Soil Structure under Forest and Pasture Land-Uses Affecting Compressive Behavior and Air Permeability in a Subtropical Soil
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site and Treatments
- (1)
- Anthropized forest: forest composed by tree and shrub species with a height of approximately 4 m, used as shelter for cattle. Due to the possibility of cattle gaining access to this sampling point in the driest periods, this area was called anthropized forest;
- (2)
- Pasture: 5-y-old pasture, consisting of brachiaria brizanta (Brachiaria brizantha) intercropped with Pensacola (Paspalum lourai) and clover (Trifolium sp.). The pasture was installed in an area of 1200 ha under conventional tillage (plowing and harrowing) in 2001. Before the pasture, there was natural forest and pasture, and soybean intermittently;
- (3)
- Eucalyptus 20: a 20-y-old Eucalyptus saligna stand, with conventional tillage used to plant the stand in 1986. Before the eucalyptus, the area consisted of pasture;
- (4)
- Eucalyptus 4.5: clonal Eucalyptus saligna in a second rotation, with 4.5 years of age. The original planting occurred in 1993, with soil tillage in strip and a three-stem chisel. The harvesting of eucalyptus in the first cycle, at 8.5 years of age, was performed manually with a chainsaw, and the wood extraction was carried out with a Forwarder Valmet 890 with a load capacity of 18 Mg, without burning the crop residue. The traffic for the harvesting of eucalyptus in the first cycle was at random, with number of passes reaching up to 16. The second planting of eucalyptus was carried out between the rows in 2002. Before the first planting in 1993, the area was used for soybean and pasture.
2.2. Soil Sampling and Analyses
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wienhold, B.J.; Andrews, S.S.; Karlen, D.L. Soil quality: A review of the science and experiences in the USA. Environ. Geochem. Health 2004, 26, 89–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mengel, K.; Kirkby, E.A.; Kosegarten, H.; Appel, T. The soil as a plant nutrient medium. In Principles of Plant Nutrition; Mengel, K., Kirkby, E.A., Kosegarten, H., Appel, T., Eds.; Springer: Dordrecht, The Netherlands, 2001; pp. 15–110. [Google Scholar] [CrossRef]
- FAO—Food and Agriculture Organization of the United Nations. Soils for Nutrition: State of the Art; FAO: Rome, Italy, 2022; 78p. [Google Scholar] [CrossRef]
- Mary, B.; Recous, S.; Darwis, D.; Robin, D. Interactions between decomposition of plant residues and nitrogen cycling in soil. Plant Soil 1996, 181, 71–82. [Google Scholar] [CrossRef]
- Piano, J.T.; Egewarth, J.F.; Frandoloso, J.F.; Mattei, E.; de Oliveira, P.S.R.; Rego, C.A.R.M.; de Herrera, J.L. Decomposition and nutrients cycling of residual biomass from integrated crop-livestock system. Aust. J. Crop Sci. 2019, 13, 739–745. [Google Scholar] [CrossRef]
- Henneron, L.; Kardol, P.; Wardle, D.A.; Cros, C.; Fontaine, S. Rhizosphere control of soil nitrogen cycling: A key component of plant economic strategies. New Phytol. 2020, 228, 1269–1282. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, L.E.A.S.; Lima, C.L.R.; Reinert, D.J.; Reichert, J.M.; Pilon, C.N. Estrutura e armazenamento de água em um Argissolo sob pastagem cultivada, floresta nativa e povoamento de eucalipto no Rio Grande do Sul. Rev. Bras. Ciênc. Solo 2014, 38, 94–106. [Google Scholar] [CrossRef] [Green Version]
- Cheng, K.; Xu, X.; Cui, L.; Li, Y.; Zheng, J.; Wu, W.; Sun, J.; Pan, G. The role of soils in regulation of freshwater and coastal water quality. Philos. Trans. R. Soc. B 2021, B376, 20200176. [Google Scholar] [CrossRef]
- Prevedello, J.; Vogelmann, E.S.; Kaiser, D.R.; Reinert, D.J. A funcionalidade do sistema poroso do solo em floresta de eucalipto sob Argissolo. Sci. For. 2013, 41, 557–566. Available online: https://www.ipef.br/PUBLICACOES/SCIENTIA/nr100/cap13.pdf (accessed on 31 October 2022).
