Soil Diversity of the Island of Gogland in the Gulf of Finland: History of Land Development and Current Status
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. The History of Gogland Land Development and Reclamation
3.2. Soil Formation Factors at the Island of Gogland
3.3. Pedo-Environmental Characteristics of Gogland
- The potential of location advantage—the island is located in the center of the Gulf of Finland, equally distant from the largest port cities of northern and southern coasts of the Gulf of Finland. There are sea routes along the island leading to the largest cities in the region;
- The territorial potential—a huge area of the island, exceeding the area of the island of Kotlin; it has great potential in the structure of territorial planning of the entire region;
- The recreational potential—a diverse flora and fauna composition, picturesque landscapes and a uniqueness of the entire natural complex as a whole, these are former Finnish settlements where residents worked and rested;
- The social and cultural potential—the island’s history, existing for millennia, creates a rich cultural heritage, which is represented in the natural monuments, culture, and scientific achievements;
- The research potential—the group of external islands of the Gulf of Finland is an exclusive object of research in various fields of scientific activity. They may include: archeology, both underwater and terrestrial; botany; geology; meteorology; astronomy; biology; geography; history and other sciences. This is confirmed by the great interest of the Russian Geographical Society;
- The economic potential—the development of Gogland territory will strengthen the economic and touristic basis of the Leningrad region;
- The touristic potential—all of the above factors have a favorable effect on tourism development, both domestic (including agrotourism in abandoned arable lands) and international;
- The yacht potential—the island based on its location is interesting as an intermediate stopover point for small boats running between the ports of the Gulf of Finland.
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Smith, P.; Cotrufo, M.F.; Rumpel, C.; Paustian, K.; Kuikman, P.J. Biogeochemical cycles and biodiversity as key drivers of ecosystem services provided by soils. Soil 2015, 1, 665–685. [Google Scholar] [CrossRef] [Green Version]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 11, 5266–5270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bardgett, R.D.; van der Putten, W.H. Belowground biodiversity and ecosystem functioning. Nature 2014, 515, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Brussaard, L.; de Ruiter, P.C.; Brown, G.G. Soil biodiversity for agricultural sustainability. Agric. Ecosyst. Environ. 2007, 121, 233–244. [Google Scholar] [CrossRef]
- Krasilnikov, P.V.; Gerasimova, M.I.; Golovanov, D.L.; Konyushkova, M.V.; Sorokin, A.S.; Sidorova, V.A. Pedodiversity and its significance in the context of modern soil geography. Eurasian Soil Sci. 2018, 51, 1–13. [Google Scholar] [CrossRef]
- Dauber, J.; Hirsch, M.; Simmering, D.; Waldhardt, R.; Otte, A.; Wolters, V. Landscape structure as an indicator of biodiversity: Matrix effects on species richness. Agric. Ecosyst. Environ. 2003, 98, 321–329. [Google Scholar] [CrossRef]
- Zalibekov, Z.G.; Biarslanov, A.B.; Galimova, U.M. The concept of soils’ biological diversity and principle features of its contemporary development. Arid Ecosyst. 2014, 20, 5–17. [Google Scholar]
- Amundson, R.; Guo, Y.; Gong, P. Soil diversity and land use in the United States. Ecosystems 2003, 6, 470–482. [Google Scholar] [CrossRef]
- Dobrovolsky, G.V.; Chernov, I.Y.; Bobrov, A.A.; Dobrovolskaya, T.G.; Lysak, L.V.; Onipchenko, V.G.; Gongalsky, K.B.; Zaitsev, A.S.; Terekhova, V.A.; Sokolova, T.A.; et al. The Role of Soil in the Formation and Conservation of Biological Diversity; Association of Scientific Publications KMK: Moscow, Russia, 2011; 273p. [Google Scholar]
- Bardgett, R.D. Causes and consequences of biological diversity in soil. Zoology 2002, 105, 367–374. [Google Scholar] [CrossRef]
- Chernova, O.V. Representativity of natural soils in protected natural areas of the Russian Federation. Izv. RAN Geogr. Ser. 2012, 2, 30–37. [Google Scholar]
- Chernova, O.V.; Snakin, V.V.; Prisyazhnaya, A.A. Soil cover as a fundamental basis for the conservation of landscape and biological diversity of natural complexes of protected areas. Use Prot. Nat. Resour. Russ. 2012, 6, 50–56. [Google Scholar]
