Chemical Composition of Tissues of Syringa vulgaris L. and Soil Features in Abandoned Cemeteries
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil and Plant Sampling
2.3. Analytical Studies Soil-Plant Composition by Indices
3. Results
3.1. Environmental Indicators
3.2. Comparison of Metal Content in the Soil–Plant–Soil System
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Vitousek, P.M.; Mooney, H.A.; Lubchenco, J.; Melillo, J.M. Human domination on earth’s ecosystems. Science 1997, 277, 494–499. [Google Scholar] [CrossRef] [Green Version]
- Oliver, M.A. Soil and human health: A review. Eur. J. Soil Sci. 1997, 48, 573–592. [Google Scholar] [CrossRef]
- Amundson, R.; Berhe, A.A.; Hopmans, J.W.; Olson, C.; Sztein, A.E.; Sparks, D.L. Soil and human security in the 21st century. Science 2015, 348, 1261071. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Sun, G.X.; Ren, Y.; Luo, X.S.; Zhu, Y.G. Urban soil and human health: A review. Eur. J. Soil Sci. 2018, 69, 196–215. [Google Scholar] [CrossRef] [Green Version]
- Bilska-Wodecka, E. Krajobraz religijny czy święta przestrzeń? In Przyroda-Człowiek—Bóg; Izmaiłow, B., Ed.; IGiGP UJ: Kraków, Poland, 2004; pp. 263–269. [Google Scholar]
- Wadzinski, L. Wild cemeteries? USDA For. Serv. Proc. 2007, 49, 59–64. [Google Scholar]
- Fiedler, S.; Breuer, J.; Pusch, C.M.; Holley, S.; Wahl, J.; Ingwersen, J.; Graw, M. Graveyards—Special landfills. Sci. Total Environ. 2011, 419, 90–97. [Google Scholar] [CrossRef]
- Uslu, A. An ecological approach for the evaluation of an abandoned cemetery as a green area: The case of Ankara/Karakusunlar cemetery. Afr. J. Agric. Res. 2010, 5, 1043–1054. [Google Scholar]
- Massas, I.; Kefalogianni, I.; Chatzipavlidis, I. Is the ground of an old cemetery suitable for the establishment of an urban park? A critical assessment based on soil and microbiological data. J. Soils Sediments 2018, 18, 94–108. [Google Scholar] [CrossRef]
- Burghardt, W. Soils in urban and industrial environments. Z. Pflanz. Und Bodenkd. 1994, 157, 205–214. [Google Scholar] [CrossRef]
- Stroganova, M.; Myagkova, A.; Prokofieva, T.; Skvortsova, I. Soils of Moscow and Urban Environment; Publishing House PAIMS: Moscow, Russia, 1998; pp. 1–178. [Google Scholar]
- Sobocka, J. Necrosol as a new anthropogenic soil type. In Proceedings of the Soil Anthropization VII, Bratislava, Slovakia, 28–30 September 2004; pp. 107–112. [Google Scholar]
- Majgier, L.; Rahmonov, O.; Bednarek, R. Features of abandoned cemetery soils on sandy substrates in Northern Poland. Eurasian Soil Sci. 2014, 47, 621–629. [Google Scholar] [CrossRef]
- Amuno, S.A.; Amuno, M.M. Spatio-temporal variation of trace element contents in Rwanda necrosols. Environ. Earth Sci. 2014, 71, 659–674. [Google Scholar] [CrossRef]
- Charzyński, P.; Markiewicz, M.; Majorek, M.; Bednarek, R. Geochemical assessment of soils in the German Nazi concentration camp in Stutthof (Northern Poland). Soil Sci. Plant Nutr. 2015, 61, 47–54. [Google Scholar] [CrossRef] [Green Version]
- Stroganova, M.; Prokofieva, T. Urban soils classification for Russian cities of the taiga zone. Eur. Soil Bur. Res. Rep. 2000, 7, 153–156. [Google Scholar]
- Gerasimova, M.I.; Stroganova, M.N.; Możarowa, H.W.; Prokofieva, T.W. Antropogennyje Pochvy (Genezis, Geografiya, Rekul‘tivatsiya); Publishing House Yurite (Юрайт): Smolensk, Russia, 2003; pp. 1–268. [Google Scholar]
