Problems, Management, and Prospects of Acid Sulphate Soils in the Ganges Delta
Abstract
:1. Introduction
2. General Characteristics of the Acid Sulphate Soils of the Ganges Delta
2.1. Formation and Distribution of Acid Sulphate Soils in the Ganges Delta
2.2. Distinguishing Characteristics of Acid Sulphate Soils of the Ganges Delta
2.3. Recent Case Study on Soil Profiles of Acid Sulphate Soils in the Ganges Delta
2.4. Problems of Acid Sulphate Soils of the Ganges Delta
2.4.1. Poor Physical Properties
2.4.2. Nutrient Deficiencies and Toxicities
2.4.3. Soil Salinity
2.4.4. Variable Acidity in Variable Depths
2.4.5. Adverse Impact on Ecosystem and Biodiversity
3. Management of Acid Sulphate Soils of the Ganges Delta
3.1. Chemical and Engineering Measures
3.1.1. Liming of Acid Sulphate Soils
3.1.2. Integrated Nutrient Management
3.1.3. Engineering Measures
3.2. Agronomic Measures
3.2.1. Soil Profile Distribution during Land Modification
3.2.2. Green/Organic Manuring and Mulching
3.2.3. Selection of Tolerant Crops and Varieties
3.2.4. Leaching after Drainage/Aeration
3.2.5. Maintaining a High Water Table
3.2.6. Microbial Remediation
3.2.7. Wetland Rice Cultivation under Submergence
3.3. Integration of Green Manuring with Application of Soil Amendments
4. Acid Sulphate Soils from the Perspectives of the Ganges Delta
4.1. Research Outlook on Acid Sulphate Soils
4.2. Awareness vis-à-vis Extension of Developed Management Strategies
4.3. Policy Framework for Sustainable Use of ASS
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- FAO. Soil Is a Non-Renewable Resource Its Preservation Is Essential for Food Security and Our Sustainable Future. 2015. Available online: https://www.fao.org/3/i4373e/i4373e.pdf (accessed on 3 July 2022).
- Zabel, F.; Delzeit, R.; Schneider, J.; Seppelt, R.; Mauser, W.; Václavík, T. Global impacts of future cropland expansion and intensification on agricultural markets and biodiversity. Nat. Commun. 2019, 10, 2844. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lal, R.; Bouma, J.; Brevik, E.; Dawson, L.; Field, D.J.; Glaser, B.; Hatano, R.; Hartemink, A.E.; Kosaki, T.; Lascelles, B.; et al. Soils and sustainable development goals of the United Nations: An International Union of Soil Sciences perspective. Geoderma Reg. 2021, 25, e00398. [Google Scholar] [CrossRef]
- Bouma, J.; Pinto-Correia, T.; Veerman, C. Assessing the Role of Soils When Developing Sustainable Agricultural Production Systems Focused on Achieving the UN-SDGs and the EU Green Deal. Soil Syst. 2021, 5, 56. [Google Scholar] [CrossRef]
- Sonderegger, T.; Pfister, S.; Hellweg, S. Assessing impacts on the natural resource soil in life cycle assessment: Methods for compaction and water erosion. Environ. Sci. Technol. 2020, 54, 6496–6507. [Google Scholar] [CrossRef] [PubMed]
- Sun, R.; Wang, X.; Tian, Y.; Guo, K.; Feng, X.; Sun, H.; Liu, X.; Liu, B. Long-term amelioration practices reshape the soil microbiome in a coastal saline soil and alter the richness and vertical distribution differently among bacterial, archaeal, and fungal communities. Front. Microbiol. 2022, 12, 768203. [Google Scholar] [CrossRef] [PubMed]
- Tuğrul, K.M. Soil Management in Sustainable Agriculture. In Sustainable Crop Production; Hasanuzzaman, M., Filho, M.C.M.T., Fujita, M., Nogueira, T.A.R., Eds.; IntechOpen: London, UK, 2019. [Google Scholar] [CrossRef] [Green Version]
- Wood, S.; Sebastian, K.; Scherr, S.J. Pilot Analysis of Global Ecosystems: Agroecosystems; WRI and IFPRI: Washington, DC, USA, 2000. [Google Scholar]
- Sumner, M.E.; Noble, A.D. Soil acidification: The world story. In Handbook of Soil Acidity; Rengel, Z., Ed.; Marcel Dekker Inc.: New York, NY, USA, 2003. [Google Scholar]
- Osman, K.T. Acid soils and acid sulfate soils. In Management of Soil Problems; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Iqbal, M.T. Acid tolerance mechanism in soil grown plants. Malays. J. Soil Sci. 2012, 16, 1–21. [Google Scholar]
- Panda, S.K.; Matsumoto, H. Molecular physiology of aluminium toxicity and tolerance in plants. Bot. Rev. 2007, 73, 326. [Google Scholar] [CrossRef]
- Sade, H.; Meriga, B.; Surapu, V.; Gadi, J.; Sunita, M.S.L.; Suravajhala, P.; Kavi Kishor, P.B. Toxicity and tolerance of aluminum in plants: Tailoring plants to suit to acid soils. Biometals 2016, 29, 187–210. [Google Scholar] [CrossRef]
- Bian, M.; Zhou, M.; Sun, D.; Li, C. Molecular approaches unravel the mechanism of acid soil tolerance in plants. Crop J. 2013, 1, 91–104. [Google Scholar] [CrossRef]
- Maji, A.K.; Reddy, G.P.O.; Sarkar, D. Acid Soils of India—Their Extent and Spatial Variability; NBSS Publication No. 145; National Bureau of Soil Survey and Land Use Planning: Nagpur, India, 2012; p. 138.
- Prokopovich, N.P. Cat clays. In General Geology. Encyclopedia of Earth Science; Springer: Boston, MA, USA, 1988; pp. 65–69. [Google Scholar] [CrossRef]
- Dent, D. Acid Sulphate Soils: A Baseline for Research and Development; ILRI Publication: Wageningen, The Netherland, 1986. [Google Scholar]
- Shamshuddin, J.; Azura, A.E.; Shazana, M.A.R.S.; Fauziah, C.I.; Panhwar, Q.A.; Naher, U.A. Properties and management of acid sulfate soils in Southeast Asia for sustainable cultivation of rice, oil palm, and cocoa. Adv. Agron. 2014, 124, 91–142. [Google Scholar] [CrossRef]
- Fanning, D.S.; Rabenhorst, M.C. Rational for updating the definitions of sulfidic materials and the sulfuric horizon in soil taxonomy and proposed revised definitions. In Proceedings of the Joint Conference of the 6th International Symposium in Acid Sulfate Soil Conference and the Acid Rock Drainage Symposium, Guangzhou, China, 16–20 September 2008; Lin, C., Huang, S., Li, Y., Eds.; Guangdong Science and Technology Press: Guangzhou, China, 2008; pp. 53–61. [Google Scholar]
- Soil Survey Staff. Keys to Soil Taxonomy; United States Department of Agriculture: Washington, DC, USA, 2010.
- Khan, M.H.R.; Kabir, S.M.; Bhuiyan, M.M.A.; Blume, H.P.; Oki, Y.; Adachi, T. Reclamation of a Badarkhali hot spot of acid sulfate soil in relation to rice production by basic slag and aggregate size treatments under modified plain-ridge-ditch techniques. Soil Sci. Plant Nutr. 2008, 54, 574–586. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, A.K.; Sarkar, D. Occurrence of acid saline soils in coastal area in Sundarban area of West Bengal. J. Indian Soc. Soil Sci. 1987, 35, 542–544. [Google Scholar]
- Bandyopadhyay, B.K.; Maji, B.; Sen, H.S.; Tyagi, N.K. Coastal Soils of West Bengal—Their Nature, Distribution and Characteristics; Central Soil Salinity Research Institute: Karnal, India, 2003; 62p.
