Paper Mill Biosolids and Forest-Derived Liming Materials Applied on Cropland: Residual Effects on Soil Properties and Metal Availability
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Treatment History
2.2. Field Operations during Residual Years
2.3. Soil Sampling and Analysis
2.4. Statistical Analysis
3. Results and Discussion
3.1. Soil Total C
3.2. Soil NO3-N
3.3. Soil Available P, K, and Ca
3.4. Soil Metal Availability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Reid, I.D. Solid residues generation and management at Canadian pulp and paper mills in 1994 and 1995. Pulp Pap. Can. 1998, 99, T109–T112. [Google Scholar]
- Bird, M.; Talberth, J. Waste Stream Reduction and Re-Use in the Pulp and Paper Sector; Center for Sustainable Economy, Washington State Department of Ecology: Santa Fe, NM, USA, 2008. [Google Scholar]
- Cabral, F.; Ribeiro, H.M.; Hilário, L.; Machado, L.; Vasconcelos, E. Use of pulp mill inorganic wastes as alternative liming materials. Bioresour. Technol. 2008, 99, 8294–8298. [Google Scholar] [CrossRef]
- Camberato, J.J.; Gagnon, B.; Angers, D.A.; Chantigny, M.H.; Pan, W.L. Pulp and paper mill by-products as soil amendments and plant nutrient sources. Can. J. Soil Sci. 2006, 86, 641–653, Erratum Can. J. Soil Sci. 2007, 87, 118. [Google Scholar] [CrossRef]
- Muse, J.K.; Mitchell, C.C. Paper mill boiler ash and lime by-products as soil liming materials. Agron. J. 1995, 87, 432–438. [Google Scholar] [CrossRef]
- Royer-Tardif, S.; Whalen, J.; Rivest, D. Can alkaline residuals from the pulp and paper industry neutralize acidity in forest soils without increasing greenhouse gas emissions? Sci. Total Environ. 2019, 663, 537–547. [Google Scholar] [CrossRef]
- Joseph, C.-A.; Khiari, L.; Gallichand, J.; Bouslama, S. Classification and assessment models of first year byproducts nitrogen plant-availability from literature data. Sci. Total Environ. 2017, 586, 976–984. [Google Scholar] [CrossRef]
- Khiari, L.; Joseph, C.-A.; Gallichand, J.; Beecher, N.; Bouslama, S. Classification and assessment models of first year biosolids phosphorus bioavailability. Waste Biomass Valor. 2020, 11, 1443–1452. [Google Scholar] [CrossRef]
- Bipfubusa, M.; Angers, D.A.; N’Dayegamiye, A.; Antoun, H. Soil aggregation and biochemical properties following the application of fresh and composted organic amendments. Soil Sci. Soc. Am. J. 2008, 72, 160–166. [Google Scholar] [CrossRef]
- N’Dayegamiye, A. Mixed paper mill sludge effects on corn yield, nitrogen efficiency, and soil properties. Agron. J. 2006, 98, 1471–1478. [Google Scholar] [CrossRef]
- Newman, C.M.; Rotenberg, D.; Cooperband, L.R. Paper mill residuals and compost effects on particulate organic matter and related soil functions in a sandy soil. Soil Sci. 2005, 170, 788–801. [Google Scholar] [CrossRef]