- Charzyński, P.; Bednarek, R.; Greinert, A.; Hulisz, P.; Uzarowicz, Ł. Classification of technogenic soils according to WRB system in the light of Polish experiences. Soil Sci. Annu. 2013, 64, 145–150. [Google Scholar] [CrossRef]
- Całkosiński, I.; Płoneczka-Janeczko, K.; Ostapska, M.; Dudek, K.; Gamian, A.; Rypuła, K. Microbiological analysis of necrosols collected from urban cemeteries in Poland. BioMed Res. Int. 2015, 2015, 169573. [Google Scholar] [CrossRef] [Green Version]
- Abia, A.L.K.; Alisoltani, A.; Ubomba-Jaswa, E.; Dippenaar, M.A. Microbial life beyond the grave: 16S rRNA gene-based metagenomic analysis of bacteria diversity and their functional profiles in cemetery environments. Sci. Total Environ. 2019, 655, 831–841. [Google Scholar] [CrossRef]
- Burns, A.; Pickering, M.D.; Green, K.A.; Pinder, A.P.; Gestsdóttir, H.; Usai, M.R.; Brothwell, D.R.; Keely, B.J. Micromorphological and chemical investigation of late-Viking age grave fills at Hofstaðir, Iceland. Geoderma 2017, 306, 183–194. [Google Scholar] [CrossRef] [Green Version]
- Usai, M.R.; Pickering, M.D.; Wilson, C.A.; Keely, B.J.; Brothwell, D.R. Interred with their bones: Soil micromorphology and chemistry in the study of human remains. Antiq. Proj. Gallery 2014, 88, 339. [Google Scholar]
- Vélez, S.; Monsalve, T.; Quiroz, M.L.; Castañeda, D.; Cardona-Gallo, S.A.; Terrazas, A.; Sedov, S. The study of Necrosols and cemetery soils. DYNA 2019, 86, 337–345. [Google Scholar] [CrossRef] [Green Version]
- Luong, S.; Forbes, S.L.; Wallman, J.F.; Roberts, R.G. Monitoring the extent of vertical and lateral movement of human decomposition products through sediment using cholesterol as a biomarker. Forensic Sci. Int. 2018, 285, 93–104. [Google Scholar] [CrossRef] [Green Version]
- Amuno, S.A. Potential Ecological Risk of Heavy Metal Distribution in Cemetery Soils. Water Air Soil Pollut. 2013, 224, 1435. [Google Scholar] [CrossRef]
- Sobocka, J. Urban Soils vs. Anthropogenic Soils, their Characteristics and Functions. Phytopedon 2003, 2, 76–80. [Google Scholar]
- Żychowski, J. Wpływ krakowskich cmentarzy na środowisko przyrodnicze. Przegląd Geogr. 2010, 82, 319–341. [Google Scholar]
- Żychowski, J. The impact of cemeteries in Kraków on the natural environment—Selected aspects. Geogr. Pol. 2011, 84, 5–23. [Google Scholar] [CrossRef] [Green Version]
- Sukopp, H. On the early history of urban ecology in Europe. Preslia 2002, 74, 373–393. [Google Scholar]
- Gudžinskas, Z. Case studies on the alien flora of the vicinity of cemeteries in Lithuania. Zemes Vides Zinātnes Latv. Univ. Raksti 2007, 685, 21–37. [Google Scholar]
- Celka, Z.; Żywica, J. Flora naczyniowa wybranych cmentarzy Ostrowa Wielkopolskiego i okolic. Rocz. AR Poznań 2004, 363, 11–31. [Google Scholar]
- Czarna, A.; Piskorz, R. Vascular flora of cemeteries in Zakopane town in the Tatry Mountains. Rocz. AR Poznań 2005, 373, 47–58. [Google Scholar]
- Jędrzejko, K.; Walusiak, E. Wieloaspektowość i specyfika kulturowa badań przyrodniczych na cmentarzach—W nawiązaniu do analiz florystycznych i fitosocjologicznych na obszarze Podbeskidzia Zachodniego (Pogórze Śląskie i Wielickie). Probl. Ekol. 2010, 14, 98–105. [Google Scholar]
- Czarna, A.; Nowińska, R. Vascular flora in cemeteries of the Roztocze Region and surroundings areas (south-east Poland). Acta Agrobot. 2011, 64, 77–92. [Google Scholar] [CrossRef] [Green Version]