- Horn, R. Soil structure formation and management effects on gas emission. J. Agric. Mach. Sci. 2008, 4, 13–18. [Google Scholar] [CrossRef]
- Horn, R.; Blum, W.E.H. Effect of land-use management systems on coupled physical and mechanical, chemical and biological soil processes: How can we maintain and predict soil properties and functions? Front. Agric. Sci. Eng. 2020, 7, 243–245. [Google Scholar] [CrossRef]
- Holtz, R.D.; Kovacs, W.D. An Introduction to Geotechnical Engineering; Prentice-Hall: Hoboken, NJ, USA, 1981. [Google Scholar]
- Reichert, J.M.; Reinert, D.J.; Suzuki, L.E.A.S.; Horn, R. Mecânica do solo. In Física do Solo; van Lier, Q.J., Ed.; Sociedade Brasileira de Ciência do Solo: Viçosa, Brazil, 2010; pp. 29–102. [Google Scholar]
- Reichert, J.M.; Reinert, J.M.; Braida, J.A. Qualidade dos solos e sustentabilidade de sistemas agrícolas. Ciência Ambiente 2003, 27, 29–48. [Google Scholar]
- Letey, J. Relationship between soil physical conditions and crop production. Adv. Soil Sci. 1985, 1, 277–293. [Google Scholar] [CrossRef]
- Lima, C.L.R.; Reinert, D.J.; Reichert, J.M.; Suzuki, L.E.A.S. Compressibilidade de um Argissolo sob plantio direto escarificado e compactado. Ciênc. Rural 2006, 36, 1765–1772. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, L.E.A.S.; Reinert, D.J.; Reichert, J.M.; Lima, C.L.R. Estimativa da suscetibilidade à compactação e do suporte de carga do solo com base em propriedades físicas de solos do Rio Grande do Sul. Rev. Bras. Ciênc. Solo 2008, 32, 963–973. [Google Scholar] [CrossRef] [Green Version]
- Nunes, M.R.; Pauletto, E.A.; Denardin, J.E.; Suzuki, L.E.A.S.; van Es, H.M. Dynamic changes in compressive properties and crop response after chisel tillage in a highly weathered soil. Soil Tillage Res. 2019, 186, 183–190. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Fenner, P.T.; Secco, D.; Reichert, J.M. Prevention of additional compaction in eucalyptus and pasture land uses, considering soil moisture and bulk density. J. S. Am. Earth Sci. 2022, 120, 104113. [Google Scholar] [CrossRef]
- Collares, G.L.; Reinert, D.J.; Reichert, J.M.; Kaiser, D.R. Compactação de um latossolo induzida pelo tráfego de máquinas e sua relação com o crescimento e produtividade de feijão e trigo. Rev. Bras. Ciênc. Solo 2008, 32, 933–942. [Google Scholar] [CrossRef]
- Flores, C.A.; Reinert, D.J.; Reichert, J.M.; Albuquerque, J.A.; Pauletto, E.A. Recuperação da qualidade estrutural, pelo sistema plantio direto, de um Argissolo Vermelho. Ciênc. Rural 2008, 38, 2164–2172. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, L.E.A.S.; Lima, C.L.R.; Reinert, D.J.; Reichert, J.M.; Pilon, C.N. Condição estrutural de um Argissolo no Rio Grande do Sul, em floresta nativa, em pastagem cultivada e em povoamento com eucalipto. Ciênc. Florest. 2012, 22, 833–843. [Google Scholar] [CrossRef] [Green Version]
- Kunz, M.; Gonçalves, A.D.M.A.; Reichert, J.M.; Guimarães, R.M.L.; Reinert, D.J.; Rodrigues, M.F. Compactação do solo na integração soja-pecuária de leite em Latossolo argiloso com semeadura direta e escarificação. Rev. Bras. Ciênc. Solo 2013, 37, 6. [Google Scholar] [CrossRef] [Green Version]
- Prevedello, J.; Kaiser, D.R.; Reinert, D.J.; Vogelmann, E.S.; Fontanela, E.; Reichert, J.M. Manejo do solo e crescimento inicial de Eucalyptus grandis Hill ex Maiden em Argissolo. Ciênc. Florest. 2013, 23, 129–138. [Google Scholar] [CrossRef]
- Prevedello, J.; Vogelmann, E.S.; Kaiser, D.R.; Fontanela, E.; Reinert, D.J.; Reichert, J.M. Agregação e matéria orgânica de um Argissolo sob diferentes preparos do solo para plantio de Eucalipto. Pesq. Florest. Bras. 2014, 34, 149–158. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.M.; Bervald, C.M.P.; Rodrigues, M.F.; Kato, O.R.; Reinert, D.J. Mechanized land preparation in eastern Amazon in fire-free forest-based fallow systems as alternatives to slash-and-burn practices: Hydraulic and mechanical soil properties. Agric. Ecosyst. Environ. 2014, 192, 47–60. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reichert, J.M.; Reinert, D.J.; de LIMA, C.L.R. Degree of compactness and mechanical properties of a subtropical Alfisol with eucalyptus, native forest, and grazed pasture. Forest. Sci. 2015, 61, 716–722. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.M.; Brandt, A.A.; Rodrigues, M.F.; da Veiga, M.; Reinert, D.J. Is chiseling or inverting tillage required to improve mechanical and hydraulic properties of sandy clay loam soil under long-term no-tillage? Geoderma 2017, 301, 72–79. [Google Scholar] [CrossRef]