- Stroud, J.L.; Collins, R.N. Improved detection of coastal acid sulfate soil hotsopts through biomonitoring of metal(loid) accumulation in water lilies (Nymphea capensis). Sci. Total Environ. 2014, 487, 500–505. [Google Scholar] [CrossRef] [PubMed]
- Mainuddin, M.; Bell, R.W.; Gaydon, D.S.; Kirby, J.M.; Barrett-Lennard, E.G.; Razzaque Akanda, M.A.; Maji, B.; Ali, M.A.; Brahmachari, K.; Maniruzzaman, M.; et al. An overview of the Ganges coastal zone: Climate, hydrology, land use, and vulnerability. J. Indian Soc. Coast. Agric. Res. 2019, 37, 1–11. [Google Scholar]
- Ismail, A.M.; Singh, S.; Sarangi, S.K.; Srivastava, A.K.; Bhowmick, M.K. Agricultural System Transformation for Food and Income Security in Coastal Zones. In Transforming Coastal Zone for Sustainable Food and Income Security; Lama, T.D., Burman, D., Mandal, U.K., Sarangi, S.K., Sen, H., Eds.; Springer: Cham, Switzerland, 2022. [Google Scholar] [CrossRef]
- Yu, Y.; Mainuddin, M.; Maniruzzaman, M.; Mandal, U.K.; Sarangi, S.K. Rainfall and temperature characteristics in the coastal zones of Bangladesh and West Bengal, India. J. Indian Soc. Coastal Agric. Res. 2019, 37, 12–23. [Google Scholar]
- Mainuddin, M.; Karim, F.; Gaydon, D.S.; Kirby, J.M. Impact of climate change and management strategies on water and salt balance of the polders and islands in the Ganges delta. Sci. Rep. 2021, 11, 7041. [Google Scholar] [CrossRef]
- Ebimol, N.L.; Suresh, P.R.; Binitha, N.K.; Santhi, G.R. Management of iron and aluminium toxicity in acid sulphate soils of Kuttanad. Int. J. Curr. Microbiol. App. Sci. 2017, 6, 1496–1503. [Google Scholar] [CrossRef]
- Maji, B.; Panwar, N.R.; Biswas, A.K. Ecology and soil health of coastal ecosystem. J. Indian Soc. Coast. Agric. Res. 2004, 22, 35–42. [Google Scholar]
- Vithana, C.L.; Ulapane, P.A.K.; Chandrajith, R.; Sullivan, L.A.; Bundschuh, J.; Toppler, N.; Ward, N.J.; Senaratne, A. Assessment of the acidification risk of the acid sulfate soil materials in a tropical coastal peat bog: Muthurajawela march, Sri Lanka. Catena 2022, 216, 106396. [Google Scholar] [CrossRef]
- Ghosh, S.; Bakshi, M.; Mitra, S.; Mahanty, S.; Ram, S.S.; Banerjee, S.; Chakraborty, A.; Sudarshan, M.; Bhattacharyya, S.; Chaudhuri, P. Elemental geochemistry in acid sulphate soils—A case study from reclaimed islands of Indian Sundarban. Marine Pollution Bull. 2019, 138, 501–510. [Google Scholar] [CrossRef]
- Martin, M.; Bonifacio, E.; Hossain, K.M.J.; Hug, S.M.I.; Barberis, E. Arsenic fixation and mobilization in the soils of the Ganges and Meghna floodplains: Impact of pedoenvironmental properties. Geoderma 2014, 228–229, 132–141. [Google Scholar] [CrossRef]
- Barbier, E.B.; Hacker, S.D.; Kennedy, C.; Koch, E.W.; Stier, A.C.; Silliman, B.R. The value of estuarine and coastal ecosystem servies. Ecol. Monogr. 2011, 81, 169–193. [Google Scholar] [CrossRef]
- Karananidi, P.; Valente, T.; Braga, M.A.S.; Reepei, M.; Pechy, M.I.N.F.; Wang, Z.; Bachmann, R.T.; Jusop, S.; Som, A.M. Acid sulfate soils decrease surface water quality in coastal area of West Malaysia: Quo vadis? Geoderma Region. 2022, 28, e00467. [Google Scholar] [CrossRef]
- Lindgren, A.; Jonasson, J.K.; Ohrling, C.; Giese, M. Acid sulfate soils and their impact on surface water quality on the Swedish west coast. J. Hydrol. Reg. Stud. 2022, 40, 101019. [Google Scholar] [CrossRef]
- Maji, B.; Bandyopadhyay, B.K. Characterization and classification of coastal soils of various pH groups in Sundarbans, West Bengal. J. Indian Soc. Soil Sci. 1995, 43, 103–107. [Google Scholar]
- van Breemen, N. Redox Processes of Iron and Sulfur Involved in the Formation of Acid Sulfate Soils. In Iron in Soils and Clay Minerals; NATO ASI, Series; Stucki, J.W., Goodman, B.A., Schwertmann, U., Eds.; Springer: Dordrecht, Germany, 1988; Volume 217. [Google Scholar] [CrossRef]
- Fitzpatrick, R.W.; Shand, P.; Mosley, L.M. Acid sulfate soil evoluation models and pedogenic pathways during drought and reflooding cycles in irrigated areas and adjacent natural wetlands. Geoderma 2017, 308, 270–290. [Google Scholar] [CrossRef]
- Karimian, N.; Johnston, S.G.; Burton, E.D. Iron and sulfur cycling in acid sulfate soil wetlands under dynamic redox conditions: A review. Chemosphere 2018, 197, 803–816. [Google Scholar] [CrossRef]
- Boman, A.; Frojdo, S.; Backlund, K.; Astrom, M.E. Impact of isostatic land uplift and artificial drainage on oxidation of brackish-water sediments rich in metastable iron sulfide. Geochim. Cosmochim. Acta 2010, 74, 1268–1281. [Google Scholar] [CrossRef]
- Dent, D.L.; Pons, L.J. A world perspective on acid sulphate soils. Geoderma 1995, 67, 263–276. [Google Scholar] [CrossRef]
- Ljung, K.; Maley, F.; Cook, A.; Weinstein, P. Acid sulfate soils and human health—A millennium ecosystem assessment. Environ. Int. 2009, 35, 1234–1242. [Google Scholar] [CrossRef]
- Bandyopadhyay, B.K.; Maji, B. Nature of acid soils of Sundarbans delta and suitability of classifying them as acid sulphate or potential acid sulphate soils. J. Indian Soc. Soil Sci. 1995, 43, 251–255. [Google Scholar]
- Rahman, S.; Islam, W.; Parveen, Z. Acid sulphate soils of Bangladesh, their characteristics and landuse system. Bangladesh J. Soil Sci. 1990, 21, 1, 53–60. [Google Scholar]
- Rahman, S.; Parveen, Z.; Rouf, A. Characterization of Acid Sulphate Soils from the Mangrove-Floodplains of Bangladesh. 1998. Available online: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.529.1550&rep=rep1&type=pdf (accessed on 24 August 2022).
