Phytotoxic Effects of Al on Root Growth Are Confounded in the Presence of Fulvic and Humic Acids
Abstract
:1. Introduction
2. Materials and Methods
- Control with no OA (Nil-OA)
- HA at 40 mg C L−1 (HA40)
- FA at 40 mg C L−1 (FA40)
- Combined FA at 40 mg C L−1 and HA at 40 mg C L−1 (FA40HA40)
3. Results
3.1. Changes in Solution Properties across FA, HA, and Al Treatments
3.2. Effects of Al on Root Growth in the Absence of FA or HA
3.3. Direct Effects of FA and HA on Root Growth
3.4. Interactive Effects of FA and HA with Al on Root Growth
4. Discussion
4.1. Direct Effects of FA and HA on Root Growth
4.2. Confounding Effects of Al3+ and Organic Acids on Root Growth
4.3. Implications of Findings for Acidic Soil Studies
4.4. Mechanisms for Reducing Solution Al3+
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Noble, A.D.; Sumner, M.E. Soil acidification: The world story. In Handbook of Soil Acidity; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Crowther, T.W.; Glick, H.B.; Covey, K.R.; Bettigole, C.; Maynard, D.S.; Thomas, S.M.; Smith, J.R.; Hintler, G.; Duguid, M.C.; Amatulli, G.; et al. Mapping tree density at a global scale. Nature 2015, 525, 201–205. [Google Scholar] [CrossRef]
- von Uexküll, H.R.; Mutert, E. Global extent, development and economic impact of acid soils. Plant Soil 1995, 171, 1–15. [Google Scholar] [CrossRef]
- Sanchez, P.; Villachica, J.; Bandy, D. Soil fertility dynamics after clearing a tropical rainforest in Peru. Soil Sci. Soc. Am. J. 1983, 47, 1171–1178. [Google Scholar] [CrossRef]
- Blamey, F.P.C.; Nishizawa, N.K.; Yoshimura, E. Timing, magnitude, and location of initial soluble aluminum injuries to Mungbean roots. Soil Sci. Plant Nutr. 2004, 50, 67–76. [Google Scholar] [CrossRef]
- Bruce, R.; Warrell, L.; Edwards, D.; Bell, L. Effects of aluminium and calcium in the soil solution of acid soils on root elongation of Glycine max cv. Forrest. Aust. J. Agric. Res. 1988, 39, 319–338. [Google Scholar] [CrossRef]
- Comin, J.J.; Barloy, J.; Bourrié, G.; Trolard, F. Differential effects of monomeric and polymeric aluminium on the root growth and on the biomass production of root and shoot of corn in solution culture. Eur. J. Agron. 1999, 11, 115–122. [Google Scholar] [CrossRef]
- Hale, S.E.; Nurida, N.L.; Jubaedah Mulder, J.; Sørmo, E.; Silvani, L.; Abiven, S.; Joseph, S.; Taherymoosavi, S.; Cornelissen, G. The effect of biochar, lime and ash on maize yield in a long-term field trial in a Ultisol in the humid tropics. Sci. Total Environ. 2020, 719, 137455. [Google Scholar] [CrossRef]
- Gurmessa, B. Soil acidity challenges and the significance of liming and organic amendments in tropical agricultural lands with reference to Ethiopia. Environ. Dev. Sustain. 2020, 23, 77–99. [Google Scholar] [CrossRef]
- Besho, T.; Bell, L. Soil and solution phase chargers and mung bean response during amelioration of aluminum toxicity using organic matter. Plant Soil 1992, 140, 183–196. [Google Scholar] [CrossRef]
- De Bauw, P.; Shimamura, E.; Rakotoson, T.; Andriamananjara, A.; Verbeeck, M.; Merckx, R.; Smolders, E. Farm yard manure application mitigates aluminium toxicity and phosphorus deficiency for different upland rice genotypes. J. Agron. Crop. Sci. 2021, 207, 148–162. [Google Scholar] [CrossRef]