- Holthusen, D.; Brandt, A.A.; Reichert, J.M.; Horn, R. Soil porosity, permeability and static and dynamic strength parameters under native forest/grassland compared to no-tillage cropping. Soil Tillage Res. 2018, 177, 113–124. [Google Scholar] [CrossRef]
- Holthusen, D.; Brandt, A.A.; Reichert, J.M.; Horn, R.; Fleige, H.; Zink, A. Soil functions and in situ stress distribution in subtropical soils as affected by land use, vehicle type, tire inflation pressure and plant residue removal. Soil Tillage Res. 2018, 184, 78–92. [Google Scholar] [CrossRef]
- Reichert, J.M.; Fontanela, E.; Awe, G.O.; Fasinmirin, J.T. Is cassava yield affected by inverting tillage, chiseling or additional compaction of no-till sandy-loam soil? Rev. Bras. Ciênc. Solo 2021, 45, e0200134. [Google Scholar] [CrossRef]
- Reichert, J.M.; Morales, C.A.S.; Lima, E.M.; Bastos, F.; Sampietro, J.A.; Araújo, E.F.; Srinivasan, R. Best tillage practices for early-growth of clonal eucalyptus in soils with distinct granulometry, drainage and profile depth. Soil Tillage Res. 2021, 212, 105038. [Google Scholar] [CrossRef]
- França, J.S.; Reichert, J.M.; Holthusen, D.; Rodrigues, M.F.; Araújo, E.F. Subsoiling and mechanical hole-drilling tillage effects on soil physical properties and initial growth of eucalyptus after eucalyptus on steeplands. Soil Tillage Res. 2021, 207, 104860. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reinert, D.J.; Alves, M.C.; Reichert, J.M. Medium-term no-tillage, additional compaction, and chiseling as affecting clayey subtropical soil physical properties and yield of corn, soybean and wheat crops. Sustainability 2022, 14, 9717. [Google Scholar] [CrossRef]
- Nunes, M.R.; Denardin, J.E.; Pauletto, E.A.; Faganello, A.; Pinto, L.F.S. Effect of soil chiseling on soil structure and root growth for a clayey soil under no-tillage. Geoderma 2015, 259–260, 149–155. [Google Scholar] [CrossRef] [Green Version]
- Suzuki, L.E.A.S.; Reinert, D.J.; Alves, M.C.; Reichert, J.M. Critical limits for soybean and black bean root growth, based on macroporosity and penetrability, for soils with distinct texture and management systems. Sustainability 2022, 14, 2958. [Google Scholar] [CrossRef]
- Habibbeygi, F.; Nikraz, H.; Verheyde, F. Determination of the compression index of reconstituted clays using intrinsic concept and normalized void ratio. Int. J. Geotec. Const. Mat. Env. 2017, 13, 54–60. [Google Scholar] [CrossRef]
- Ma, J.; Qian, M.; Yu, C.; Yu, X. Compressibility evaluation of reconstituted clays with various initial water contents. J. Perform. Constr. Facil. 2018, 32, 04018077. [Google Scholar] [CrossRef]
- Xu, B.; Zhang, N. Determination of compression curve of in-situ soil considering soil disturbance. Adv. Eng. Res. 2018, 162, 213–216. [Google Scholar] [CrossRef] [Green Version]
- Oluwaseun, A.A.; Yinusa, A.A.; Siyan, M. Compressibility characteristics of remoulded residual soils under loading. J. Appl. Geol. Geophys. 2018, 6, 52–57. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, E.; Tang, Y. Investigation on mechanical properties of artificially structured soils under different stress paths. IOP Conf. Ser. Earth Environ. Sci. 2019, 267, 042089. [Google Scholar] [CrossRef]
- Zheng, J.; Yang, Z.; Gao, H.; Lai, X.; Wu, X.; Huang, Y. Experimental study on microstructure characteristics of saturated remolded cohesive soil during consolidation. Sci. Rep. 2022, 12, 18378. [Google Scholar] [CrossRef]
- Veiga, M.; Horn, R.; Reinert, D.J.; Reichert, J.M. Soil compressibility and penetrability of an Oxisol from southern Brazil, as affected by long-term tillage systems. Soil Tillage Res. 2007, 92, 104–113. [Google Scholar] [CrossRef]
- Somar Meteorologia. Médias Climatológicas de Butia. Available online: https://irga.rs.gov.br/medias-climatologicas (accessed on 5 May 2022).
- Soil Survey Staff. Keys to Soil Taxonomy, 12th ed.; USDA-Natural Resources Conservation Service: Washington, DC, USA, 2014. Available online: https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/class/taxonomy/?cid=nrcs142p2_053580 (accessed on 8 December 2021).