- Zibilske, L.M.; Clapham, W.M.; Rourke, R.V. Multiple applications of paper mill sludge in an agricultural system: Soil effects. J. Environ. Qual. 2000, 29, 1975–1981. [Google Scholar] [CrossRef]
- Cogger, C.G.; Bary, A.I.; Myhre, E.A.; Fortuna, A.-M. Biosolids applications to tall fescue have long-term influence on soil nitrogen, carbon, and phosphorus. J. Environ. Qual. 2013, 42, 516–522. [Google Scholar] [CrossRef]
- Granato, T.C.; Pietz, R.I.; Knafl, G.J.; Carlson, C.R., Jr.; Tata, P.; Lue-Hing, C. Trace element concentrations in soil, corn leaves, and grain after cessation of biosolids applications. J. Environ. Qual. 2004, 33, 2078–2089. [Google Scholar] [CrossRef]
- Hyun, H.; Chang, A.C.; Parker, D.R.; Page, A.L. Cadmium solubility and phytoavailability in sludge-treated soil: Effects of soil organic carbon. J. Environ. Qual. 1998, 27, 329–334. [Google Scholar] [CrossRef]
- Walter, I.; Martínez, F.; Alonso, L.; de Gracia, J.; Cuevas, G. Extractable soil heavy metals following the cessation of biosolids application to agricultural soil. Environ. Pollut. 2002, 117, 315–321. [Google Scholar] [CrossRef]
- Arshad, M.A.; Soon, Y.K.; Azooz, R.H.; Lupwayi, N.Z.; Chang., S.X. Soil and crop response to wood ash and lime application in acidic soils. Agron. J. 2012, 104, 715–721. [Google Scholar] [CrossRef]
- Simson, C.R.; Kelling, K.A.; Liegel, E.A. Papermill lime-sludge as an alternative liming material. Agron. J. 1981, 73, 1003–1008. [Google Scholar] [CrossRef]
- Sukkariyah, B.F.; Evanylo, G.; Zelazny, L.; Chaney, R.L. Cadmium, copper, nickel, and zinc availability in a biosolids-amended piedmont soil years after application. J. Environ. Qual. 2005, 34, 2255–2262. [Google Scholar] [CrossRef]
- Sharma, B.; Sarkar, A.; Singh, P.; Singh, R.P. Agricultural utilization of biosolids: A review on potential effects on soil and plant grown. Waste Manag. 2017, 64, 117–132. [Google Scholar] [CrossRef]
- Kashem, A.; Singh, B.R. Soil amendment with city sewage sludge increases soil extractable cadmium, nickel and zinc more than tannery, pharmaceutical and paper mill wastes. Acta Agric. Scand. Sect. B-Soil Plant Sci. 2007, 57, 134–139. [Google Scholar] [CrossRef]
- Mao, L.; Keenor, S.G.; Cai, C.; Kilham, S.; Murfitt, J.; Reid, B.J. Recycling paper to recarbonise soil. Sci. Total Environ. 2022, 847, 157473. [Google Scholar] [CrossRef]
- Charbonneau, H.; Hébert, M.; Jaouich, A. Portrait de la valorisation agricole des matières résiduelles fertilisantes au Québec-partie 2: Contenu en éléments fertilisants et qualité environnementale. Vecteur Environ. 2001, 34, 56–60. [Google Scholar]