- Blume, H.-P.; Leinweber, P. Plaggen Soils: Landscape history, properties, and classification. J. Plant Nutr. Soil Sci. 2004, 167, 319–327. [Google Scholar] [CrossRef]
- Giani, L.; Chertov, O.; Gebhardt, C.; Kalinina, O.; Nadporozhskaya, M.; Tolkdorf-Lienemanna, E. Plagganthrepts in northwest Russia? Genesis, properties and classification. Geoderma 2004, 121, 113–122. [Google Scholar] [CrossRef]
- Prisvazhnaya, A.A.; Khrisanov, V.R.; Mitenko, G.V.; Chernova, O.V.; Snakin, V.V. The analysis of a soil diversity of nature reserves and national parks of Russia (new territories). Geod. Cartogr. 2016, 12, 6–14. [Google Scholar] [CrossRef]
- Snakin, V.V.; Chernova, O.V.; Prisyazhnaya, A.A. Ways to reduce the risk of loss of soil diversity. Probl. Risk Anal. 2019, 16, 28–40. [Google Scholar] [CrossRef]
- Gray, C.L.; Hill, S.L.L.; Newbold, T.; Hudson, L.N.; Börger, L.; Contu, S.; Hoskins, A.J.F.; Purvis, A.; Scharlemann, J.P.W. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 2016, 72, 12306. [Google Scholar] [CrossRef] [Green Version]
- Adamovich, T.A.; Tovstik, E.V.; Soloveva, E.S.; Ashikhmina, T.Y.; Berezin, G.I.; Prokashev, A.M.; Savinykh, V.P. Assessment of the state of soils in specially protected natural reservations of the Kirov region. Theor. Appl. Ecol. 2018, 4, 46–53. [Google Scholar] [CrossRef]
- Gaston, K.J.; Jackson, S.F.; Cantú-Salazar, L.; Cruz-Piñón, G. The ecological performance of protected areas. Annu. Rev. Ecol. Evol. Syst. 2008, 39, 93–113. [Google Scholar] [CrossRef] [Green Version]
- Watson, J.E.M.; Darling, E.S.; Venter, O.; Maron, M.; Walston, J.; Possingham, H.P.; Dudley, N.; Hockings, M.; Barnes, M.; Brooks, T.M. Bolder science needed now for protected areas. Conserv. Biol. 2016, 30, 243–248. [Google Scholar] [CrossRef]
- Nosov, G.A. Protected Nature of the Karelian Isthmus; ANO NPO Professional: St. Petersburg, Russia, 2004; 312p. [Google Scholar]
- Belyaev, A.M. The Mystery of the Gogland Island; SPbSU: St. Petersburg, Russia, 2008; p. 93. [Google Scholar]
- Chebykina, E.; Shamilishvilly, G.; Kouzov, S.; Abakumov, E. Soils of external islands of the Gulf of Finland: Soil pollution status and dynamics in abandoned agricultural ecosystems. Soil Water Res. 2022, 17, 243–250. [Google Scholar] [CrossRef]
- Schastnaya, L.S. Soil Cover//Gogland Island. Results of the Survey of the Natural Complexes; Gaginskaya, A.R., Noskov, G.A., Eds.; Tuskarora: St. Petersburg, Russia, 2006; pp. 12–13. [Google Scholar]
- Agapov, I.A.; Mizin, V.G. Natural underground cavities of the Hogland island in the Gulf of Finland (Leningrad region, Russia): The results of 2005–2019 study. In Proceedings of the X International Scientific Correspondence Conference “Speleology and Spelestology”, Naberezhnye Chelny, Russia, 7 December 2019; NGPU: Naberezhnye Chelny, Russia, 2019; pp. 87–95. [Google Scholar]
- Ramsay, W. Om Hohlands geologiska byggnad. Geol. Foreingens Tidskr. 1890, 12, 471–490. [Google Scholar]
- Kranck, E.H. A stereogram of Suursaari (Hogland). Fennia 1928, 50, 3–8. [Google Scholar]
- Belyaev, A.M. Petrology of volcanic rocks of the Rapakivi formation (Gogland Island). Reg. Geol. Metallog. 2013, 55, 28–36. [Google Scholar]
- Bulavko, L.F. Geological structure. In Gogland Island. Results of the Survey of The Natural Complexes; Gaginskaya, A.R., Noskov, G.A., Eds.; Tuskarora: St. Petersburg, Russia, 2006; pp. 13–14. [Google Scholar]
- Heinsalu, A.; Veski, S.; Vassiljev, J. Palaeoenvironment and shoreline displacement on Suursaari Island, the Gulf of Finland. Tallin Bull. Geol. Soc. Finl. 2000, 21–46. [Google Scholar] [CrossRef]
- Makarova, M.A. Geobotanical survey of Gogland Island (Gulf of Finland). In Actual Problems of Geobotany. III All-Russian School-Conference. II Part; KarRC RAS: Petrozavodsk, Russia, 2007; pp. 15–19. [Google Scholar]
- Glazkova, E.A. A Brief Essay on the Flora and Vegetation of Gogland Island (Gulf of Finland). Bot. Mag. 1996, 81, 75–80. [Google Scholar]
- Glazkova, E.A. Flora of the Islands of the Eastern Part of the Gulf of Finland: Composition and Analysis; St. Petersbuirg University Press: St. Petersburg, Russia, 2001; 348p. [Google Scholar]
- Vorobyova, L.A. Theory and Practice of Soil Chemical Analysis; GEOS: Moscow, Russia, 2006; p. 400. [Google Scholar]
- Rastvorova, O.G.; Andreev, D.P.; Gagarina, E.I. Soil Chemical Analysis. Workbook, Publishing house of Saint-Petersburg State University: Saint-Petersburg, Russia, 1995; p. 263.