- IUSS Working Group WRB. World Reference Base for Soil Resources 2014, Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Santos, H.G.; Jacomine, P.K.T.; Anjos, L.H.; Oliveira, V.A.; Lumbreras, J.F.; Coelho, M.R.; Almeida, J.A.; Araujo Filho, J.C.; Oliveira, J.B.; Cunha, T.J.F. Sistema Brasileiro de Classificação de Solos; E-book: Il. Color; Embrapa: Brasília, Brazil, 2018; Available online: https://www.embrapa.br/solos/sibcs (accessed on 5 October 2022).
- Pilon, C.N.; Santos, D.C.; Lima, C.L.R.; Antunes, L.O. Carbono e nitrogênio de um Argissolo Vermelho sob floresta, pastagem e mata nativa. Ciênc. Rural 2011, 41, 447–453. [Google Scholar] [CrossRef]
- Teixeira, P.C.; Donagemma, G.K.; Fontana, A.; Teixeira, W.G. (Eds.) Manual de Métodos de Análise de Solo, 3rd ed.; e-book: Il. color.; Embrapa: Brasília, Brazil, 2017; 212p, Available online: http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/1085209 (accessed on 10 November 2021).
- Gubiani, P.I.; Reinert, J.; Reichert, J.M. Método alternativo para a determinação da densidade de partículas do solo—Exatidão, precisão e tempo de processamento. Ciênc. Rural 2006, 36, 664–668. [Google Scholar] [CrossRef]
- Klute, A. Water retention: Laboratory methods. In Methods of Soil Analysis: Physical and Mineralogical Methods, 2nd ed.; Klute, A., Ed.; American Society of Agronomy and Soil Science Society of America: Madison, WI, USA, 1986; pp. 635–660. [Google Scholar]
- Silva, V.R.; Reinert, D.J.; Reichert, J.M. Suscetibilidade à compactacão de um latossolo vermelho-escuro e de um podzólico vermelho-amarelo. Rev. Bras. Ciênc. Solo 2000, 24, 239–249. [Google Scholar] [CrossRef] [Green Version]
- Rosa, D.P.; Reichert, J.M.; Lima, E.M.; Rosa, V.T. Chiselling and wheeling on sandy loam long-term no-tillage soil: Compressibility and load bearing capacity. Soil Res. 2021, 59, 488–500. [Google Scholar] [CrossRef]
- Casagrande, A. The determination of the pre-consolidation load and its practical significance. In Proceedings of the International Conference on Soil Mechanics and Foundation Engineering; Harvard University: Cambridge, MA, USA, 1936; pp. 60–64. [Google Scholar]
- Alves, M.C.; Suzuki, L.E.A.S.; Hipólito, J.L.; Castilho, S.R. Propriedades físicas e infiltração de água de um Latossolo Vermelho Amarelo (Oxisol) do noroeste do estado de São Paulo, Brasil, sob três condições de uso e manejo. Cad. Lab. Xeolóxico Laxe 2005, 30, 167–180. Available online: https://ruc.udc.es/dspace/bitstream/handle/2183/6311/CA-30-10.pdf?sequence=1&isAllowed=y (accessed on 31 October 2022).
- Mando, A.; Stroosnijder, L.; Brussaard, L. Effects of termites on infiltration into crusted soil. Geoderma 1996, 74, 107–113. [Google Scholar] [CrossRef]
- Abreu, S.L.; Reichert, J.M.; Reinert, D.J. Escarificação mecânica e biológica para a redução da compactação em argissolo franco-arenoso sob plantio direto. Rev. Bras. Ciênc. Solo 2004, 28, 519–531. [Google Scholar] [CrossRef] [Green Version]
- Horn, R.; Vossbrink, J.; Becker, S. Modern forestry vehicles and their impacts on soil physical properties. Soil Tillage Res. 2004, 79, 207–219. [Google Scholar] [CrossRef]
- Suzuki, L.E.A.S.; Reisser Júnior, C.; Miola, E.C.C.; Rostirolla, P.; Strieder, G.; Scherer, V.S.; Pauletto, E.A. Variabilidade da compressibilidade e do grau de compactação de um Argissolo cultivado com pessegueiro. Sci. Rural 2021, 23, 60–75. Available online: http://www.cescage.com.br/revistas/index.php/ScientiaRural/article/view/1642 (accessed on 31 October 2022).
- Castro, P.P.; Curi, N.; Furtini Neto, A.E.; Resende, Á.V.; Guilherme, L.R.G.; Menezes, M.D.; Araújo, E.F.; Freitas, D.A.F.; Mello, C.R.; Silva, S.H.G. Química e mineralogia de solos cultivados com Eucalipto (Eucalyptus sp.). Sci. For. 2010, 38, 645–657. Available online: http://www.bibliotecaflorestal.ufv.br:80/handle/123456789/16762 (accessed on 31 October 2022).