- Bandyopadhyay, A.K. Leaching of acid saline soils of Sunderban. J. Indian Soc. Soil Sci. 1989, 37, 416–417. [Google Scholar]
- Pal, S.; Laskar, B.K.; De, G.K.; Debnath, N.C. Nature of some acid sulphate soils occurring in the coastal area of West Bengal. J. Indian Soc. Soil Sci. 1991, 39, 56–62. [Google Scholar]
- Burman, D.; Bandyopadhyay, B.K.; Mahanta, K.K. Management of acid sulphate soil of coastal Sundarbans region: Observations under on-farm trial. J. Indian Soc. Coast. Agric. Res. 2010, 28, 8–11. [Google Scholar]
- Srinivasan, R.; Singh, S.K.; Nayak, D.C. Assessment of soil degradations in coastal ecosystem of Sundarbans, West Bengal—A case study. J. Soil Salin. Water Qual. 2017, 9, 257–269. [Google Scholar]
- Khan, M.H.R. Nutrition of rice as influenced by reclamation techniques for acid sulfate soils in Cox’s Bazar. Bangladesh J. Sci. Ind. Res. 2017, 52, 97–106. [Google Scholar] [CrossRef]
- Shamim, A.H.M.; Khan, M.H.R.; Ake, T. Impacts of sulfidic materials on the selected major nutrient uptake by rice plants grown in sulfur deficient soils under pot experiment. J. American Sci. 2009, 5, 9–15. Available online: http://www.sciencepub.net/american/0505/bak/bak/american0502/02_0505_Shamim_am.pdf (accessed on 3 August 2022).
- Rajmohan, N.; Nagarajan, R.; Jayaprakash, M.; Prathapar, S.A. The impact of seasonal waterlogging on the depth-wise distribution of major and trace metals in the soils of the eastern Ganges basin. Catena 2020, 189, 104510. [Google Scholar] [CrossRef]
- Bandyopadhyay, A.K. Effect of long submergence of coastal acid saline soils with and without lime. J. Indian Soc. Coast. Agric. Res. 1987, 5, 401–405. [Google Scholar]
- Srinivasan, R.; Mukhopadhyay, S.; Nayak, D.C.; Singh, S.K. Characterization, classification and evaluation of soil resources in coastal ecosystem—A case study of Gosana block (part), South 24 Parganas, West Bengal. Agropedology 2015, 25, 195–201. [Google Scholar]
- Attanandana, T.; Vacharotayan, S. Acid sulfate soils: Their characteristics, genesis, amelioration and utilization. Southeast Asian Stud. 1986, 24, 154–180. [Google Scholar]
- Ponnamperuma, F.N.; Solvias, J.L. Field amelioration of an acid sulfate soil for rice with manganese dioxide and lime. In Symposium on Acid Sulfate Soils; Dost, H.B.V., Ed.; ILRI Publication: Wageningen, The Netherland, 1982; Volume 32, pp. 213–220. [Google Scholar]
- Bell, R.W.; Mainuddin, M.; Barrett-Lennard, E.G.; Sarangi, S.K.; Maniruzzaman, M.; Brahmachari, K.; Sarker, K.K.; Burman, D.; Gaydon, D.S.; Kirby, J.M.; et al. Cropping systems intensification in the coastal zone of the Ganges Delta: Opportunities and risks. J. Indian Soc. Coast. Agric. Res. 2019, 37, 153–161. [Google Scholar]
- Sarangi, S.K.; Maji, B.; Digar, S.; Burman, D.; Mandal, U.K.; Mahanta, K.K.; Mandal, S. Acid Saline Soil Management in Coastal Region. Technical Bulletin ICAR-CSSRI/Canning Town/2019/9. ICAR-Central Soil Salinity Research Institute, Regional Research Station, Canning Town-743 329, South 24 Parganas, West Bengal, India. 2019, p. 8. Available online: https://www.researchgate.net/publication/348326683_Acid_saline_soil_management_in_coastal_region (accessed on 3 March 2022).
- ICAR-CSSRI, CSI4CZ. Final Report of ACIAR, Australia Funded Project on: Cropping Systems Intensification in the Salt Affected Coastal Zones of Bangladesh and West Bengal, India (CSI4CZ); Sarangi, S.K., Ed.; Indian Council of Agricultural Research (ICAR)-Central Soil Salinity Research Institute: Parganas, India, 2020; p. 94.
- Groenigen, J.W.; Brussaard, L. Soil quality–A critical review. Soil Biol. Biochem. 2018, 120, 105–125. [Google Scholar] [CrossRef]
- Michael, P.S. Ecological impacts and management of acid sulphate soils—A review. Asian J. Water, Environ. Pollut. 2013, 10, 13–24. Available online: https://www.researchgate.net/publication/274139241_Ecological_Impacts_and_Management_of_Acid_Sulphate_Soil_A_Review (accessed on 7 December 2022).
- Matsumoto, S.; Shimada HSasaoka TMiyajima IKusuma, G.J.; Gautama, R.S. Effects of Acid Soils on Plant Growth and Successful Revegetation in the Case of Mine Site. In Soil pH for Nutrient Availability and Crop Performance; IntechOpen: London, UK, 2017. [Google Scholar] [CrossRef] [Green Version]
- Jaiswal, S.K.; Naamala, J.; Dakora, F.D. Nature and mechanisms of aluminium toxicity, tolerance and amelioration in symbiotic legumes and rhizobia. Biol. Fertil. Soils 2018, 54, 309–318. [Google Scholar] [CrossRef]
- Persson, H.; Majdi, H.; Clemensson-Lindell, A. Effects of Acid Deposition on Tree Roots. Ecol. Bull. 1995, 44, 158–167. Available online: http://www.jstor.org/stable/20113159 (accessed on 21 May 2022).
- Evans, C.D.; Jones, T.G.; Burden, A.; Ostle, N.; Zienlinski, P.; Cooper, M.D.A.; Peacock, M.; Clark, J.M.; Oulehle, F.; Cooper, D.; et al. Acidity controls on dissolved organic carbon mobility in organic soils. Glob. Change Biol. 2012, 18, 3317–3331. [Google Scholar] [CrossRef] [Green Version]
- Yu, Q.; Xu, L.; Wang, M.; Xu, S.; Sun, W.; Yang, J.; Shi, Y.; Shi, X.; Xie, X. Decreased soil aggregation and reduced soil organic carbon activity in conventional vegetable fields converted from paddy fields. Eur. J. Soil Sci. 2022, 73, e13222. [Google Scholar] [CrossRef]
- Jumar; Saputra, R.A.; Nugraha, M.I.; Wahyudianur, A. Essential dynamics of rice cultivated under intensification on acid sulfate soils ameliorated with composted oyster mushroom baglog waste. Pertanika Tropical J. Agric. Sci. 2022, 45, 565–586. [Google Scholar] [CrossRef]
- Identifying Acid Sulfate Soils. Available online: https://www.qld.gov.au/environment/land/management/soil/acid-sulfate/identified#physical (accessed on 7 September 2022).
- Identifying Acid Sulfate Soils. Available online: https://www.publications.qld.gov.au/dataset/05c87bc5-6048-4767-85c8-36e660c38b1d/resource/ed232a06-6ec3-425c-91e3-fb25d5141256/download/sn-l61-identifying-acid-sulfate-soils.pdf (accessed on 9 July 2022).
- Dhanya, K.R.; Gladis, R. Acid sulfate soils—Its characteristics and nutrient dynamics. An Asian J. Soil Sci. 2017, 12, 221–227. [Google Scholar] [CrossRef]
- Soil-Nutrient. Available online: https://en.banglapedia.org/index.php/Soil-Nutrient (accessed on 27 August 2022).