- Morris, L.A.; Nutter, W.L.; Miller, W.P.; Overcash, M. Treatment and use of pulp and paper and textile industry residues in southern U. S. forests. In The Forest Alternative: Principles and Practice of Residuals Reuse; Henry, C.L., Harrison, R.B., Bastian, R.K., Eds.; College of Forest Resources, University of Washington: Seattle, WA, USA, 2000; pp. 208–217. [Google Scholar]
- Battaglia, A.; Calace, N.; Nardi, E.; Petronio, B.M.; Pietroletti, M. Paper mill sludge–soil mixture: Kinetic and thermodynamic tests of cadmium and lead sorption capability. Microchem. J. 2003, 75, 97–102. [Google Scholar] [CrossRef]
- Gagnon, B.; Ziadi, N.; Robichaud, A.; Karam, A. Metal availability following paper mill and alkaline residuals application to field crops. J. Environ. Qual. 2013, 42, 412–420. [Google Scholar] [CrossRef]
- Price, G.W.; Voroney, R.P. Papermill biosolids effect on soil physical and chemical properties. J. Environ. Qual. 2007, 36, 1704–1714. [Google Scholar] [CrossRef]
- Gagnon, B.; Ziadi, N. Residual effects of papermill biosolids and forest-derived alkaline materials on crop yield and plant metal accumulation. Can. J. Soil Sci. 2021, 101, 248–260. [Google Scholar] [CrossRef]
- Gagnon, B.; Ziadi, N. Papermill biosolids and alkaline residuals affect crop yield and soil properties over nine years of continuous application. Can. J. Soil Sci. 2012, 92, 917–930. [Google Scholar] [CrossRef]
- Hébert, M. Bilan 2015 du Recyclage des Matières Résiduelles Fertilisantes; Gouvernement du Québec, Ministère du Développement durable, de l’Environnement et de la Lutte contre les Changements Climatiques: Québec, QC, Canada, 2016; pp. 1–30. [Google Scholar]
- Québec MDDEP. Guide Sur Le Recyclage des Matières Résiduelles Fertilisantes: Critères de Référence et Normes Réglementaires; Gouvernement du Québec, Ministère du Développement durable, de l’Environnement et des Parcs: Québec, QC, Canada, 2012; pp. 1–160. [Google Scholar]
- Kabata-Pendias, A. Trace Elements in Soils and Plants, 4th ed.; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Maynard, D.G.; Kalra, Y.P.; Crumbaugh, J.A. Nitrate and Exchangeable Ammonium Nitrogen. In Soil Sampling and Methods of Analysis, 2nd ed.; Carter, M.R., Gregorich, E.G., Eds.; CRC Press: Boca Raton, FL, USA, 2008; pp. 71–80. [Google Scholar]
- Mehlich, A. Mehlich-3 soil test extractant: A modification of Mehlich-2 extractant. Commun. Soil Sci. Plant Anal. 1984, 15, 1409–1416. [Google Scholar] [CrossRef]
- Liang, J.; Karamanos, R.E. DTPA-extractable Fe, Mn, Cu, and Zn. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 87–90. [Google Scholar]