- Horn, R.; Lebert, M. Soil compactability and compressibility. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 45–69. [Google Scholar]
- Braga, F.V.A.; Reichert, J.M.; Mentges, M.I.; Vogelmann, E.S.; Padrón, R.A.R. Propriedades mecânicas e permeabilidade ao ar em topossequência Argissolo-Gleissolo: Variação no perfil e efeito de compressão. Rev. Bras. Ciênc. Solo 2015, 39, 1025–1035. [Google Scholar] [CrossRef]
- Vaz, C.M.P.; Freitas Iossi, M.; Mendonça Naime, J.; Macedo, Á.; Reichert, J.M.; Reinert, D.J.; Cooper, M. Validation of the Arya and Paris water retention model for Brazilian soils. Soil Sci. Soc. Am. J. 2005, 69, 577–583. [Google Scholar] [CrossRef] [Green Version]
- Klein, V.A.; Reichert, J.M.; Reinert, D.J. Água disponível em um Latossolo Vermelho argiloso e murcha fisiológica de culturas. Rev. Bras. Eng. Agrícola Ambient. 2006, 10, 646–650. [Google Scholar] [CrossRef] [Green Version]
- Awe, G.O.; Reichert, J.M.; Timm, L.C.; Wendroth, O.O. Temporal processes of soil water status in a sugarcane field under residue management. Plant Soil 2015, 387, 395–411. [Google Scholar] [CrossRef]
- Reichert, J.M.; Albuquerque, J.A.; Kaiser, D.R.; Reinert, D.J.; Urach, F.L.; Carlesso, R. Estimation of water retention and availability in soils of Rio Grande do Sul. Rev. Bras. Ciênc. Solo 2009, 33, 1547–1560. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.M.; Albuquerque, J.A.; Solano Peraza, J.E.; Costa, A. Estimating water retention and availability in cultivated soils of southern Brazil. Geoderma Reg. 2020, 21, e00277. [Google Scholar] [CrossRef]
- Lima, C.L.R.; Silva, A.P.; Imhoff, S.; Lima, H.V.; Leão, T.P. Heterogeneidade da compactação de um Latossolo Vermelho-Amarelo sob pomar de laranja. Rev. Bras. Ciênc. Solo 2004, 28, 409–414. [Google Scholar] [CrossRef] [Green Version]
- Kondo, M.K.; Dias Junior, M.S. Compressibilidade de três Latossolos em função da umidade e uso. Rev. Bras. Ciênc. Solo 1999, 23, 211–218. [Google Scholar] [CrossRef] [Green Version]
- Lima, C.L.R.; Silva, A.P.; Imhoff, S.; Leão, T.P. Compressibilidade de um solo sob sistemas de pastejo rotacionado intensivo irrigado e não irrigado. Rev. Bras. Ciênc. Solo 2004, 28, 945–951. [Google Scholar] [CrossRef] [Green Version]
- Capurro, E.P.G.; Secco, D.; Reichert, J.M.; Reinert, D.J. Compressibilidade e elasticidade de um Vertissolo afetado pela intensidade de pastejo bovino. Ciênc. Rural 2014, 44, 283–288. [Google Scholar] [CrossRef] [Green Version]
- Horn, R.; Fleige, H. A method for assessing the impact offload on mechanical stability and on physical properties of soils. Soil Tillage Res. 2003, 73, 89–99. [Google Scholar] [CrossRef]
- Horn, R. Effect of land-use management systems on coupled hydraulic mechanical soil processes defining the climate-food-energy-water nexus. Bulg. J. Soil Sci. 2019, 4, 3–15. Available online: https://www.bsss.bg/issues/Issue1_2019/BJSS_2019_1_1.pdf (accessed on 31 October 2022).