- Shishov, L.L.; Tonkonogov, V.D. Classification and Diagnostics of Soils in Russia; V.V. Dokuchaev Soil Science Institute: Moscow, Russia, 2004; p. 341. [Google Scholar]
- WRB (World Reference Base for Soil Resources): International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106. FAO: Rome, Italy, 2015.
- Muller, G. Schwermetalle in den Sedimenten des Rheins. Veranderungen seit 1971. Umsch. Wiss. Tech. 1979, 79, 778–783. [Google Scholar]
- Agapov, I.A. Artificial underground objects of Gogland (Russia) in the Gulf of Finland: Preliminary study results. Speleol. Spelestol. 2017, 8, 177–182. [Google Scholar]
- Saksa, A.I. Islands of the eastern part of the Gulf of Finland in the context of archaeological sites in Estonia, Finland and the Karelian Isthmus. Bull. Inst. Hist. Mater. Cult. RAS SPb 2014, 4, 287–292. [Google Scholar]
- Platonov, A.V. Tragedies of the Gulf of Finland; Eksmo: Moscow, Russia; Terra Fantastica: Saint-Petersburg, Russia, 2005. [Google Scholar]
- Vlasov, L.V. The long-suffering island in the Gulf of Finland. Zvezda 1999, 8. Available online: http://magazines.russ.ru/zvezda/1999/8/vlasov.html (accessed on 10 November 2022).
- Verbovoy, O.I.; Levashko, V.O. Admirals of the Andreevsky Flag; Leningrad State University Named after A.S. Pushkin: Saint-Petersburg, Russia, 2005. [Google Scholar]
- Weiner, B.A. Soviet Naval Transport during the Great Patriotic War; Military Publishing: Moscow, Russia, 1989. [Google Scholar]
- Terekhov, E.N.; Yurmanov, A.A. Unusual (ice?) formations in the area of the Vneshniye ostrova of Finnish bay. Izv. Rus. Geogr. Obs. 2019, 151, 81–93. [Google Scholar] [CrossRef]
- Dauwalter, V.A. Bottom Sediments Geoecology of Lakes; Publishing house of Bauman Moscow State Technical University: Murmansk, Russia, 2012; p. 242. [Google Scholar]
- Aparin, B.F.; Rusakov, A.V. Soils and soil cover of the eastern semicircle zone of the beltway around St. Petersburg. Bull. St. Petersburg Univ. 2003, 3, 103–116. [Google Scholar]
- Matinyan, N.N.; Reimann, K.; Bakhmatova, K.A.; Rusakov, A.V. Background content of heavy metals and arsenic in arable soils of the North-West of Russia. Bull. St. Petersburg Univ. 2007, 3, 123–134. [Google Scholar]
No. of Soil Pit | Horizon | Cu | Pb | Zn | Cd | Ni | Cr | Zc | Trace Elements Status |
---|---|---|---|---|---|---|---|---|---|
Humus petrozem formed on rock material (Leptosol (Humic)—WRB) | |||||||||
1 | W | 0.19 −7.15 | 1.03 −4.80 | 3.16 −4.35 | 0.07 −1.94 | 0.40 −5.84 | 0.74 −4.66 | −3.40 | allowable |
Dry−histic lithozem formed on rock material (Histic Leptosol—WRB) | |||||||||
3 | O | 5.38 −2.33 | 39.10 0.45 | 25.90 −1.32 | 0.47 0.89 | 3.90 −2.56 | 3.00 −2.64 | 2.00 | allowable |
3 | TJ | 0.65 −5.38 | 2.94 −3.29 | 6.93 −3.22 | 0.06 −2.09 | 0.60 −5.26 | 0.90 −4.38 | −3.30 | allowable |
Petrozem formed on rock material (Leptosol—WRB) | |||||||||