- Gagnon, B.; Simard, R.R.; Goulet, M.; Robitaille, R.; Rioux, R. Soil nitrogen and moisture as influenced by composts and inorganic fertilizer rate. Can. J. Soil Sci. 1998, 78, 207–215. [Google Scholar] [CrossRef]
- Zbíral, J. Determination of plant-available micronutrients by the Mehlich 3 soil extractant—A proposal of critical values. Plant Soil Environ. 2016, 62, 527–531. [Google Scholar] [CrossRef]
- Murphy, J.; Riley, J.P. A modified single solution method for the determination of phosphates in natural waters. Anal. Chem. Acta 1962, 27, 31–36. [Google Scholar] [CrossRef]
- Rasa, K.; Pennanen, T.; Peltoniemi, K.; Velmala, S.; Fritze, H.; Kaseva, J.; Joona, J.; Uusitalo, R. Pulp and paper mill sludges decrease soil erodibility. J. Environ. Qual. 2021, 50, 172–184. [Google Scholar] [CrossRef]
- USEPA. Process Design Manual: Land Application of Sewage Sludge and Domestic Septage; EPA/625/R-95/001; Office of Research and Development: Cincinnati, OH, USA, 1995. [Google Scholar]
- Gagnon, B.; Ziadi, N. Forest-derived liming by-products: Potential benefits to remediate soil acidity and increase soil fertility. Agron. J. 2020, 112, 4788–4798. [Google Scholar] [CrossRef]
- Stutter, M.I.; Shand, C.A.; George, T.S.; Blackwell, M.S.A.; Dixon, L.; Bol, R.; MacKay, R.L.; Richardson, A.E.; Condron, L.M.; Haygarth, P.M. Land use and soil factors affecting accumulation of phosphorus species in temperate soils. Geoderma 2015, 257–258, 29–39. [Google Scholar] [CrossRef]
- Faucon, M.-P.; Houben, D.; Reynoird, J.-P.; Mercadal-Dulaurent, A.-M.; Armand, R.; Lambers, H. Advances and perspectives to improve the phosphorus availability in cropping systems for agroecological phosphorus management. Adv. Agron. 2015, 134, 51–79. [Google Scholar]
- Stewart, J.W.B.; Tiessen, H. Dynamics of soil organic phosphorus. Biogeochemistry 1987, 4, 41–60. [Google Scholar] [CrossRef]
- Sharifi, M.; Cheema, M.; McVicar, K.; LeBlanc, L.; Fillmore, S. Evaluation of liming properties and potassium bioavailability of three Atlantic Canada wood ash sources. Can. J. Plant Sci. 2013, 93, 1209–1216. [Google Scholar] [CrossRef]
- Ferreiro, A.; Merino, A.; Díaz, N.; Piñeiro, J. Improving the effectiveness of wood-ash fertilization in mixed mountain pastures. Grass Forage Sci. 2011, 66, 337–350. [Google Scholar] [CrossRef]
- Gagnon, B.; Robichaud, A.; Ziadi, N.; Karam, A. Repeated annual paper mill and alkaline residuals application affects soil metal fractions. J. Environ. Qual. 2014, 43, 517–527. [Google Scholar] [CrossRef]
- Hettiarachchi, G.M.; Scheckel, K.G.; Ryan, J.A.; Sutton, S.R.; Newville, M. μ-XANES and μ-XRF investigations of metal binding mechanisms in biosolids. J. Environ. Qual. 2006, 35, 342–351. [Google Scholar] [CrossRef]