- Powers, R.F.; Scott, D.A.; Sanchez, F.G.; Voldseth, R.A.; Page-Dumroese, D.; Elioff, J.D.; Stone, D.M. The North American long-term soil productivity experiment: Findings from the first decade of research. For. Ecol. Manag. 2005, 220, 31–50. [Google Scholar] [CrossRef]
- Guérif, J. Effects of compaction on soil strength parameters. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 191–214. [Google Scholar]
- Mentges, M.I.; Reichert, J.M.; Gubiani, P.I.; Reinert, D.J.; Xavier, A. Alterações estruturais e mecânicas de solo de várzea cultivado com arroz irrigado por inundação. Rev. Bras. Ciênc. Solo 2013, 37, 221–231. [Google Scholar] [CrossRef] [Green Version]
- Reichert, J.M.; Mentges, M.I.; Rodrigues, M.F.; Cavalli, J.P.; Awe, G.O.; Mentges, L.R. Compressibility and elasticity of subtropical no-till soils varying in granulometry organic matter, bulk density and moisture. Catena 2018, 165, 345–357. [Google Scholar] [CrossRef]
- Horn, R.; Mordhorst, A.; Fleige, H.; Zimmermann, I.; Burbaum, B.; Filipinski, M.; Cordsen, E. Soil type and land use effects on tensorial properties of saturated hydraulic conductivity in northern Germany. Eur. J. Soil Sci. 2020, 71, 179–189. [Google Scholar] [CrossRef]
- Wu, L.; Swan, J.B.; Paulson, W.H.; Randalla, G.W. Tillage effects on measured soil hydraulic- properties. Soil Tillage Res. 1992, 25, 17–33. [Google Scholar] [CrossRef]
- Costa, F.S.; Albuquerque, J.A.; Bayer, C.; Fontoura, S.M.V.; Wobeto, C. Propriedades físicas de um Latossolo Bruno afetadas pelos sistemas plantio direto e preparo convencional. Rev. Bras. Ciênc. Solo 2003, 27, 527–535. [Google Scholar] [CrossRef]
- Boone, F.R.; Veen, B.W. Mechanisms of crop responses to soil compaction. In Soil Compaction in Crop Production; Soane, B.D., van Ouwerkerk, C., Eds.; Elsevier: Amsterdam, The Netherlands, 1994; pp. 237–264. [Google Scholar]
- Soracco, C.G.; Lozano, L.A.; Villarreal, R.; Palancar, T.C.; Collazo, D.J.; Sarli, G.O.; Filgueira, R.R. Effects of compaction due to machinery traffic on soil pore configuration. Rev. Bras. Ciênc. Solo 2015, 39, 408–415. [Google Scholar] [CrossRef] [Green Version]
- Talukder, R.; Plaza-Bonilla, D.; Cantero-Martínez, C.; Wendroth, O.; Castel, J.L. Soil gas diffusivity and pore continuity dynamics under different tillage and crop sequences in an irrigated Mediterranean area. Soil Tillage Res. 2022, 221, 105409. [Google Scholar] [CrossRef]
- Mentges, M.I.; Reichert, J.M.; Rodrigues, M.F.; Awe, G.O.; Mentges, L.R. Capacity and intensity soil aeration properties affected by granulometry, moisture, and structure in no-tillage soils. Geoderma 2016, 263, 47–59. [Google Scholar] [CrossRef]
- Ambus, J.V.; Reichert, J.M.; Gubiani, P.I.; Carvalho, P.C.F. Changes in composition and functional soil properties in long-term no-till integrated crop-livestock system. Geoderma 2018, 330, 232–243. [Google Scholar] [CrossRef]
Layer (m) | Sand | ||||||
---|---|---|---|---|---|---|---|
Gravel (20–2 mm) | Total (2–0.05 mm) | Coarse (2–0.2 mm) | Fine (0.2–0.05 mm) | Silt (0.05–0.002 mm) | Clay (<0.002 mm) | * Total Organic Carbon | |
g kg−1 | g dm−3 | ||||||
Anthropized Forest | |||||||
0.00–0.05 | 8 | 407 | 245 | 162 | 191 | 402 | 34 |
0.05–0.10 | 12 | 385 | 210 | 175 | 193 | 422 | 21 |
0.10–0.20 | 12 | 379 | 213 | 166 | 187 | 434 | 17 |
0.20–0.40 | 23 | 345 | 198 | 147 | 179 | 476 | 14 |
0.40–0.60 | 48 | 293 | 171 | 122 | 165 | 542 | 14 |
0.60–1.00 | 47 | 277 | 167 | 110 | 144 | 579 | 11 |