- Rahman, M.A.; Chikushi, J.; Duxbury, J.M.; Meisner, C.A.; Lausen, J.G.; Yasunaga, E. Chemical control of soil environment by lime and nutrients to improve the productivity of acidic alluvial soils under rice-wheat cropping system in Bangladesh. Environ. Cont. Biol. 2005, 43, 259–266. [Google Scholar] [CrossRef]
- Bhalerao, S.A.; Prabhu, D.V. Aluminium toxicity in plants—A review. J. Applicable Chem. 2013, 2, 447–474. [Google Scholar]
- Panhwar, Q.A.; Naher, U.A.; Shamshuddin, J.; Radziah, O.; Hakeem, K.R. Management of acid sulfate soils for sustainable rice cultivtion in Malaysia. In Soil Science: Agricultural and Environmental Perspectives; Hakeem, K.R., Sabir, M., Akhtar, J., Eds.; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar] [CrossRef]
- Powell, B.; Martens, M. A review of acid sulfate soil impacts, actions and policies that impact on water quality in Great Barrier Reef catchments, including a case study on remediation at East Trinity. Mar. Pollut. Bull. 2005, 51, 149–164. [Google Scholar] [CrossRef] [PubMed]
- Islam, M.M.; Akther, S.M.; Hossain, M.F.; Parveen, Z. Spatial distribution and ecological risk assessment of potentially toxic metals in the Sundarbans mangroove soils of Bangladesh. Sci. Rep. 2022, 12, 10422. [Google Scholar] [CrossRef]
- Zhang, P.; Luo, Q.; Wang, R.; Xu, J. Hydrogen sulfide toxicity inhibits primary root growth through the ROS-NO pathway. Sci Rep. 2017, 7, 868. [Google Scholar] [CrossRef] [Green Version]
- Thakur, R. Acid Sulphate Soils and Their Management. Available online: http://www.jnkvv.org/PDF/02042020114710Acid%20sulphate%20soil-%20Dr.%20RK%20Thakur%20Soil%20Science.pdf (accessed on 15 October 2022).
- Latha, M.R.; Janaki, P. Problem soils and their management. Available online: https://agritech.tnau.ac.in/pdf/3.pdf (accessed on 15 October 2022).
- Malone Rubright, S.L.; Pearce, L.L.; Peterson, J. Environmental toxicology of hydrogen sulfide. Nitric. Oxide 2017, 71, 1–13. [Google Scholar] [CrossRef]
- Li, X.; Zhu, Z.; Yang, L.; Sun, Z. Emissions of biogenic sulfur gases (H2S, COS) from Phragmites australis coastal marsh in yellow river estuary of China. Chinese Geogr. Sci. 2016, 26, 770–778. [Google Scholar] [CrossRef]
- Ayangbenro, A.S.; Olanrewaju, O.S.; Babalola, O.O. Sulfate-Reducing Bacteria as an Effective Tool for Sustainable Acid Mine Bioremediation. Front. Microbiol. 2018, 9, 1986. [Google Scholar] [CrossRef] [Green Version]
- Armstrong, J.; Armstrong, W. Rice: Sulfide-induced Barriers to Root Radial Oxygen Loss, Fe2+ and Water Uptake, and Lateral Root Emergence. Ann. Bot. 2005, 96, 625–638. [Google Scholar] [CrossRef] [Green Version]
- Moormann, F.R.; van Breemen, N. Rice: Soil, Water, Land; International Rice Research Institute: Los Baños, PH, USA, 1978; Available online: http://books.irri.org/971104031X_content.pdf (accessed on 15 September 2022).
- Hollis, J.P. “Toxicant diseases of Rice” (1967). LSU Agricultural Experiment Station Reports. 838. Available online: http://digitalcommons.lsu.edu/agexp/838 (accessed on 17 June 2022).
- Moletti, M.; Giudici, M.L.; Villa, B. Rice Akiochi-Brown Spot Disease in Italy: Agronomic and Chemical Control. In Maladies du riz en région méditerranéenne et les possibilités d’amélioration de sa résistance; Chataigner, J., Ed.; Ciheam: Montpellier, France, 1997; pp. 79–85. Available online: http://om.ciheam.org/article.php?IDPDF=CI011020 (accessed on 14 July 2022).
- Sarangi, S.K.; Maji, B.; Singh, S.; Sharma, D.K.; Burman, D.; Mandal, S.; Ismail, A.M.; Haefele, S.M. Crop establishment and nutrient management for dry season (boro) rice in coastal areas. Agron. J. 2014, 106, 2013–2023. [Google Scholar] [CrossRef]
- Mainuddin, M.; Maniruzzaman, M.; Gaydon, D.S.; Sarkar, S.; Rahman, M.A.; Sarangi, S.K.; Sarker, K.K.; Kirby, J.M. A water and salt balance model for the polders and islands in the Ganges delta. J. Hydrol. 2020, 587, 125008. [Google Scholar] [CrossRef]
- Fanning, D.S.; Rabenhorst, M.C.; Fitzpatrick, R.W. Historical developments in the understanding of acid sulfate soils. Geoderma 2017, 308, 191–206. [Google Scholar] [CrossRef]
- Fanning, D.S. Salinity problems in acid sulfate coastal soils. In Towards the Rational Use of High Salinity Tolerant Plants; Lieth, H., Al Massom, A.A., Eds.; Kluwer Academic Publishers: Amsterdam, The Netherlands, 1993; Volume I, pp. 491–500. [Google Scholar]
- Rosicky, M.A.; Slavich, P.; Sullivan, L.A.; Hughes, M. Surface and sub-surface salinity in and around acid sulfate soil scalds in the coastal floodplains of New South Wales, Australia. Australian J. Soil Res. 2006, 44, 17–25. [Google Scholar] [CrossRef]
- Fanning, D.S.; Rabenhorst, M.C.; Burch, S.N.; Islam, K.R.; Tangren, S.A. Sulfides and sulfates. In Soil Mineralogy with Environmental Applications; Book Series no. 7; Soil Science Society of Ameriaca: Madison, WI, USA, 2002; pp. 229–260. [Google Scholar]
- Zhang, P.; Yuan, S.; Chen, R.; Bu, X.; Tong, M.; Huang, Q. Oxygenation of acid sulfate soils stimulates CO2 emission: Roles of acidic dissolution and hydroxyl radical oxidation. Chem. Geol. 2020, 533, 119437. [Google Scholar] [CrossRef]
- Maji, B.; Bandyopadhyay, B.K. Effect of liming on yield of safflower and nutrient availability in coastal acid saline soils of Sundarbans, West Bengal. J. Indian Soc. Coast. Agric. Res. 1996, 14, 47–51. [Google Scholar]
- Das, M. Soil Management Intervention in Cyclone Affected Coastal Areas. Available online: http://www.iiwm.res.in/trainings/Short_Course/chapters/8.pdf (accessed on 3 September 2022).
- Shamshuddin, J.; Panhwar, Q.A.; Shazana, M.A.R.S.; Elisa, A.A.; Fauziah, C.I.; Naher, U.A. Improving the Productivity of Acid Sulfate Soils for Rice Cultivation usingLimestone, Basalt, Organic Fertilizer and/or their Combinations. Sains Malays. 2016, 45, 383–392. Available online: https://www.researchgate.net/publication/301692818 (accessed on 21 August 2022).