- Semple, W.S.; Rankin, M.O.; Cole, I.A.; Koen, T.B. Four rural cemeteries in central western NSW: Islands of Australiana in a European sea? Cunninghamia 2010, 11, 81–96. [Google Scholar]
- Czarna, A.; Antkowiak, W. Vascular plants in the former old town evangelical cemetery in Wschowa (The Wielkopolska Region). Rocz. AR Poznań 2008, 12, 71–78. [Google Scholar]
- Rahmonov, O.; Jędrzejko, K.; Majgier, L. The secondary succession in the area of abandoned cemeteries in northern Poland. In Landscape Ecology—Methods, Applications and Interdisciplinary Approach; Barančoková, M., Krajčí, J., Kollár, J., Belčáková, I., Eds.; Institute of Landscape Ecology, Slovak Academy of Sciences: Bratislava, Slovakia, 2010; pp. 647–657. [Google Scholar]
- Majgier, L.; Rahmonov, O. Selected chemical properties of Necrosols from the abandoned cemeteries Słabowo and Szymonka (Great Mazurian Lakes District). Bull. Geogr. Phys. Geogr. Ser. 2012, 5, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Majgier, L.; Rahmonov, O. Nekrosole wybranych cmentarzy Krainy Wielkich Jezior Mazurskich. In Ekshumacje Polityczne: Teoria i Praktyka; Staniewska, A., Domańska, E., Eds.; Muzeum Historyczne w Lubinie: Lubin, Poland, 2023; pp. 157–172. [Google Scholar]
- Bednarek, R.; Dziadowiec, H.; Pokojska, U.; Prusinkiewicz, Z. Badania Ekologiczno-Gleboznawcze; Wyd. Nauk. PWN: Warszawa, Poland, 2004; pp. 1–330. [Google Scholar]
- MacNaeidhe, F. Procedures and Precautions Used in Sampling Techniques and Analysis of Trace Elements in Plant Matrices. Sci. Total Environ. 1995, 176, 25–31. [Google Scholar] [CrossRef]
- Markert, B. Sample Preparation (Cleaning, Drying, Homogenization) for Trace Element Analysis in Plant Matrices. Sci. Total Environ. 1995, 176, 45–61. [Google Scholar] [CrossRef]
- Barbieri, M. The importance of enrichment factor (EF) and geoaccumulation index (Igeo) to evaluate the soil contamination. J. Geol. Geophys. 2016, 5, 237. [Google Scholar] [CrossRef]
- Wedepohl, K. The Composition of the Continental Crust. Geochim. Cosmochim. Acta 1995, 59, 1217–1232. [Google Scholar] [CrossRef]
- Bern, C.R.; Walton-Day, K.; Naftz, D.L. Improved enrichment factor calculations through principal component analysis: Examples from soils near breccia pipe uranium mines, Arizona, USA. Environ. Pollut. 2019, 248, 90–100. [Google Scholar] [CrossRef]
- Uriah, L.A.; Shehu, U. Environmental Risk Assessment of Heavy Metals Content of Municipal Solid Waste Used as Organic Fertilizer in Vegetable Gardens on the Jos Plateau, Nigeria. Am. J. Environ. Prot. 2014, 3, 1–13. [Google Scholar]
- Sekabira, K.; Oryem-Origa, H.; Mutumba, G.M.; Kakudidi, E.; Basamba, T.A. Heavy Metal Phytoremediation by Commelina benghalensis (L) and Cynodon dactylon (L) Growing in Urban Stream Sediments. Int. J. Plant Physiol. Biochem. 2011, 3, 133–142. [Google Scholar]
- Álvarez-Mateos, P.; Alés-Álvarez, F.J.; García-Martín, J.F. Phytoremediation of highly contaminated mining soils by Jatropha curcas L. and production of catalytic carbons from the generated biomass. J. Environ. Manag. 2019, 231, 886–895. [Google Scholar] [CrossRef] [PubMed]
- Dinu, C.; Vasile, G.G.; Buleandra, M.; Popa, D.E.; Gheorghe, S.; Ungureanu, E.M. Translocation and accumulation of heavy metals in Ocimum basilicum L. plants grown in a mining-contaminated soil. J. Soils Sediments 2020, 20, 2141–2154. [Google Scholar] [CrossRef]
- World Reference Base for Soil Resources 2014; IUSS Working Group WRB. Update 2015 International Soil Classification System for Naming Soils and Creating Legends for Soil Maps; World Soil Resources Reports No. 106; FAO: Rome, Italy, 2015. [Google Scholar]