Pasture | |||||||
0.00–0.05 | 38 | 362 | 206 | 156 | 193 | 445 | 27 |
0.05–0.10 | 21 | 355 | 200 | 155 | 199 | 446 | 24 |
0.10–0.20 | 36 | 334 | 193 | 141 | 185 | 481 | 19 |
0.20–0.40 | 41 | 301 | 175 | 126 | 165 | 534 | 16 |
0.40–0.60 | 75 | 300 | 186 | 114 | 137 | 563 | 14 |
0.60–1.00 | 68 | 282 | 167 | 115 | 130 | 588 | 12 |
Eucalyptus 20 | |||||||
0.00–0.05 | 30 | 374 | 212 | 162 | 161 | 465 | 32 |
0.05–0.10 | 40 | 371 | 213 | 158 | 161 | 468 | 18 |
0.10–0.20 | 75 | 385 | 220 | 165 | 157 | 458 | 17 |
0.20–0.40 | 274 | 353 | 206 | 147 | 156 | 491 | 17 |
0.40–0.60 | 110 | 302 | 185 | 117 | 134 | 564 | 13 |
0.60–1.00 | 97 | 285 | 176 | 109 | 120 | 595 | 11 |
Eucalyptus 4.5 | |||||||
0.00–0.05 | 14 | 475 | 272 | 203 | 200 | 325 | 34 |
0.05–0.10 | 14 | 460 | 265 | 195 | 194 | 346 | 16 |
0.10–0.20 | 19 | 426 | 240 | 186 | 192 | 382 | 16 |
0.20–0.40 | 55 | 376 | 226 | 150 | 162 | 462 | 15 |
0.40–0.60 | 47 | 314 | 188 | 126 | 151 | 535 | 14 |
0.60–1.00 | 37 | 288 | 171 | 117 | 141 | 571 | 9 |
Layer, m | Macroporosity, m3 m−3 | Microporosity, m3 m−3 | Total Porosity, m3 m−3 | ||||||
---|---|---|---|---|---|---|---|---|---|
Pres | NPres | cv, % | Pres | NPres | cv, % | Pres | NPres | cv, % | |
Forest | |||||||||
0.025–0.05 | 0.109 a | 0.149 a | 41.73 | 0.367 a | 0.337 b | 5.93 | 0.475 a | 0.486 a | 7.54 |
0.10–0.125 | 0.159 a | 0.183 a | 17.10 | 0.347 a | 0.335 a | 6.42 | 0.506 a | 0.518 a | 2.64 |
0.20–0.225 | 0.150 a | 0.146 a | 18.66 | 0.336 a | 0.348 a | 5.06 | 0.486 a | 0.495 a | 2.54 |
Pasture | |||||||||
0.025–0.05 | 0.093 a | 0.094 a | 35.96 | 0.356 a | 0.370 a | 4.03 | 0.449 a | 0.463 a | 4.90 |
0.10–0.125 | 0.105 a | 0.107 a | 26.10 | 0.358 a | 0.366 a | 3.84 | 0.463 a | 0.473 a | 4.25 |
0.20–0.225 | 0.140 a | 0.126 a | 46.87 | 0.342 a | 0.363 a | 9.21 | 0.482 a | 0.489 a | 6.72 |
Eucalyptus 20 | |||||||||
0.025–0.05 | 0.354 a | 0.333 a | 10.25 | 0.237 b | 0.258 a | 4.78 | 0.591 a | 0.591 a | 5.00 |
0.10–0.125 | 0.226 a | 0.204 a | 52.43 | 0.287 a | 0.315 a | 17.59 | 0.513 a | 0.519 a | 11.95 |
0.20–0.225 | 0.205 a | 0.196 a | 26.27 | 0.303 a | 0.319 a | 11.66 | 0.508 a | 0.515 a | 4.13 |
Eucalyptus 4.5 | |||||||||
0.025–0.05 | 0.082 a | 0.068 a | 54.58 | 0.299 b | 0.339 a | 3.08 | 0.381 a | 0.407 a | 9.97 |
0.10–0.125 | 0.127 a | 0.099 a | 51.04 | 0.286 b | 0.330 a | 6.24 | 0.413 a | 0.429 a | 11.67 |
0.20–0.225 | 0.120 a | 0.085 b | 17.09 | 0.311 b | 0.355 a | 4.20 | 0.432 a | 0.440 a | 4.08 |
Layer, m | Bulk Density Initial, Mg m−3 | Bulk Density Final, Mg m−3 | Deformation, mm | ||||||
---|---|---|---|---|---|---|---|---|---|
Pres | NPres | cv, % | Pres | NPres | cv, % | Pres | NPres | cv, % | |
Forest | |||||||||
0.025–0.05 | 1.28 a | 1.25 a | 6.93 | 1.64 b | 1.80 a | 3.31 | 0.551 b | 0.759 a | 12.41 |
0.10–0.125 | 1.25 a | 1.23 a | 2.69 | 1.72 a | 1.81 b | 1.61 | 0.673 b | 0.792 a | 8.76 |
0.20–0.225 | 1.30 a | 1.27 a | 2.41 | 1.73 b | 1.85 a | 1.72 | 0.624 b | 0.783 a | 6.11 |
Pasture | |||||||||
0.025–0.05 | 1.38 a | 1.32 a | 3.39 | 1.73 b | 1.89 a | 3.03 | 0.513 b | 0.744 a | 7.91 |
0.10–0.125 | 1.36 a | 1.33 a | 3.77 | 1.72 b | 1.88 a | 3.61 | 0.538 b | 0.728 a | 6.24 |
0.20–0.225 | 1.29 a | 1.27 a | 6.67 | 1.69 a | 1.78 a | 6.14 | 0.593 a | 0.711 a | 17.38 |
Eucalyptus 20 | |||||||||
0.025–0.05 | 1.03 a | 0.99 a | 6.33 | Not determined | Not determined | ||||
0.10–0.125 | 1.19 a | 1.21 a | 13.24 | 1.79 a | 1.89 a | 4.87 | 0.639 a | 0.756 a | 15.03 |