- Rahman, M.A.; Lee, S.H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.W. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef] [Green Version]
- Peters, J.B.; Kelling, K.A.; Schulte, E.E. Choosing between Liming Materials. A3671. Available online: http://corn.agronomy.wisc.edu/Management/pdfs/a3671.pdf (accessed on 7 October 2022).
- Mongia, A.D.; Singh, N.T.; Mandal, L.N.; Guha, A. Effect of liming, superphosphate and rock phosphate application to rice on the yield and uptake of nutrients on acid sulphate soils. J. Indian Soc. Soil Sci. 1998, 46, 61–66. [Google Scholar]
- Sarangi, S.K.; Maji, B. Sustainable rice cultivation in coastal saline soils: A case study. In Achieving Sustainable Cultivation of Rice Volume 2: Cultivation, Pest and Disease Management; Takuji, S., Ed.; Burleigh Dodds Science Publishing Limited: Cambridge, UK, 2017; pp. 69–103. [Google Scholar]
- Ramakrishna, C.; Thenepalli, T.; Nam, S.Y.; Kim, C.; Ahn, J.W. Oyster shell waste is alternative sources for calcium carbonate (CaCO3) instead of natural limestone. J. Energy Eng. 2018, 27, 59–64. [Google Scholar] [CrossRef]
- Mongia, A.D.; Bandyopadhyay, A.K. Management of two acid sulphate soils for low land rice production. J. Indian Soc. Soil Sci. 1993, 41, 400–402. [Google Scholar]
- Manorama Thampatti, K.C.; Cherian, S.; Iyer, M.S. Influence of liming materials on soil acidity characteristics of an acid sulphate soil. J. Indian Soc. Soil Sci. 1998, 46, 296–299. [Google Scholar]
- Khan, M.H.R.; Bhuiyan, M.M.A.; Kabir, S.M.; Oki, Y.; Adachi, T. Effects of selected treatments on the production of rice in acid sulfate soils in a simulation study. Jpn. J. Trop. Agr. 2006, 50, 109–115. [Google Scholar]
- Khan, M.H.R.; Bhuiyan, M.M.A.; Kabir, S.M.; Blume, H.P.; Oki, Y.; Adachi, T. Consequences of basic slag on soil pH, calcium and magnesium status in acid sulfate soils under various water contents. J. Biol. Sci. 2007, 7, 896–903. [Google Scholar]
- Fitrani, M.; Wudtisin, I.; Kaewnern, M. The impacts of the single-use of different lime materials on the pond bottom soil with acid sulfate content. Aquaculture 2020, 527, 735471. [Google Scholar] [CrossRef]
- Sarkar, A.K.; Pattanayak, S.K.; Singh, S.; Mahapatra, P.; Kumar, A.; Ghosh, G.K. Integrated nutrient management strategies for acidic soils. Indian J. Fert. 2020, 16, 476–491. [Google Scholar]
- Rashad, S. An overview of the aqutic fern Azolla spp. as a sustainable source of nutrients and bioactive compounds with resourceful applications. Egypt. J. Aquat. Biol. Fish. 2021, 25, 775–782. [Google Scholar] [CrossRef]
- Rahman, M.M.; Uddin, S.; Jahangir, M.M.R.; Solaiman, Z.M.; Alamri, S.; Siddiqui, M.H.; Islam, M.R. Integrated nutrient management enhances productivity and nitrogen use efficiency of crops in acidic and charland soils. Plants 2021, 10, 2547. [Google Scholar] [CrossRef]
- Goyal, P.; Kumar, P.; Verma, A.; Singh, K.K.; Mehta, S.K. Integrated nutrient management of horticulture crops. Indian J. Sci. Res. 2019, 18, 50–54. Available online: https://ijsr.in/upload/940769675chapter_9.pdf (accessed on 20 July 2022).
- Agegnehu, G.; Amede, T. Integrated soil fertility and plant nutrient management in tropical agro-ecosystems: A review. Pedosphere 2017, 27, 662–680. [Google Scholar] [CrossRef]
- Das, S.K.; Das, S.K. Acid sulphate soil: Management strategy for soil health and productivity. Pop. Kheti 2015, 392, 2–7. [Google Scholar]
- Dalhem, K.; Engblom, S.; Sten, P.; Osterholm, P. Subsurface hydrochemical precision treatment of a coastal acid sulfate soil. Appl. Geochem. 2019, 100, 352–362. [Google Scholar] [CrossRef]
- Robert, B. Social and Economic Aspects of the Reclamation of Acid Sulphate Soil Areas. 1982. Available online: https://edepot.wur.nl/74496 (accessed on 3 September 2022).
- Sandilyan, S.; Kathiresan, K. Mangrove conservation: A global perspective. Biodivers. Conserv. 2012, 21, 3523–3542. [Google Scholar] [CrossRef]
- Hidayat, A.R.; Fahmi, A. Impact of Land Reclamation on Acid Sulfate Soil and Its Mitigation. In BIO Web of Conferences; EDP Sciences, 2020; Volume 20, p. 01002. Available online: https://doi.org/10.1051/bioconf/20202001002 (accessed on 27 July 2022). [CrossRef]
- Gill, K.; Sandhu, S.; Mor, M.; Kalmodiya, T.; Singh, M. Role of green manuring in sustainable agriculture: A review. Eur. J. Mol. Clin. Med. 2020, 7, 2361–2366. Available online: https://ejmcm.com/article_4921_103b831ce921509f4d1b921476767965.pdf (accessed on 7 August 2022).
- Morales, L.; Domínguez, M.T.; Fernández-Boy, E. Effect of the addition of organic amendments to C-poor agricultural soils on soil resistance against drought. In Proceedings of the EGU General Assembly 2022, Vienna, Austria, 23–27 May 2022. EGU22-5532. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Maji, B.; Digar, S.; Burman, D.; Mandal, U.K.; Mahanta, K.K.; Mandal, S. Technologies for Cropping System Intensification in the Salt-Affected Coastal Zone of West Bengal, India. Technical Bulletin ICAR-CSSRI/Canning Town/Folder/2019/8. ICAR-Central Soil Salinity Research Institute, Regional Research Station, Canning Town-743 329, South 24 Parganas, West Bengal, India. 2019, p. 28. Available online: https://www.researchgate.net/publication/348326405_Technologies_for_Cropping_System_Intensification_in_the_Salt_Affected_Coastal_Zone_of_West_Bengal_India (accessed on 27 August 2022).
- Thiyageshwari, S.; Gayathri, P.; Krishnamoorthy, R.; Anandham, R.; Paul, D. Exploration of Rice Husk Compost as an Alternate Organic Manure to Enhance the Productivity of Blackgram in Typic Haplustalf and Typic Rhodustalf. Int. J. Environ. Res. Public Health 2018, 15, 358. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, S.K.; Maji, B.; Sharma, P.C.; Digar, S.; Mahanta, K.K.; Burman, D.; Mandal, U.K.; Mandal, S.; Mainuddin, M. Potato (Solanum tuberosum L.) cultivation by zero tillage and paddy straw mulching in the saline soils of the Ganges Delta. Potato Res. 2021, 64, 277–305. Available online: https://link.springer.com/article/10.1007%2Fs11540-020-09478-6 (accessed on 3 July 2022). [CrossRef]
- Panda, S.K.; Baluska, F.; Matsumoto, H. Aluminum stress signaling in plants. Plant Signal. Behav. 2009, 4, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Burman, D.; Mandal, S.; Bandyopadhyay, B.K.; Sarangi, S.K.; Mahanta, K.K.; Maji, B. A Glimpse of CSSRI, RRS, Canning Town; ICAR-Central Soil Salinity Research Institute: Karnal, India, 2011.