- Basta, N.T.; Ryan, J.A.; Chaney, R.L. Trace element chemistry in residual-treated soil: Key concepts and metal bioavailability. J. Environ. Qual. 2005, 34, 49–63. [Google Scholar] [CrossRef] [PubMed]
- Stietiya, M.H.; Wang, J.J. Effect of organic matter oxidation on the fractionation of copper, zinc, lead, and arsenic in sewage sludge and amended soils. J. Environ. Qual. 2011, 40, 1162–1171. [Google Scholar] [CrossRef] [PubMed]
- Antoniadis, V.; Alloway, B.J. The role of dissolved organic carbon in the mobility of Cd, Ni and Zn in sewage sludge-amended soils. Environ. Pollut. 2002, 117, 515–521. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.; McBride, M.B.; Richards, B.K.; Steenhuis, T.S. The long-term effect of sludge application on Cu, Zn, and Mo behavior in soils and accumulation in soybean seeds. Plant Soil 2007, 299, 227–236. [Google Scholar] [CrossRef]
- O’Connor, G.A.; Brobst, R.B.; Chaney, R.L.; Kincaid, R.L.; McDowell, L.R.; Pierzynski, G.M.; Rubin, A.; Van Riper, G.G. A modified risk assessment to establish molybdenum standards for land application of biosolids. J. Environ. Qual. 2001, 30, 1490–1507. [Google Scholar] [CrossRef]
- Yang, P.-T.; Wang, S.-L. Sorption and speciation of molybdate in soils: Implications for molybdenum mobility and availability. J. Hazard. Mater. 2021, 408, 124934. [Google Scholar] [CrossRef]
- Brinton, S.R.; O’Connor, G.A. Sorption of molybdenum in soils field-equilibrated with biosolids. Commun. Soil Sci. Plant Anal. 2003, 34, 1331–1346. [Google Scholar] [CrossRef]
Attribute | Units | PB | LM | WA | CL |
---|---|---|---|---|---|
pHwater | 5.0 ± 0.9 | 10.6 ± 1.9 | 12.3 ± 0.5 | 9.2 ± 0.5 | |
Moisture | g·kg−1 FM | 677 ± 51 | 280 ± 34 | 199 ± 97 | 11 ± 9 |
Total C | g·kg−1 DM | 438 ± 5 | - | - | - |
Total N | g·kg−1 DM | 21.9 ± 5.8 | 0.3 ± 0.3 | 0.3 ± 0.1 | 0.1 ± 0.1 |
Total P | g·kg−1 DM | 3.5 ± 0.8 | 1.6 ± 0.7 | 5.4 ± 1.8 | 0.5 ± 0.2 |
Total K | g·kg−1 DM | 0.6 ± 0.1 | 1.6 ± 2.2 | 20.4 ± 8.0 | 1.9 ± 0.6 |
Total Ca | g·kg−1 DM | 7 ± 2 | 263 ± 41 | 137 ± 26 | 235 ± 24 |
Total Cu | mg·kg−1 DM | 7 ± 3 | 20 ± 10 | 33 ± 8 | 3 ± 0 |
Total Zn | mg·kg−1 DM | 57 ± 20 | 196 ± 42 | 364 ± 41 | 3 ± 1 |
Total Cd | mg·kg−1 DM | 0.7 ± 0.2 | 4.1 ± 0.9 | 5.2 ± 1.2 | 2.0 ± 0.1 |
Total Mo | mg·kg−1 DM | 1.3 ± 0.7 | 0.1 ± 0.1 | 0.0 ± 0.1 | 0.1 ± 0.1 |
Treatment | Mehlich-3 P (mg·kg−1) | Mehlich-3 Ca (mg·kg−1) | ||||||
---|---|---|---|---|---|---|---|---|
2011 | 2014 | 2017 | 2021 | 2011 | 2014 | 2017 | 2021 | |
Control (0N) | 69 b | 75 b | 66 c | 65 a | 1095 d | 1256 c | 1097 c | 1123 c |
PB 30 Mg·ha−1 | 71 b | 77 b | 68 c | 62 a | 1224 cd | 1302 c | 1161 c | 1230 bc |
PB 60 Mg·ha−1 | 92 ab | 81 ab | 75 bc | 69 a | 1279 cd | 1430 c | 1285 bc | 1384 bc |