- Charzyński, P.; Bednarek, R.; Świtoniak, M.; Żołnowska, B. Ekranic Technosols and Urbic Technosols of Toruń Necropolis. Geologija 2010, 53, 179–185. [Google Scholar] [CrossRef]
- Majgier, L. Zawartość Corg, Nt, Pt w nekrosolach na przykładzie porzuconych cmentarzy Słabowo i Szymonka (Kraina Wielkich Jezior Mazurskich). In Rozwój Zrównoważony Regionów Polski; Wysota, W., Ed.; Wyd. Naukowe UMK: Toruń, Poland, 2011; pp. 113–121. [Google Scholar]
- Bednarek, R. Wykorzystanie metod gleboznawczych i paleopedologicznych w badaniach archeologicznych. In Człowiek i Środowisko Przyrodnicze We Wczesnym Średniowieczu w Świetle Badań Interdyscyplinarnych; Chudziak, W., Ed.; Wyd. Naukowe UMK: Toruń, Poland, 2008; pp. 63–106. [Google Scholar]
- Tomaszewicz, T.; Chudecka, J. Wpływ sposobu użytkowania na właściwości gleb rdzawych: Odłogowanej oraz użytkowanej rolniczo w miejscowości Ginawa (woj. zachodniopomorskie). Inżynieria Rol. 2005, 4, 311–320. [Google Scholar]
- Stroganova, M.N.; Rappoport, A.V. Spesicific Features of Anthropogenic Soils in Botanical Gardens of Metropolises in Southern Taiga Subzone. Eurasian Soil Sci. 2005, 38, 966–978. [Google Scholar]
- Chudecka, J. Charakterystyka Substratu Glebowego w Warstwie Antropogenicznej Najstarszej Części Szczecina; Wydawnictwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego: Szczecin, Poland, 2009; pp. 1–100. [Google Scholar]
- Markiewicz, M.; Bednarek, R.; Pajak, M. Współczesne gospodarstwo rolne jako obiekt badań pedoarcheologii doświadczalnej. Rocz. Glebozn. 2011, 62, 265–272. [Google Scholar]
- Gebhardt, H. Phosphatkartierung und bodenkundliche Geländeuntersuchungen zur Eingrenzung historischer Siedlungs- und Wirtschaftsflächen der Geestinsel Flögeln. Probl. Küstenforschung Südlichen Nordseegebiet Hildesh. 1982, 14, 1–10. [Google Scholar]
- Brzeziński, W.; Dulinicz, M.; Kobyliński, Z. Zawartość fosforu w glebie, jako wskaźnik dawnej działalności ludzkiej. Kwart. Hist. Kult. Mater. 1983, 31, 277–297. [Google Scholar]
- Lis, J.; Pasieczna, A. Atlas Geochemiczny Polski; Państwowy Instytut Geologiczny: Warszawa, Poland, 1995. [Google Scholar]
- Czarnowska, K. Ogólna zawartość metali ciężkich w skałach macierzystych jako tło geochemiczne gleb. Rocz. Glebozn. 1996, 57, 43–50. [Google Scholar]
- Piaseczna, A. Atlas of Urban Soils Pollution in Poland; PiG: Warszawa, Poland, 2003. [Google Scholar]
- Muller, G. Index of Geoaccumulation in Sediments of the Rhine River. J. Geol. 1969, 2, 109–118. [Google Scholar]
- Haris, H.; Aris, A.Z. The geoaccumulation index and enrichment factor of mercury in mangrove sediment of Port Klang, Selangor, Malaysia. Arab. J. Geosci. 2013, 6, 4119–4128. [Google Scholar] [CrossRef]
- Loska, K.; Wiechuła, D.; Barska, B.; Cebula, E.; Chojnecka, A. Assessment of arsenic enrichment of cultivated soils in Southern Poland. Pol. J. Environ. Stud. 2003, 12, 187–192. [Google Scholar]
- Nowrouzi, M.; Pourkhabbaz, A. Application of geoaccumulation index and enrichment factor for assessing metal contamination in the sediments of Hara Biosphere Reserve, Iran. Chem. Speciat. Bioavailab. 2014, 26, 99–105. [Google Scholar] [CrossRef] [Green Version]
- Shafie, N.A.; Aris, A.Z.; Zakaria, M.P.; Haris, H.; Wan, Y.L.; Isa, N.M. Application of geoaccumulation index and enrichment factors on the assessment of heavy metal pollution in the sediments. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2013, 48, 182–190. [Google Scholar] [CrossRef]