- Onyango, D.; Entila, F.; Dida, M.M.; Ismail, A.M.; Drame, K.N. Mechanistic understanding of iron toxicity tolerance in contrasting rice varieties from Africa: 1. Morpho-physiological and biochemical responses. Funct. Plant Biol. 2019, 46, 93–105. [Google Scholar] [CrossRef] [Green Version]
- Cho, K.M.; Ranamukhaarachchi, S.L.; Zoebisch, M.A. Cropping Systems on Acid Sulphate Soils in the Central Plains of Thailand: Constraints and Remedies. Conference paper no. 812, Symposium no. 63. 2002. Available online: https://www.researchgate.net/publication/277894526_Cropping_systems_on_acid_sulfate_soils_in_the_central_plain_of_Thailand_constraints_and_remedies (accessed on 21 July 2022).
- Subiksa, I.G.M.; Sukristyonubowo. Mitigation of pyrite oxidation impact in tidal swamp management for agriculture. IOP Conf. Ser. Earth Environ. Sci. 2021, 648, 012106. [Google Scholar] [CrossRef]
- Inglett, P.W.; Reddy, K.R.; Corstanje, R. Anaerobic Soils. In Encyclopedia of Soils in the Environment. 2005. Available online: https://soils.ifas.ufl.edu/wetlands/publications/PDF-articles/283.Anaerobic%20Soils.%20In%20Encyclopedia%20of%20Soils%20in%20the%20Environment.pdf (accessed on 7 October 2022).
- Surendran, U.; Raja, P.; Jayakumar, M.; Subramonian, S.R. Use of efficient water saving techniques for production of rice in India under climate change scenario: A critical review. J. Clean. Prod. 2021, 309, 127272. [Google Scholar] [CrossRef]
- Tanaka, A.; Navasero, S.A. Growth of the rice plant on acid sulfate soils. Soil Sci. Plant Nutr. 1966, 12, 23–30. [Google Scholar] [CrossRef]
- Österholm, P.; Virtanen, S.; Rosendahl, R.; Uusi-Kämppä, J.; Ylivainio, K.; Yli-Halla, M.; Mäensivu, M.; Turtola, E. Groundwater management of acid sulfate soils using controlled drainage, by-pass flow prevention, and subsurface irrigation on a boreal farmland. Acta Agric. Scand. Sect. B Soil Plant Sci. 2015, 65, 110–120. [Google Scholar] [CrossRef]
- Kölbl, A.; Kaiser, K.; Thompson, A.; Mosley, L.; Fitzpatrick, R.; Marschner, P.; Sauheitl, L.; Mikutta, R. Rapid remediation of sandy sulfuric subsoils using straw-derived dissolved organic matter. Geoderma 2022, 420, 115875. [Google Scholar] [CrossRef]
- Mazlina, M.; Hanafiah, A.S.; Rauf, A.; Sutarta, E.S. Effectivess of organic materials as media in sulfate reducing bacteria inoculum to changes on acid sulfate soils. Int. J. Engg. Sci. Inform. Tech. 2022, 2, 45–49. [Google Scholar] [CrossRef]
- Bucka, F.; Kolbl, A.; Marschner, P.; Fitzpatrick, R.; Mosley, L.; Kanabner, I.K. Remediation of Acid Sulphate soils by Addtion of Organic Matter. Geophysical. Res. Abstr. 2018, 20. Available online: https://www.researchgate.net/publication/332672671_Remediation_of_acid_sulphate_soils_by_addition_of_organic_matter (accessed on 20 March 2022).
- Panhwar, Q.A.; Radziah, O.; Zaharah, A.R.; Sariah, M.; Mohd Razi, I. Isolation and characterization of phosphorus solubilizing bacteria from aerobic rice. Afr. J. Biotechnol. 2012, 11, 2711–2719. [Google Scholar]
- Kim, J.H.; Kim, S.-J.; Nam, I.-H. Effect of Treating Acid Sulfate Soils with Phosphate Solubilizing Bacteria on Germination and Growth of Tomato (Lycopersicon esculentum L.). Int. J. Environ. Res. Public Health 2021, 18, 8919. [Google Scholar] [CrossRef]
- Shamshuddin, J.; Panhwar, Q.A.; Alia, F.J.; Shazana, M.A.R.S.; Radziah, O.; Fauziah, C.I. Formation and utilisation of acid sulfate soils in Southeast Asia for sustainable rice cultivation. Pertanika J. Tropical Agril. Sci. 2017, 40, 225–246. [Google Scholar]
- Panhwar, Q.A.; Naher, U.A.; Shamshuddin, J.; Ismail, M.R. Effects of biochar and ground magnesium limestone application, with or without bio-fertilizer addition, on biochemical properties of an acid sulfate soil and rice yield. Agronomy 2020, 10, 1100. [Google Scholar] [CrossRef]
- Kolbl, A.; Marschner, P.; Mosley, L.; Fitzpatrick, R.; Kogel-Knabner, I. Alteration of organic matter during remediaiton of acid sulfate soils. Geoderma 2018, 332, 1121–1134. [Google Scholar] [CrossRef]
- Maki, T.; Nomachi, M.; Yoshida, S.; Ezawa, T. Plant symbiotic microorganisms in acid sulfate soil: Significance in the growth of pioneer plants. Plant Soil 2008, 310, 55–65. Available online: https://hdl.handle.net/2115/3843 (accessed on 3 January 2022). [CrossRef] [Green Version]
- Panda, D.; Barik, J. Flooding Tolerance in Rice: Focus on Mechanisms and Approaches. Rice Sci. 2021, 28, 43–57. [Google Scholar] [CrossRef]
- Nishiuchi, S.; Yamauchi, T.; Takahashi, H.; Kotula, L.; Nakazono, M. Mechanisms for coping with submergence and waterlogging in rice. Rice 2012, 5, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shamshuddin, J.; Elisa, A.A.; Shazana, M.A.R.S.; Fauziah, C.I. Rice defence mechanism system against excess amount of Al3+ and Fe2+ in the water. Australian J. Crop Sci. 2013, 7, 314–320. [Google Scholar]
- Sahrawat, K.L. Iron toxicity to rice in an acid sulfate soil as influenced by water regimes. Plant Soil 1979, 51, 143–144. [Google Scholar] [CrossRef] [Green Version]
- Sarangi, S.K.; Islam, M.R. Advances in agronomic and related management options for Sundarbans. In The Sundarbans: A Disaster-Prone Eco-Region; Sen, H., Ed.; Springer: Cham, Swizerland, 2019; Volume 30, pp. 225–260. [Google Scholar] [CrossRef]