0.20–0.225 | 1.23 a | 1.21 a | 4.35 | 1.78 a | 1.78 a | 3.65 | 0.769 a | 0.702 a | 11.46 |
Eucalyptus 4.5 | |||||||||
0.025–0.05 | 1.50 a | 1.47 a | 6.82 | 1.87 b | 1.99 a | 2.88 | 0.483 b | 0.650 a | 16.10 |
0.10–0.125 | 1.47 a | 1.43 a | 8.48 | 1.86 a | 1.96 a | 5.77 | 0.539 a | 0.656 a | 16.70 |
0.20–0.225 | 1.44 a | 1.42 a | 3.19 | 1.82 b | 1.96 a | 2.38 | 0.530 b | 0.695 a | 8.25 |
Layer, m | Precompression Stress, kPa | Compressibility Index | Degree of Water Saturation, % | Air Permeability, mm h−1 | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Pres | NPres | cv, % | Pres | NPres | cv, % | Pres | NPres | cv, % | Pres | NPres | cv, % | |
Forest | ||||||||||||
0.025–0.05 | 47.53 a | 49.85 a | 18.46 | 0.25 b | 0.39 a | 18.69 | 66.52 a | 52.71 b | 16.67 | 17.29 a | 27.71 a | 87.15 |
0.10–0.125 | 48.10 a | 49.85 a | 20.18 | 0.33 a | 0.38 a | 16.67 | 57.07 a | 50.37 b | 7.84 | 34.55 a | 30.69 a | 80.60 |
0.20–0.225 | 39.35 b | 51.92 a | 17.42 | 0.28 b | 0.40 a | 7.89 | 61.73 a | 54.04 b | 9.56 | 19.03 a | 19.78 a | 95.27 |
Pasture | ||||||||||||
0.025–0.05 | 44.56 a | 38.47 a | 20.31 | 0.21 b | 0.34 a | 10.51 | 69.62 a | 64.21 a | 6.74 | 26.09 a | 10.07 a | 69.75 |
0.10–0.125 | 35.53 a | 35.50 a | 22.58 | 0.22 b | 0.32 a | 9.83 | 67.39 a | 62.34 a | 11.93 | 15.09 a | 10.21 a | 53.41 |
0.20–0.225 | 34.42 a | 40.76 a | 39.80 | 0.25 a | 0.33 a | 21.35 | 61.94 a | 60.04 a | 17.74 | 16.10 a | 14.75 a | 65.28 |
Eucalyptus 20 | ||||||||||||
0.025–0.05 | 31.24 a | 35.85 a | 28.57 | 0.60 a | 0.58 a | 16.43 | 36.65 a | 33.92 a | 8.58 | Not determined | ||
0.10–0.125 | 42.20 a | 54.40 a | 32.70 | 0.43 a | 0.45 a | 26.76 | 45.87 a | 47.98 a | 29.49 | 192.70 a | 110.99 a | 78.48 |
0.20–0.225 | 46.47 a | 46.62 a | 27.51 | 0.38 a | 0.45 a | 15.23 | 50.33 a | 47.42 a | 13.60 | 66.33 a | 119.39 a | 67.66 |
Eucalyptus 4.5 | ||||||||||||
0.025–0.05 | 46.00 a | 38.65 a | 18.27 | 0.18 a | 0.25 a | 24.57 | 68.45 a | 67.83 a | 15.84 | 19.16 a | 7.37 a | 117.84 |
0.10–0.125 | 42.27 a | 34.85 a | 28.26 | 0.21 a | 0.28 a | 24.41 | 63.23 a | 59.95 a | 18.08 | 27.53 a | 17.18 a | 107.33 |
0.20–0.225 | 50.92 a | 39.33 a | 25.42 | 0.21 b | 0.29 a | 12.01 | 62.02 a | 61.27 a | 5.11 | 26.35 a | 9.67 a | 78.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Suzuki, L.E.A.S.; Reinert, D.J.; Secco, D.; Fenner, P.T.; Reichert, J.M. Soil Structure under Forest and Pasture Land-Uses Affecting Compressive Behavior and Air Permeability in a Subtropical Soil. Soil Syst. 2022, 6, 98. https://doi.org/10.3390/soilsystems6040098
Suzuki LEAS, Reinert DJ, Secco D, Fenner PT, Reichert JM. Soil Structure under Forest and Pasture Land-Uses Affecting Compressive Behavior and Air Permeability in a Subtropical Soil. Soil Systems. 2022; 6(4):98. https://doi.org/10.3390/soilsystems6040098
Chicago/Turabian StyleSuzuki, Luis Eduardo Akiyoshi Sanches, Dalvan José Reinert, Deonir Secco, Paulo Torres Fenner, and José Miguel Reichert. 2022. "Soil Structure under Forest and Pasture Land-Uses Affecting Compressive Behavior and Air Permeability in a Subtropical Soil" Soil Systems 6, no. 4: 98. https://doi.org/10.3390/soilsystems6040098
APA StyleSuzuki, L. E. A. S., Reinert, D. J., Secco, D., Fenner, P. T., & Reichert, J. M. (2022). Soil Structure under Forest and Pasture Land-Uses Affecting Compressive Behavior and Air Permeability in a Subtropical Soil. Soil Systems, 6(4), 98. https://doi.org/10.3390/soilsystems6040098