- Sukri, N.S.; Aspin, S.A.; Kamarulzaman, N.L.; Jaafar, N.F.; Rozidaini, M.G.; Shafiee, N.S.; Siti Hajar, Y. Assessment of metal pollution using enrichment factor (EF) and pollution load index (PLI) in sediments of selected terengganu, Malaysia. Malays. J. Fundam. Appl. Sci. 2018, 14, 235–240. [Google Scholar] [CrossRef]
- Ghrefat, H.A.; Waheidi, M.; El Batayneh, A.; Nazzal, Z.; Zumlot, T.; Mogren, S. Pollution assessment of arsenic and other selected elements in the groundwater and soil of the Gulf of Aqaba, Saudi Arabia. Environ. Earth Sci. 2016, 75, 229. [Google Scholar] [CrossRef]
- Abdullah, M.I.C.; Sah, A.S.R.M.; Haris, H. Geoaccumulation Index and Enrichment Factor of Arsenic in Surface Sediment of Bukit Merah Reservoir, Malaysia. Trop. Life Sci. Res. 2020, 31, 109–125. [Google Scholar] [CrossRef]
- Rahmonov, O.; Skreczko, S.; Rahmonov, M. Changes in Soil Features and Phytomass during Vegetation Succession in Sandy Areas. Land 2021, 10, 265. [Google Scholar] [CrossRef]
- Środek, D.; Rahmonov, O. The Properties of Black Locust Robinia pseudoacacia L. to Selectively Accumulate Chemical Elements from Soils of Ecologically Transformed Areas. Forests 2022, 13, 7. [Google Scholar] [CrossRef]
- Usman, K.; Al-Ghouti, M.A.; Abu-Dieyeh, M.H. The assessment of cadmium, chromium, copper, and nickel tolerance and bioaccumulation by shrub plant Tetraena qataranse. Sci. Rep. 2019, 9, 5658. [Google Scholar] [CrossRef] [Green Version]
- Rahmonov, O. Relacje Między Roślinnością i Glebą w Inicjalnej Fazie Sukcesji na Obszarach Piaszczystycfh; Wydawnictwo Uniwersytetu Śląskiego: Katowice, Poland, 2007; pp. 1–197. [Google Scholar]
- Kabata-Pendias, A.; Pendias, H. Biogeochemia Pierwiastków Śladowych; PWN: Warszawa, Poland, 1998. [Google Scholar]
- Alcantara, E.; Ginhas, A.M.; Ojeda, M.A.; Benitez, M.J.; Benlloch, M. Metal accumulation by different plant species grown in contaminated media. In Plant Nutrition—Food Security and Sustainability of Agro-Ecosystems; Horst, W., Schenk, M.K., Bürkert, A., Claassen, N., Flessa, H., Frommer, W.B., Goldbach, H.E., Olfs, H.W., Römheld, V., Sattelmacher, B., et al., Eds.; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2001. [Google Scholar]
- Gorlach, E.; Gambuś, F. Potencjalnie toksyczne pierwiastki śladowe w glebach (nadmiar, szkodliwość i przeciwdziałanie). Zesz. Probl. Post. Nauk Roln. 2000, 472, 287–295. [Google Scholar]
- Rahmonov, O.; Środek, D.; Pytel, S.; Makieieva, N.; Kupka, T. Relationships between Heavy Metal Concentrations in Greater Celandine (Chelidonium majus L.) Tissues and Soil in Urban Parks. Int. J. Environ. Res. Public Health 2023, 20, 3887. [Google Scholar] [CrossRef]
Cemetery Name | Historical Name | Geographical Coordinates | Area [m2] | Year of Creation | Vegetation |
---|---|---|---|---|---|
Evangelical cemetery Rudówka Mała | Evangelische Friedhof Kleine Rudowken | N 53°55′54.2′′ E 21°37′45.6′′ | 4949 | 1889 | pathes of Convolvulus arvensis, Artemisia vulgaris, Achillea millefolium, and dense clumps of Syringa vulgaris |
War cemetery Szymonka | Kriegsfriedhof Schmidtsdorf | N 53°53′34′′ E 21°39′30.5′′ | 887 | 1914 | pathes of Aegopodium podagraria and Vinca minor, Convallaria majalis, dense clumps of S. vulgaris |
Horizon | Depth (cm) | Corg. | Nt | C/N | Pt | CaCO3 | pH | |