- Sarangi, S.K.; Mahanta, K.K.; Mandal, S.; Maji, B. Dhaincha (Sesbania spp.) cultivation for nitrogen fixation and non-timber fuel wood production in coastal soils. In Proceedings of the 25th National Convention of Agricultural Engineers on “Advances in use of Non-Conventional Energy Sources for Agriculture, Fisheries and Rural Development”; Saha, C., Nayak, L.K., Karmakar, S., Eds.; The Institution of Engineers (India): Kolkata, India, 2012. [Google Scholar]
- Olego, M.A.; Quiroga, M.J.; Sánchez-García, M.; Cuesta, M.; Cara-Jiménez, J.; Garzón-Jimeno, J.E. Effects of overliming on the nutritional status of grapevines with special reference to micronutrient content. OENO One 2021, 55, 57–73. [Google Scholar] [CrossRef]
- Maximillian, J.; Brusseau, M.L.; Glenn, E.P.; Matthias, A.D. Pollution and Environmental Perturbations in the Global System, In Environmental and Pollution Science, 3rd ed.; Academic Press: Cambridge, MA, USA, 2019; pp. 457–476. ISBN 9780128147191. [Google Scholar] [CrossRef]
- Nunes, F.C.; de Jesus Alves, L.; de Carvalho, C.C.N.; Gross, E.; de Marchi Soares, T.; Prasad, M.N.V. Soil as a complex ecological system for meeting food and nutritional security. In Climate Change and Soil Interactions; Prasad, M.N.V., Pietrzykowski, M., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 229–269. ISBN 9780128180327. [Google Scholar] [CrossRef]
- Kopittke, P.M.; Menzies, N.W.; Wang, P.; McKenna, B.A.; Lombi, E. Soil and the intensification of agriculture for global food security. Environ. Int. 2019, 132, 105078. [Google Scholar] [CrossRef]
- Shaygan, M.; Baumgartl, T. Reclamation of salt-affected land: A review. Soil Syst. 2022, 6, 61. [Google Scholar] [CrossRef]
- Estévez, V.; Beucher, A.; Mattbäck, S.; Boman, A.; Auri, J.; Björk, K.M.; Österholm, P. Machine learning techniques for acid sulfate soil mapping in southeastern Finland. Geoderma 2022, 406, 115446. [Google Scholar] [CrossRef]
- Beucher, A.; Adhikari, K.; Breuning-Madsen, H.; Greve, M.B.; Österholm, P.; Fröjdö, S.; Jensen, N.H.; Greve, M.H. Mapping potential acid sulfate soils in Denmark using legacy data and LiDAR-based derivatives. Geoderma 2017, 308, 363–372. [Google Scholar] [CrossRef]
- Phong, N.D.; Tuong, T.P.; Phu, N.D.; Nang, N.D.; Hoanh, C.T. Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area. Water Air Soil Pollut. 2013, 224, 1765. [Google Scholar] [CrossRef]
- Wong, V.N.L.; Johnston, S.G.; Burton, E.D.; Bush, R.T.; Sullivan, L.A.; Slavich, P.G. Seawater causes rapid trace metal mobilisation in coastal lowland acid sulfate soils: Implications of sea level rise for water quality. Geoderma 2010, 160, 252–263. [Google Scholar] [CrossRef]
- Ghoshal, T.K.; De, D.; Biswas, G.; Kumar, P.; Vijayan, K.K. Brackishwater Aquaculture: Opportunities and Challenges for Meeting Livelihood Demand in Indian Sundarbans. In The Sundarbans: A Disaster-Prone Eco-Region; Sen, H., Ed.; Springer: Cham, Switzerland, 2019; Volume 30. [Google Scholar] [CrossRef]
- Treatment and Management of Soil and Water in Acid Sulfate Soil Landscapes. Available online: https://www.der.wa.gov.au/images/documents/your-environment/acid-sulfate-soils/guidelines/Treatment_and_management_of_soil_and_water_in_acid_ss_landscapes.pdf (accessed on 1 September 2022).
Location | Soil pH | Block/District | Country | Reference |
---|---|---|---|---|
Cheringa | 3.4 | Cox’s Bazar | Bangladesh | [51] |
Dulahazara | 3.3 | Cox’s Bazar | Bangladesh | [52] |
Shamnagar | 3.2–4.0 | Satkhira | Bangladesh | [46] |
Chakaria, Teknaf, Maheshkhali | <4.0 | Cox’s Bazar | Bangladesh | [45] |
Dacope, Shamagar | <4.0 | Khulna | Bangladesh | [45] |
Morrelgonj | <4.0 | Bagerhat | Bangladesh | [45] |
Bashkhali, Kutubdia, Ramu, Ukhiya, Sadar | <4.0 | Cox’s Bazar | Bangladesh | [45] |
Debhatta, Kaliganj, Satkhira, Tale | <4.0 | Khulna | Bangladesh | [45] |
Bagerhat Sadar, Rampal, Kauche | <4.0 | Bagerhat | Bangladesh | [45] |
Kheria | 4.2 | Basanti, South 24 Parganas | West Bengal, India | [49] |
Nirdeshkhali, Simultala, Sarberia | <4.0 | Basanti, South 24 Parganas | West Bengal, India | [47] |
Fulmalancha, Simultala | 3.0–4.9 | Basanti, South 24 Parganas | West Bengal, India | [44] |
Bara Dumki | 3.4–6.6 | Canning I, South 24 Parganas | West Bengal, India | [44] |
Bhupendrapur | 3.2–6.9 | Gosaba, South 24 Parganas | West Bengal, India | [50] |
Nirdeshkhali, Simultala | 3.8–4.5 | Basanti, South 24 Parganas | West Bengal, India | [22] |
Malancha, Nirdeshkhali, Simultala | 3.3–5.9 | Basanti, South 24 Parganas | West Bengal, India | [48] |
Amjhara, Rajbari, Canning | 3.6–4.8 | South 24 Parganas | West Bengal, India | [48] |
Physicochemical Characteristics | Ionic Composition of Saturation Extract (mel−1) | ||||||||
---|---|---|---|---|---|---|---|---|---|
Horizon | Ap | BA | Bwg1 | Bwg2 | Horizon | Ap | BA | Bwg1 | Bwg2 |
Depth (cm) | 0–20 | 20–71 | 71–125 | 125–240 | Na+ | 50.1 | 25.1 | 46.7 | 33.4 |
Colour (moist) Matrix | 5Y 5/1 | 5Y 4/1 | 5Y 4/1 | 5Y 4/1 | K+ | 1.3 | 0.5 | 1.2 | 1.2 |
Colour–Mottles | 7.5YR 5/6, mlp | 2.5YR 3/6, mlp | 2.5YR 3/6, mlp | 2.5YR 3/6, flp | Ca2+ | 6.2 | 1.7 | 2.0 | 2.0 |