4 | O | 0.97 −4.80 | 10.50 −1.45 | 11.00 −2.56 | 0.11 −1.17 | 0.96 −4.58 | 0.95 −4.31 | −2.40 | allowable |
Sandy loam histic−podzol−eluvozem formed on a bouldery moraine (Histic Cambisol—WRB) | |||||||||
5 | TE | 0.89 −4.92 | 3.06 −3.23 | 6.75 −3.26 | 0.13 −0.94 | 0.80 −4.84 | 0.92 −4.35 | −2.80 | allowable |
5 | T | 0.65 −5.38 | 3.21 −3.16 | 5.04 −3.68 | 0.06 −2.13 | 0.83 −4.79 | 1.16 −4.01 | −3.30 | allowable |
Illuvial−ferruginous podzol formed on a sandy loam bouldery moraine (Albic Podzol—WRB) | |||||||||
6 | O | 0.52 −5.70 | 3.38 −3.08 | 5.65 −3.52 | 0.14 −0.91 | 0.66 −5.12 | 0.67 −4.81 | −2.80 | allowable |
6 | E | 0.13 −7.70 | 0.98 −4.87 | 2.91 −4.47 | 0.13 −0.98 | 0.34 −6.06 | 0.48 −5.28 | −3.10 | allowable |
6 | BF | 0.65 −5.38 | 2.94 −3.29 | 6.93 −3.22 | 0.06 −2.09 | 0.60 −5.26 | 0.90 −4.38 | −3.30 | allowable |
6 | C | 0.20 −7.08 | 0.33 −6.43 | 3.88 −4.06 | 0.13 −0.97 | 0.33 −6.12 | 0.77 −4.61 | −3.10 | allowable |
Gley soddy−podbur on stratified marine sandy−loamy sediments (Entic Stagnic Tidalic Gleyic Podzol—WRB) | |||||||||
9 | AY | 15.65 −0.79 | 207.30 2.85 | 86.00 0.41 | 0.17 −0.57 | 1.89 −3.60 | 9.47 −0.99 | 10.80 | allowable |
9 | BF | 39.22 0.54 | 147.50 2.36 | 81.40 0.33 | 0.17 −0.58 | 1.44 −4.00 | 7.37 −1.35 | 8.90 | allowable |
9 | C | 0.32 −6.40 | 0.79 −5.17 | 5.85 −3.47 | 0.14 −0.87 | 0.40 −5.84 | 0.88 −4.41 | −3.00 | allowable |
Post hoc test | p < 0.05 | p < 0.05 | p < 0.05 | 0.15 | p < 0.05 | p < 0.05 | p < 0.05 | ||
Significance of differences | Sign. | Sign. | Sign. | Insign. | Sign. | Sign. | Sign. |
Soil | Mn | Zn | Cu | Co | Mo |
---|---|---|---|---|---|
Northwest and North of the European part of Russia | |||||
Soddy-podzolic soils (Umbric Albeluvisols—WRB) | 62.00–274.00 | 0.90–1.50 | 2.70–5.50 | 0.50–1.13 | 0.13–0.16 |
Peaty-podzolic soils (Histic Albeluvisols—WRB) | 4.00–83.00 | 0.68–2.90 | 1.40–2.00 | 0.06–0.33 | 0.10–0.33 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chebykina, E.; Abakumov, E.; Shamilishvilly, G.; Kouzov, S. Soil Diversity of the Island of Gogland in the Gulf of Finland: History of Land Development and Current Status. Soil Syst. 2022, 6, 85. https://doi.org/10.3390/soilsystems6040085
Chebykina E, Abakumov E, Shamilishvilly G, Kouzov S. Soil Diversity of the Island of Gogland in the Gulf of Finland: History of Land Development and Current Status. Soil Systems. 2022; 6(4):85. https://doi.org/10.3390/soilsystems6040085
Chicago/Turabian StyleChebykina, Ekaterina, Evgeny Abakumov, George Shamilishvilly, and Sergey Kouzov. 2022. "Soil Diversity of the Island of Gogland in the Gulf of Finland: History of Land Development and Current Status" Soil Systems 6, no. 4: 85. https://doi.org/10.3390/soilsystems6040085
APA StyleChebykina, E., Abakumov, E., Shamilishvilly, G., & Kouzov, S. (2022). Soil Diversity of the Island of Gogland in the Gulf of Finland: History of Land Development and Current Status. Soil Systems, 6(4), 85. https://doi.org/10.3390/soilsystems6040085