---|---|---|---|---|---|---|---|---|
(%) | (mg∙kg−1) | (%) | H2O | KCl | ||||
Burial Necrosol—Rudówka Mała | ||||||||
A | 0–31 | 3.3 | 0.170 | 19 | 1560 | 1.0 | 7.2 | 6.6 |
Cantr. | 32–70 | 0.42 | 0.017 | 24 | 249 | 1.5 | 8.2 | 7.6 |
Cantr.2 | 71–100 | 1.15 | 0.121 | 9 | 2010 | 2.0 | 8.1 | 7.5 |
Cantr.3 | 101–125 | 0.44 | 0.017 | 25 | 239 | 1.8 | 8.4 | 7.9 |
Ccoffin | 126–148 | 0.61 | 0.026 | 23 | 759 | 1.2 | 8.2 | 7.6 |
C | Below148 | 0.07 | 0.007 | 10 | 184 | 5.0 | 8.6 | 8.1 |
Burial Necrosol—Szymonka | ||||||||
A | 0–20 | 2.71 | 0.143 | 19 | 1553 | 3.4 | 7.9 | 7.5 |
Cantr. | 21–40 | 0.59 | 0,029 | 20 | 612 | 2.7 | 7.9 | 7.4 |
Cantr.2 | 41–60 | 2.22 | 0.042 | 53 | 312 | 1.7 | 8.2 | 7.6 |
Cantr.3 | 61–90 | 0.49 | 0.043 | 11 | 332 | 1.8 | 8.1 | 7.8 |
Ccoffin | 91–110 | 0.92 | 0.068 | 13 | 844 | 1.7 | 8.1 | 7.5 |
Undisturbed (unburial) cemetery soil Brunic Arenosol—Rudówka Mała | ||||||||
A | 0–31 | 3.6 | 0.257 | 14 | 323 | 0.3 | 7.4 | 6.8 |
Bv | 32–100 | 0.39 | 0.007 | 56 | 246 | 0.9 | 8.0 | 7.3 |
Bv2 | 101–155 | 1.07 | 0.034 | 31 | 468 | 1.9 | 7.9 | 7.4 |
C | Below 155 | 0.05 | 0.005 | 11 | 446 | 5.4 | 8.4 | 8.0 |
Undisturbed (unburial) cemetery soil Brunic Arenosol—Mała Szymonka | ||||||||
A | 0–30 | 2.29 | 0.236 | 10 | 1188 | 1.7 | 8.0 | 7.4 |
Bv | 31–50 | 0.21 | 0.019 | 11 | 546 | 5.2 | 8.3 | 7.5 |
Bv2 | 51–90 | 0.55 | 0.007 | 79 | 688 | 6.6 | 7.8 | 7.6 |
C | 91–140 | 0.07 | 0.005 | 13 | 558 | 8.7 | 8.8 | 7.2 |
Horizon | Depth (cm) | Ca | Na | K | Al | Fe | Mg | Zn | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|
(mg∙kg−1) | ||||||||||
Burial Necrosol in cemetary of Rudówka Mała | ||||||||||
A | 0–31 | 7986 | 86.3 | 1510 | 5950 | 6380 | 1459 | 32.15 | 0.078 | 9.73 |
Cantr. | 32–70 | 6873 | 82.3 | 786 | 4487 | 4412 | 921 | 9.39 | 0.060 | 2.32 |
Cantr. 2 | 71–100 | 11,260 | 98.6 | 1710 | 5798 | 6292 | 1718 | 30.79 | 0.013 | 9.77 |
Cantr. 3 | 101–125 | 8133 | 83.9 | 878 | 4196 | 4472 | 1037 | 8.12 | 0.033 | 2.39 |
Ccoffen | 126–148 | 6295 | 85.6 | 833 | 4603 | 4693 | 968,3 | 10.76 | 0.042 | 3.61 |
C | Below 148 | 18,030 | 83.4 | 598 | 1528 | 2027 | 747 | 1.58 | 0.080 | 0.41 |
Undisturbed (unburial) cemetery soil Brunic Arenosol Rudówka Mała | ||||||||||
A | 0–31 | 6401 | 71.5 | 1187 | 5301 | 5823 | 1187 | 33.83 | 0.090 | 11.27 |
Bv | 32–100 | 4222 | 79.3 | 893 | 4782 | 4935 | 893 | 10.30 | 0.034 | 3.53 |
Bv2 | 101–155 | 8788 | 81.3 | 894 | 4187 | 4468 | 1026 | 10.80 | 0.027 | 3.72 |
C | Poniżej 155 | 18,640 | 86.9 | 572 | 1546 | 2068 | 644 | 2.09 | 0.077 | 0.24 |
Horizon | Depth (cm) | Ca | Na | K | Al | Fe | Mg | Zn | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|---|
(mg∙kg−1) | ||||||||||
Burial Necrosol in cemetary of Szymonka | ||||||||||
A | 0–20 | 12,920 | 97.0 | 1349 | 4499 | 5222 | 2235 | 1.46 | 0.010 | 8.83 |
Cantr. | 21–40 | 15,260 | 10.9 | 1928 | 7211 | 8107 | 2502 | 3.54 | 0.093 | 11.63 |
Cantr.2 | 41–60 | 7905 | 9.0 | 1390 | 5226 | 5796 | 1687 | 1.51 | 0.026 | 4.35 |
Cantr.3 | 61–90 | 8614 | 9.2 | 1699 | 4862 | 5533 | 1699 | 1.54 | 0.012 | 4.08 |
Ccoffin | 91–110 | 7959 | 9.1 | 1364 | 5122 | 5738 | 1653 | 3.97 | 0.064 | 7.82 |
Undisturbed cemetery soil Brunic Arenosol Szymonka | ||||||||||
A | 0–30 | 8742 | 80.0 | 1285 | 4354 | 5029 | 1522 | 25.01 | 0.054 | 8.33 |
Bv | 31–50 | 17,890 | 89.2 | 961 | 2862 | 3430 | 1454 | 7.19 | 0.041 | 1.49 |
Bv2 | 51–90 | 24,130 | 93.5 | 1084 | 2817 | 3686 | 2035 | 7.49 | 0.046 | 0.83 |