Texture | sic | sicl | sic | sic | Mg2+ | 13.9 | 2.2 | 2.5 | 2.8 |
Clay (%) | 46 | 38 | 46 | 46 | Cl− | 20.0 | 6.7 | 11.7 | 10.0 |
pH (1:2) | 4.1 | 4.4 | 4.3 | 6.1 | SO42− | 35.1 | 13.4 | 6.7 | 8.4 |
ECe (dSm−1) | 14.5 | 7.7 | 7.0 | 7.5 | HCO3− | 1.0 | 1.0 | 0.5 | 1.0 |
SAR | 3.9 | 4.4 | 5.4 | 5.2 | CEC (cmol(p+) kg−1) | 26.6 | 23.4 | 22.1 | 19.4 |
ESP | 11.6 | 13.2 | 15.8 | 20.6 | Base sat. (%) | 63.9 | 64.9 | 70.1 | 88.1 |
OC (%) | 1.25 | 1.28 | 0.55 | 0.34 |
Physicochemical Characteristics | Ionic Composition (cmol kg−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Horizon | Ap | B21 | B22 | B23 | C1 | Horizon | Ap | B21 | B22 | B23 | C1 |
Depth (cm) | 0–10 | 10–45 | 45–65 | 65–100 | 100–125 | Na+ | 4.88 | 4.88 | 4.43 | 4.37 | 4.55 |
Colour (moist) Matrix | 5Y 6/1 (dry) | 5Y 3/1 (m) | 5Y 3/1 (m) | 5Y 3/1 (m) | 3 N (w) | K+ | 1.82 | 1.56 | 1.29 | 1.23 | 1.07 |
Colour–Mottles | C1Pdb | C1Pdb | C1Pdb | C1Pdb | C1Pdb | Ca2+ | 3.68 | 3.48 | 2.42 | 2.06 | 3.26 |
Texture | Sic | C | C | C | Sic | Mg2+ | 6.00 | 6.00 | 4.37 | 4.39 | 3.57 |
Clay (%) | 55 | 63 | 59 | 60 | 34 | H+ | 4.18 | 4.62 | 5.28 | 6.16 | 5.00 |
pH (1:1) | 3.4 | 4.0 | 3.6 | 3.5 | 3.4 | CEC (cmol(p+) kg−1) | 26.71 | 26.94 | 27.18 | 18.62 | 19.13 |
ECe (dSm−1) | 1.30 | 0.61 | 0.68 | 0.83 | 0.19 | Base sat. (%) | 61.32 | 59.09 | 46.03 | 64.71 | 65.08 |
OM (%) | 3.05 | 1.59 | 1.40 | 2.44 | 1.88 |
Soil Depth (cm) | Texture | OC (%) | CEC | pH (1:2 Soil:Water) | EC dSm−1 (1:5 Soil:Water) | N | P | K | Al3+ [cmol(p+)kg−1] | Fe (mg kg−1) |
---|---|---|---|---|---|---|---|---|---|---|
(kg ha−1) | ||||||||||
Bijoynagar (Bali Island) | ||||||||||
0–15 | Sicl | 0.57 | 14.7 | 6.1 | 1.73 | 257 | 17.3 | 455 | 0.11 | 73.2 |
15–30 | Sil | 0.89 | 13.3 | 5.5 | 1.01 | 337 | 15.5 | 503 | 0.25 | 193.3 |
30–50 | Sil | 0.87 | 13.5 | 5.3 | 1.57 | 299 | 12.7 | 509 | 0.31 | 225.8 |
50–80 | Sicl | 0.75 | 13.7 | 4.5 | 1.21 | 285 | 11.3 | 523 | 1.37 | 271.1 |
80–120 | Sicl | 1.55 | 14.1 | 3.5 | 1.35 | 375 | 37.9 | 475 | 4.88 | 301.1 |
120–150 | Sil | 0.97 | 11.3 | 3.3 | 1.52 | 355 | 41.5 | 411 | 4.06 | 343.3 |
Sonagaon (Gosaba Island) | ||||||||||
0–15 | Sic | 0.49 | 14.5 | 5.0 | 1.79 | 189 | 10.4 | 372 | 0.27 | 195.5 |
15–30 | Sicl | 0.62 | 14.1 | 4.7 | 1.65 | 263 | 10.1 | 427 | 1.11 | 235.7 |
30–50 | Sil | 0.57 | 13.9 | 4.6 | 1.58 | 254 | 11.5 | 455 | 1.03 | 244.1 |
50–80 | Sicl | 0.48 | 13.7 | 4.9 | 1.81 | 185 | 10.7 | 489 | 0.49 | 203.8 |
80–120 | Sicl | 0.52 | 14.3 | 4.8 | 1.75 | 195 | 12.5 | 466 | 0.67 | 199.9 |
120–150 | c | 0.53 | 12.5 | 4.5 | 1.66 | 203 | 15.6 | 433 | 1.21 | 256.5 |
Treatments | ECe (dSm−1) | pH in Water | Fe2+ (ppm) | Al3+ (ppm) | Mn2+ (ppm) |
---|---|---|---|---|---|
Initial soil (Control) | 11.2 | 3.5 | 693.0 | 12.0 | 21.0 |
Soil after 52 weeks of submergence without lime | 6.7 | 3.9 | 2037.5 | 36.7 | 17.2 |
Soil after 52 weeks of submergence with lime | 8.0 | 4.5 | 2506.3 | 36.3 | 17.2 |
Treatments | Kharif 2017 | Kharif 2018 |
---|---|---|
Control (no amendment) | 3.96 c | 3.79 c |
Green manuring (GM) | 4.45 b | 5.27 ab |
Lime at 1.5 t ha−1 | 4.23 c | 4.68 b |
RP at 0.25 t ha−1 | 4.17 c | 4.91 ab |
Lime + RP | 4.68 b | 5.39 ab |
GM + Lime | 5.74 ab | 5.47 ab |
GM + RP | 6.04 a | 5.38 ab |
GM + Lime + RP | 6.17 a | 5.66 a |
Treatments | Plant Height (cm) | Root Length (cm) | 1000 Kernel wt (g) | Kernel Yield (t ha−1) |
---|---|---|---|---|
Control (no amendment) | 148.0 b | 21.0 c | 261.9 c | 2.6 b |
Lime at 1.5 t ha−1 | 199.2 a | 34.6 a | 320.7 a | 5.6 a |
Rock phosphate (RP) at 0.25 t ha−1 | 199.8 a | 36.4 a | 298.1 b | 6.0 a |
Lime + RP | 203.9 a | 27.9 b | 286.6 b | 5.4 a |
Treatment | Kernel Yield (t ha−1) |
---|---|
Control | 1.93 d |
Lime at 1.5 t ha−1 | 2.89 c |
Paddy straw mulch at 6.0 t ha−1 | 3.08 b |
Lime + Paddy straw mulch | 3.45 a |
Treatments | Soil pH | Grain Yield (tha−1) | |
---|---|---|---|
Kharif Rice | Rabi Sunflower | ||
Control | 4.2 | 1.62 a | 0.89 a |
P1 + L0 | 4.3 | 2.8 b | 1.23 b |
P1 + L1/2 | 5.2 | 3.14 c | 1.7 e |
P1 + L1 | 5.8 | 3.15 c | 1.75 ef |
GM + P1 + L0 | 4.3 | 3.21 c | 1.35 c |
GM + P1 + L1/2 | 5.4 | 3.69 d | 1.78 e |
GM + P1 + L1 | 6.1 | 3.8d e | 1.84 g |
P2 + L0 | 4.1 | 3.62 d | 1.59 d |
P2 + L1/2 | 5.3 | 3.97 e | 2.05 h |
P2 + L1 | 6.1 | 3.93 e | 2.08 h |
GM + P2 + L0 | 4.6 | 4.01 e | 1.67 e |
GM + P2 + L1/2 | 5.2 | 4.33 f | 2.13 h |
GM + P2 + L1 | 6 | 4.36 f | 2.17 h |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarangi, S.K.; Mainuddin, M.; Maji, B. Problems, Management, and Prospects of Acid Sulphate Soils in the Ganges Delta. Soil Syst. 2022, 6, 95. https://doi.org/10.3390/soilsystems6040095
Sarangi SK, Mainuddin M, Maji B. Problems, Management, and Prospects of Acid Sulphate Soils in the Ganges Delta. Soil Systems. 2022; 6(4):95. https://doi.org/10.3390/soilsystems6040095
Chicago/Turabian StyleSarangi, Sukanta Kumar, Mohammed Mainuddin, and Buddheswar Maji. 2022. "Problems, Management, and Prospects of Acid Sulphate Soils in the Ganges Delta" Soil Systems 6, no. 4: 95. https://doi.org/10.3390/soilsystems6040095
APA StyleSarangi, S. K., Mainuddin, M., & Maji, B. (2022). Problems, Management, and Prospects of Acid Sulphate Soils in the Ganges Delta. Soil Systems, 6(4), 95. https://doi.org/10.3390/soilsystems6040095