|---|---|---|---|
Ind·m−2 Mean ± SE | g m−2 Mean ± SE | Ind·m−2 Mean ± SE | g m−2 Mean ± SE | Ind·m−2 Mean ± SE | g m−2 Mean ± SE | |
A. corticis | 45.87 ± 0.29 | 24.65 ± 0.33 | 217.6 ± 2.59 | 102.67 ± 0.80 | 109.87 ± 1.37 | 37.36 ± 0.90 |
A. rosea | 8.53 ± 0.23 | 1.66 ± 0.07 | 6.4 ± 0.19 | 0.92 ± 0.02 | 605.87 ± 7.44 | 101.33 ± 2.18 |
D. japonica | 12.8 ± 0.27 | 2.03 ± 0.08 | 20.27 ± 0.34 | 9.84 ± 0.39 | 20.27 ± 0.58 | 11.69 ± 0.20 |
M. houlleti | 1.07 ± 0.04 | 0.51 ± 0.02 | 43.73 ± 0.37 | 7.83 ± 0.27 | 12.8 ± 0.32 | 4.4 ± 0.15 |
M. birmanica | 6.4 ± 0.155 | 2.24 ± 0.09 | 8.53 ± 0.24 | 3.01 ± 0.10 | 1.07 ± 0.06 | 0.17 ± 0.01 |
E. fetida | - | - | 9.6 ± 0.24 | 0.57 ± 0.02 | 4.27 ± 0.15 | 1.07 ± 0.06 |
L. pusillus | 3.2 ± 0.09 | 0.73 ± 0.02 | - | - | - | - |
Total | 77.87 | 31.82 | 306.13 | 124.84 | 754.15 | 156.02 |
Earthworm Family/Species | Ecological Category | Pa | SP | MEF | ||||
---|---|---|---|---|---|---|---|---|
Ind·m−2 | RD% | Ind·m−2 | RD% | Ind·m−2 | RD% | |||
Megascolecidae | A. cortices | Epi-endogeic | 45.87 | 58.91 | 217.6 | 71.08 | 109.87 | 14.57 |
Lumbricidae | A. rosea | Endogeic | 8.53 | 10.95 | 6.4 | 2.09 | 605.87 | 80.34 |
Moniligasteridae | D. japonica | Endogeic | 12.8 | 16.44 | 20.27 | 6.62 | 20.27 | 2.69 |
Megascolecidae | M. houlleti | Epi-endogeic | 1.07 | 1.37 | 43.73 | 14.28 | 12.8 | 1.69 |
Megascolecidae | M. birmanica | Endogeic | 6.4 | 8.22 | 8.53 | 2.79 | 1.07 | 0.14 |
Lumbricidae | E. fetida | Epigeic | - | - | 9.6 | 3.14 | 4.27 | 0.57 |
Octochaetidae | L. pusillus | Endogeic | 3.2 | 4.11 | - | - | ||
Total | 77.87 | 100 | 306.13 | 100 | 754.15 | 100 |
Earthworm Species and Parameter of Alpha Diversity | Different Land Use Systems | ||
---|---|---|---|
Pa | SP | MEF | |
A. cortices | 43 | 204 | 103 |
A. rosea | 8 | 6 | 568 |
D. japonica | 12 | 19 | 19 |
M. houlleti | 1 | 41 | 12 |
M. birmanica | 6 | 8 | 1 |
E. fetida | - | 9 | 4 |
L. pusillus | 3 | - | - |
Total number of individuals | 73 | 287 | 707 |
Shannon index of diversity (H′) | 1.25 | 0.99 | 0.661 |
Index of evenness (J′) | 0.696 | 0.552 | 0.369 |
Margalef species richness index (R) | 1.165 | 0.883 | 0.762 |
Index of dominance (D) | 0.39 | 0.53 | 0.67 |
Species richness (n) | 6 | 6 | 6 |
Population Parameter | Land Use System | ||
---|---|---|---|
Pa | SP | MEF | |
Density (ind·m−2) | 77.87 | 306.13 | 754.15 |
Biomass (g m−2) | 31.82 | 124.84 | 156.02 |
Diversity parameter | |||
Shannon index of diversity (H′) | 1.25 | 0.99 | 0.661 |
Index of evenness (J′) | 0.696 | 0.552 | 0.369 |
Margalef species richness index (R) | 1.165 | 0.883 | 0.762 |
Index of dominance (D) | 0.39 | 0.53 | 0.67 |
Species richness (n) | 6 | 6 | 6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gudeta, K.; Bhagat, A.; Julka, J.M.; Bhat, S.A.; Sharma, G.K.; Bantihun, G.; Amarowicz, R.; Belina, M. Impact of Aboveground Vegetation on Abundance, Diversity, and Biomass of Earthworms in Selected Land Use Systems as a Model of Synchrony between Aboveground and Belowground Habitats in Mid-Himalaya, India. Soil Syst. 2022, 6, 76. https://doi.org/10.3390/soilsystems6040076
Gudeta K, Bhagat A, Julka JM, Bhat SA, Sharma GK, Bantihun G, Amarowicz R, Belina M. Impact of Aboveground Vegetation on Abundance, Diversity, and Biomass of Earthworms in Selected Land Use Systems as a Model of Synchrony between Aboveground and Belowground Habitats in Mid-Himalaya, India. Soil Systems. 2022; 6(4):76. https://doi.org/10.3390/soilsystems6040076
Chicago/Turabian StyleGudeta, Kasahun, Ankeet Bhagat, Jatinder Mohan Julka, Sartaj Ahmad Bhat, Gopal Krishan Sharma, Getachew Bantihun, Ryszard Amarowicz, and Merga Belina. 2022. "Impact of Aboveground Vegetation on Abundance, Diversity, and Biomass of Earthworms in Selected Land Use Systems as a Model of Synchrony between Aboveground and Belowground Habitats in Mid-Himalaya, India" Soil Systems 6, no. 4: 76. https://doi.org/10.3390/soilsystems6040076
APA StyleGudeta, K., Bhagat, A., Julka, J. M., Bhat, S. A., Sharma, G. K., Bantihun, G., Amarowicz, R., & Belina, M. (2022). Impact of Aboveground Vegetation on Abundance, Diversity, and Biomass of Earthworms in Selected Land Use Systems as a Model of Synchrony between Aboveground and Belowground Habitats in Mid-Himalaya, India. Soil Systems, 6(4), 76. https://doi.org/10.3390/soilsystems6040076