C | 91–140 | 26,180 | 103.1 | 709 | 1746 | 2638 | 1710 | 4.32 | 0.062 | 0.16 |
Szymonka Cemetery | Rudówka Mała Cemetery | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Burial Necrosol | Unburied | Burial Necrosol | Unburial | |||||||||
Leaves | Branches | Root | Leaves | Branches | Root | Leaves | Branches | Root | Leaves | Branches | Root | |
Ca | 15,110 | 4440 | 2500 | 19,700 | 5020 | 5110 | 12,530 | 2940 | 5690 | 11,700 | 2910 | 3840 |
Na | 150 | 80 | 60 | 60 | 50 | 90 | 203 | 60 | 110 | 80 | 40 | 80 |
K | 20,030 | 4850 | 4620 | 15,700 | 6180 | 5570 | 23,080 | 3920 | 7660 | 28,920 | 6410 | 5740 |
Mg | 502.5 | 1020 | 670 | 4190 | 1190 | 1050 | 3940 | 606 | 2100 | 3130 | 840 | 1010 |
Al | 313 | 30 | 217 | 230 | 40 | 962 | 166 | 27 | 1672 | 193 | 40 | 174 |
Fe | 502.5 | 50.5 | 158.2 | 345.4 | 48.7 | 822.5 | 283.2 | 38 | 1660 | 266.7 | 49.7 | 173.1 |
Zn | 125.9 | 65.64 | 40.3 | 37.7 | 41.9 | 44.8 | 87.1 | 38.4 | 82.3 | 130.6 | 51.1 | 75 |
Cd | 0.079 | 0.022 | 0.03 | 0.067 | 0.028 | 0.123 | 0.357 | 0.298 | 0.956 | 0.375 | 0.27 | 0.434 |
Pb | 0.534 | 0.671 | 0.565 | 0.797 | 0.774 | 1.128 | 0.802 | 0.631 | 4.065 | 1.059 | 0.9 | 1.429 |
Horizon | Depth, cm | Ca | Na | K | Al | Fe | Mg | Zn | Cd | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Burial Necrosol | |||||||||||
The geoaccumulation index (Igeo) | A | 0–31 | −2.46 | −8.8 | −4.83 | −4.28 | −2.86 | −3.79 | −1.27 | −0.97 | −1.38 |
Cantr. | 32–70 | −2.68 | −8.86 | −5.77 | −4.69 | −3.39 | −4.45 | −3.05 | −1.35 | −3.45 | |
Cantr.2 | 71–100 | −1.97 | −8.61 | −4.65 | −4.32 | −2.88 | −3.56 | −1.34 | −3.55 | −1.38 | |
Cantr.3 | 101–125 | −2.44 | −8.84 | −5.61 | −4.89 | −3.37 | −4.28 | −3.26 | −2.21 | −3.41 | |
Ccoffin | 126–148 | −2.81 | −8.8 | −5.68 | −4.65 | −3.3 | −4.38 | −2.85 | −1.86 | −2.82 | |
The enrichment factor (EF) | A | 0–31 | 1.19 | 0.01 | 0.23 | 0.37 | - | 0.48 | 2.71 | 3.37 | 2.52 |
Cantr. | 32–70 | 1.02 | 0.02 | 0.12 | 0.25 | - | 0.33 | 0.79 | 2.59 | 0.60 | |
Cantr.2 | 71–100 | 1.68 | 0.01 | 0.26 | 0.36 | - | 0.61 | 2.61 | 0.56 | 2.53 | |
Cantr.3 | 101–125 | 1.21 | 0.02 | 0.14 | 0.23 | - | 0.37 | 0.75 | 1.43 | 0.60 | |
Ccoffen | 126–148 | 0.94 | 0.02 | 0.13 | 0.26 | - | 0.34 | 0.91 | 1.81 | 0.93 | |
Contamination factor | A | 0–31 | 0.27 | 0 | 0.05 | 0.07 | 0.2 | 0.1 | 0.61 | 0.77 | 0.57 |
Cantr. | 32–70 | 0.23 | 0 | 0.02 | 0.05 | 0.14 | 0.07 | 0.18 | 0.58 | 0.14 | |
Cantr.2 | 71–100 | 0.38 | 0 | 0.05 | 0.07 | 0.2 | 0.12 | 0.59 | 0.12 | 0.57 | |
Cantr.3 | 101–125 | 0.27 | 0,07 | 0.03 | 0.05 | 0.14 | 0.07 | 0.15 | 0.2 | 0.14 | |
Ccoffen | 126–148 | 0.21 | 0 | 0,02 | 0.05 | 0.15 | 0.07 | 0.21 | 0.41 | 0.21 | |
Undisturbed/Unburial cemetery soil Brunic Arenosol | |||||||||||
The geoaccumulation index (Igeo) | Horizon | Depth, cm | Ca | Na | K | Al | Fe | Mg | Zn | Cd | Pb |
A | 0–31 | −2.78 | −9.07 | −5.17 | −4.45 | −2.99 | −4.09 | −1.21 | −0.76 | −1.17 | |
Bv | 32–100 | −3.38 | −8.92 | −5.58 | −4.60 | −3.23 | −4.50 | −2.92 | −2.16 | −2.85 | |
Bv2 | 101–155 | −2.32 | −8.88 | −5.58 | −4.79 | −3.37 | −4.30 | −2.85 | −2.49 | −2.77 | |
C | Below 155 | −1.24 | −8.78 | −6.23 | −6.23 | −4.48 | −4.98 | −5.22 | −0.99 | −6.73 | |
The enrichment factor (EF) | A | 0–31 | 0.95 | 0,01 | 0.18 | 0.30 | - | 0.38 | 2.87 | 3.89 | 2.92 |
Bv | 32–100 | 0.63 | 0.01 | 0.13 | 0.29 | - | 0.32 | 0.87 | 1.47 | 0.91 | |
Bv2 | 101–155 | 1.31 | 0.02 | 0.13 | 0.26 | - | 0.34 | 0,88 | 1.16 | 0.96 | |
C | Below 155 | 2.79 | 0.02 | 0.09 | 0.09 | - | 0.21 | 0.17 | 3.33 | 0.06 | |