PB 90 Mg·ha−1 | 101 a | 94 ab | 97 ab | 78 a | 1251 cd | 1403 c | 1275 bc | 1283 bc |
PB 30 Mg + 3 Mg LM ha−1 | 102 a | 113 a | 107 a | 89 a | 1738 ab | 1912 ab | 1710 a | 1738 a |
PB 30 Mg + 3 Mg WA ha−1 | 94 ab | 86 ab | 85 abc | 68 a | 1481 bc | 1597 bc | 1422 b | 1393 b |
PB 30 Mg + 3 Mg CL ha−1 | 90 ab | 103 ab | 91 abc | 83 a | 1788 a | 1995 a | 1774 a | 1813 a |
LSD (5%) | 26 | 32 | 26 | 28 | 273 | 318 | 230 | 242 |
Treatment | Statistical analysis (F-value) | |||||||
2.1 | 1.5 | 2.6 * | 0.9 | 6.9 *** | 6.0 *** | 9.2 *** | 8.0 *** | |
Contrasts | ||||||||
PB—linear | 7.7 * | 1.5 | 5.3 * | 0.9 | 1.4 | 1.2 | 3.0 | 2.6 |
PB vs. PB + liming | 6.0 * | 3.6 | 6.3 * | 2.7 | 17.4 *** | 18.3 *** | 27.8 *** | 19.5 *** |
CL vs. LM + WA | 0.6 | 0.1 | 0.2 | 0.1 | 2.5 | 3.3 | 4.8 * | 6.1 * |
LM vs. WA | 0.4 | 3.0 | 3.1 | 2.6 | 3.8 | 4.3 | 6.8 * | 8.9 ** |
Treatment | Mehlich-3 Cu (mg·kg−1) | DTPA Cu (mg·kg−1) | |||||
---|---|---|---|---|---|---|---|
2011 | 2014 | 2017 | 2021 | 2011 | 2014 | 2017 | |
Control (0N) | 3.1 c | 4.7 bc | 5.2 a | 4.5 a | 7.1 b | 4.7 bc | 5.1 a |
PB 30 Mg·ha−1 | 4.1 abc | 4.5 c | 4.9 a | 4.6 a | 7.7 ab | 4.4 bc | 4.8 a |
PB 60 Mg·ha−1 | 5.0 a | 5.1 bc | 5.4 a | 5.3 a | 9.0 a | 4.7 b | 5.0 a |
PB 90 Mg·ha−1 | 4.3 ab | 5.5 a | 5.5 a | 4.8 a | 8.1 ab | 5.6 a | 5.1 a |
PB 30 Mg + 3 Mg LM ha−1 | 4.1 abc | 5.4 ab | 5.4 a | 5.3 a | 7.6 ab | 4.4 bc | 4.8 a |
PB 30 Mg + 3 Mg WA ha−1 | 4.4 ab | 5.2 bc | 5.4 a | 4.8 a | 8.1 ab | 4.9 b | 4.9 a |
PB 30 Mg + 3 Mg CL ha−1 | 3.3 bc | 4.6 bc | 4.9 a | 4.2 a | 6.9 b | 4.0 c | 4.3 a |
LSD (5%) | 1.2 | 0.8 | 0.9 | 1.2 | 1.7 | 0.7 | 0.8 |
Treatment | Statistical analysis (F-value) | ||||||
2.3 | 2.0 | 0.7 | 0.8 | 1.1 | 4.2 ** | 1.0 | |
Contrasts | |||||||
PB—linear | 6.5 * | 6.3 * | 1.3 | 0.7 | 2.5 | 10.1 ** | 0.0 |
PB vs. PB + liming | 0.2 | 3.5 | 1.1 | 0.2 | 0.1 | 0.0 | 0.2 |
CL vs. LM + WA | 3.4 | 4.0 | 1.8 | 2.8 | 1.7 | 4.5 * | 2.7 |
LM vs. WA | 0.4 | 0.4 | 0.0 | 0.7 | 0.3 | 2.2 | 0.1 |
Treatment | Mehlich-3 Zn (mg·kg−1) | DTPA Zn (mg·kg−1) | |||||
---|---|---|---|---|---|---|---|
2011 | 2014 | 2017 | 2021 | 2011 | 2014 | 2017 | |
Control (0N) | 6.4 bc | 6.3 bc | 5.6 bc | 5.2 bc | 4.0 bc | 3.4 bcd | 2.8 bc |
PB 30 Mg·ha−1 | 5.9 bc | 5.9 bc | 5.5 bc | 4.9 bc | 3.9 bc | 3.5 bc | 2.8 bc |
PB 60 Mg·ha−1 | 8.5 ab | 7.1 ab | 7.0 ab | 5.5 bc | 5.6 ab | 4.1 b | 3.6 ab |
PB 90 Mg·ha−1 | 11.2 a | 8.4 a | 7.8 a | 6.9 a | 7.4 a | 5.2 a | 4.0 a |
PB 30 Mg + 3 Mg LM ha−1 | 6.8 bc | 6.9 abc | 6.5 abc | 6.0 ab | 3.6 bc | 3.4 bcd | 2.9 bc |
PB 30 Mg + 3 Mg WA ha−1 | 6.5 bc | 5.8 bc | 5.9 bc | 4.9 bc | 3.8 bc | 3.0 cd | 2.7 c |
PB 30 Mg + 3 Mg CL ha−1 | 5.7 c | 5.5 c | 4.9 c | 4.7 c | 3.0 c | 2.5 d | 2.0 c |
LSD (5%) | 3.2 | 1.5 | 1.6 | 1.3 | 2.8 | 0.9 | 0.8 |