Contamination factor (CF) | A | 0–31 | 0.21 | 0.0 | 0.04 | 0.07 | 0.18 | 0.08 | 0.65 | 0.88 | 0,66 |
Bv | 32–100 | 0.14 | 0.0 | 0.03 | 0.06 | 0.15 | 0.07 | 0.19 | 0.33 | 0.21 | |
Bv2 | 101–155 | 0.29 | 0.0 | 0.03 | 0.05 | 0.14 | 0.08 | 0.21 | 0.26 | 0.22 | |
C | Below 155 | 0.63 | 0.0 | 0.02 | 0.02 | 0.07 | 0.05 | 0.04 | 0.75 | 0.01 |
Localization | Ca | Na | K | Mg | Al | Fe | Zn | Cd | Pb |
---|---|---|---|---|---|---|---|---|---|
Burial Necrosol Szymonka | 7.82 | 3.83 | 5.39 | 2.27 | 1.58 | 3.50 | 4.75 | 3.37 | 2.13 |
Unburial soil Szymonka Brunic Arenosol | 4.84 | 1.22 | 3.93 | 5.12 | 0.28 | 0.48 | 1.78 | 0.77 | 1.39 |
Burial Necrosol Rudówka Mała | 2.72 | 2.39 | 3.52 | 2.16 | 0.12 | 0.19 | 1.52 | 0.69 | 0.35 |
Unburial soil Brunic Arenosol Rudówka Mała | 3.80 | 1.50 | 6.16 | 3.93 | 1.34 | 1.83 | 2.42 | 1.49 | 1.37 |
Burial Necrosol Szymonka | leaves: branches: roots: | Ca>K>Mg>Fe>Al>Na>Zn>Pb>Cd K>Ca>Mg>Na>Zn>Fe>Al>Pb>Cd K>Ca>Mg>Al>Fe>Na>Zn>Pb>Cd |
Unburial soil Szymonka Brunic Arenosol | leaves: branches: roots: | Ca>K>Mg>Fe>Al>Na>Zn>Pb>Cd K>Ca>Mg>Na>Fe>Zn>Al>Pb>Cd K>Ca>Mg>Al>Fe>Na>Zn>Pb>Cd |
Burial Necrosol Rudówka Mała | leaves: branches: roots: | K>Ca>Mg>Fe>Na>Al>Zn>Pb>Cd K>Ca>Mg>Na>Zn>Fe>Al>Pb>Cd K>Ca>Mg>Al>Fe>Na>Zn>Pb>Cd |
Unburial soil Brunic Arenosol Rudówka Mała | leaves: branches: roots: | K>Ca>Mg>Fe>Al>Zn>Na>Pb>Cd K>Ca>Mg>Zn>Fe>Na>Al>Pb>Cd K>Ca>Mg>Al>Fe>Na>Zn>Pb>Cd |
Localization | Plant tissues | Ca | Na | K | Al | Fe | Mg | Zn | Cd | Pb | |
---|---|---|---|---|---|---|---|---|---|---|---|
Rudówka Mała | burial | leaves | 1.57 | 2.35 | 15.28 | 0.66 | 0.03 | 0.19 | 2.71 | 4.58 | 0.08 |
branches | 0.37 | 0.70 | 2.60 | 0.10 | 0.00 | 0.03 | 1.19 | 3.82 | 0.06 | ||
root | 0.71 | 1.27 | 5.07 | 0.35 | 0.26 | 1.14 | 2.56 | 12.26 | 0.42 | ||
unburial | leaves | 1.83 | 1.12 | 24.36 | 0.59 | 0.03 | 0.22 | 3.86 | 4.17 | 0.09 | |
branches | 0.45 | 0.56 | 5.40 | 0.16 | 0.01 | 0.04 | 1.51 | 3.00 | 0.08 | ||
root | 0.60 | 1.12 | 4.84 | 0.19 | 0.03 | 0.15 | 2.22 | 4.82 | 0.13 | ||
Szymonka | burial | leaves | 1.17 | 1.55 | 14.85 | 0.11 | 0.06 | 0.22 | 8.14 | 7.90 | 0.06 |
branches | 0.34 | 0.82 | 3.60 | 0.23 | 0.01 | 0.02 | 4.25 | 2.20 | 0.08 | ||
root | 0.19 | 0.62 | 3.42 | 0.15 | 0.04 | 0.07 | 2.61 | 3.00 | 0.06 | ||
unburial | leaves | 2.25 | 0.75 | 12.22 | 0.96 | 0.05 | 0.23 | 1.51 | 1.24 | 0.10 | |
branches | 0.57 | 0.63 | 4.81 | 0.27 | 0.01 | 0.03 | 1.68 | 0.52 | 0.09 | ||
root | 0.58 | 1.13 | 4.33 | 0.24 | 0.19 | 0.54 | 1.79 | 2.28 | 0.14 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmonov, O.; Majgier, L.; Rahmonov, M. Chemical Composition of Tissues of Syringa vulgaris L. and Soil Features in Abandoned Cemeteries. Soil Syst. 2023, 7, 18. https://doi.org/10.3390/soilsystems7010018
Rahmonov O, Majgier L, Rahmonov M. Chemical Composition of Tissues of Syringa vulgaris L. and Soil Features in Abandoned Cemeteries. Soil Systems. 2023; 7(1):18. https://doi.org/10.3390/soilsystems7010018
Chicago/Turabian StyleRahmonov, Oimahmad, Leszek Majgier, and Małgorzata Rahmonov. 2023. "Chemical Composition of Tissues of Syringa vulgaris L. and Soil Features in Abandoned Cemeteries" Soil Systems 7, no. 1: 18. https://doi.org/10.3390/soilsystems7010018
APA StyleRahmonov, O., Majgier, L., & Rahmonov, M. (2023). Chemical Composition of Tissues of Syringa vulgaris L. and Soil Features in Abandoned Cemeteries. Soil Systems, 7(1), 18. https://doi.org/10.3390/soilsystems7010018