Treatment | Statistical analysis (F-value) | ||||||
3.1 * | 3.5 * | 3.0 * | 2.9 * | 3.7 ** | 7.1 *** | 4.6 ** | |
Contrasts | |||||||
PB—linear | 12.6 ** | 10.5 ** | 11.3 ** | 8.4 ** | 11.4 ** | 19.6 *** | 12.7 ** |
PB vs. PB + liming | 0.2 | 0.1 | 0.3 | 0.3 | 0.5 | 2.0 | 0.8 |
CL vs. LM + WA | 1.0 | 1.7 | 3.7 | 2.1 | 1.5 | 3.3 | 4.7 * |
LM vs. WA | 0.1 | 2.4 | 0.6 | 3.4 | 0.1 | 0.6 | 0.1 |
Treatment | Mehlich-3 Cd (mg·kg−1) | DTPA Cd (mg· kg−1) | |||||
---|---|---|---|---|---|---|---|
2011 | 2014 | 2017 | 2021 | 2011 | 2014 | 2017 | |
Control (0N) | 0.057 bc | 0.069 c | 0.068 c | 0.067 b | 0.071 bc | 0.061 bc | 0.063 bc |
PB 30 Mg·ha−1 | 0.073 ab | 0.074 bc | 0.081 ab | 0.073 ab | 0.082 ab | 0.073 ab | 0.075 ab |
PB 60 Mg·ha−1 | 0.082 a | 0.084 ab | 0.089 a | 0.083 a | 0.090 a | 0.076 a | 0.078 a |
PB 90 Mg·ha−1 | 0.083 a | 0.083 ab | 0.088 a | 0.084 a | 0.096 a | 0.080 a | 0.083 a |
PB 30 Mg + 3 Mg LM ha−1 | 0.069 abc | 0.090 a | 0.084 ab | 0.082 a | 0.072 bc | 0.068 ab | 0.071 abc |
PB 30 Mg + 3 Mg WA ha−1 | 0.070 abc | 0.073 c | 0.082 ab | 0.078 ab | 0.069 bc | 0.062 bc | 0.070 abc |
PB 30 Mg + 3 Mg CL ha−1 | 0.053 c | 0.065 c | 0.075 bc | 0.076 ab | 0.059 c | 0.054 c | 0.059 c |
LSD (5%) | 0.019 | 0.010 | 0.011 | 0.011 | 0.017 | 0.013 | 0.013 |
Treatment | Statistical analysis (F-value) | ||||||
2.9 * | 6.1 *** | 3.4 * | 2.3 | 4.6 ** | 4.6 ** | 3.1 * | |
Contrasts | |||||||
PB—linear | 8.9 ** | 11.3 ** | 16.8 *** | 11.6 ** | 10.3 ** | 10.3 ** | 10.2 ** |
PB vs. PB + liming | 1.6 | 0.3 | 0.0 | 1.5 | 5.0 * | 5.5 * | 2.8 |
CL vs. LM + WA | 4.5 * | 14.9 *** | 3.1 | 0.6 | 2.5 | 4.8 * | 4.6 * |
LM vs. WA | 0.0 | 12.6 ** | 0.2 | 0.7 | 0.2 | 1.2 | 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gagnon, B.; Ziadi, N. Paper Mill Biosolids and Forest-Derived Liming Materials Applied on Cropland: Residual Effects on Soil Properties and Metal Availability. Soil Syst. 2023, 7, 40. https://doi.org/10.3390/soilsystems7020040
Gagnon B, Ziadi N. Paper Mill Biosolids and Forest-Derived Liming Materials Applied on Cropland: Residual Effects on Soil Properties and Metal Availability. Soil Systems. 2023; 7(2):40. https://doi.org/10.3390/soilsystems7020040
Chicago/Turabian StyleGagnon, Bernard, and Noura Ziadi. 2023. "Paper Mill Biosolids and Forest-Derived Liming Materials Applied on Cropland: Residual Effects on Soil Properties and Metal Availability" Soil Systems 7, no. 2: 40. https://doi.org/10.3390/soilsystems7020040
APA StyleGagnon, B., & Ziadi, N. (2023). Paper Mill Biosolids and Forest-Derived Liming Materials Applied on Cropland: Residual Effects on Soil Properties and Metal Availability. Soil Systems, 7(2), 40. https://doi.org/10.3390/soilsystems7020040