- Shetty, R.; Vidya, C.S.-N.; Prakash, N.B.; Lux, A.; Vaculík, M. Aluminum toxicity in plants and its possible mitigation in acid soils by biochar: A review. Sci. Total Environ. 2020, 765, 142744. [Google Scholar] [CrossRef] [PubMed]
- Hue, N.; Amien, I. Aluminum detoxification with green manures. Commun. Soil Sci. Plant Anal. 1989, 20, 1499–1511. [Google Scholar] [CrossRef]
- Alva, A.; Edwards, D.; Asher, C. Effects of acid soil infertility factors on mineral composition of soybean and cowpea tops. J. Plant Nutr. 1991, 14, 187–203. [Google Scholar] [CrossRef]
- Dolling, P.; Porter, W.; Robson, A. Effect of soil acidity on barley production in the south-west of Western Australia. 1. The interaction between lime and nutrient application. Aust. J. Exp. Agric. 1991, 31, 803–810. [Google Scholar] [CrossRef]
- Piatt, J.J.; Brusseau, M.L. Rate-Limited Sorption of Hydrophobic Organic Compounds by Soils with Well-Characterized Organic Matter. Environ. Sci. Technol. 1998, 32, 1604–1608. [Google Scholar] [CrossRef]
- Chernikov, V.; Raskatov, V.; Konchits, V. Composition and properties of fulvic acid fractions from chernozems. Sov. Soil Sci. 1991, 23, 61–72. [Google Scholar]
- Kögel, I.; Hempfling, R.; Zech, W.; Hatcher, P.G.; Schulten, H.-R. Chemical composition of the organic matter in forest soils: 1. Forest litter. Soil Sci. 1988, 146, 124–136. [Google Scholar] [CrossRef]
- Kononova, M.; Alexandrova, I. Formation of humic acids during plant residue humification and their nature. Geoderma 1973, 9, 157–164. [Google Scholar] [CrossRef]
- Cieśliński, G.; Van Rees, K.C.J.; Szmigielska, A.M.; Krishnamurti, G.S.R.; Huang, P.M. Low-molecular-weight organic acids in rhizosphere soils of durum wheat and their effect on cadmium bioaccumulation. Plant Soil 1998, 203, 109–117. [Google Scholar] [CrossRef]
- Kerven, G.; Asher, C.; Edwards, D.; Ostatek-Boczynski, Z. Sterile solution culture techniques for aluminum toxicity studies involving organic acids. J. Plant Nutr. 1991, 14, 975–985. [Google Scholar] [CrossRef]
- Lakshman, S.; Mills, R.; Patterson, H.; Cronan, C. Apparent differences in binding site distributions and aluminum (III) complexation for three molecular weight fractions of a coniferous soil fulvic acid. Anal. Chim. Acta 1993, 282, 101–108. [Google Scholar] [CrossRef]
- Lobartini, J.C.; Orioli, G.A. Absorption of iron Fe-humate in nutrient solutions by plants. Plant Soil 1988, 106, 153–157. [Google Scholar] [CrossRef]
- Suthipradit, S.; Edwards, D.; Asher, C. Effects of aluminium on tap-root elongation of soybean (Glycine max), cowpea (Vigna unguiculata) and green gram (Vigna radiata) grown in the presence of organic acids. Plant Soil 1990, 124, 233–237. [Google Scholar] [CrossRef]
- Almendros, G.; González-Vila, F. Degradative studies on a soil humin fraction—Sequential degradation of inherited humin. Soil Biol. Biochem. 1987, 19, 513–520. [Google Scholar] [CrossRef]
- Baigorri, R.; Fuentes, M.; González-Gaitano, G.; García-Mina, J.M.; Almendros, G.; González-Vila, F.J. Complementary Multianalytical Approach To Study the Distinctive Structural Features of the Main Humic Fractions in Solution: Gray Humic Acid, Brown Humic Acid, and Fulvic Acid. J. Agric. Food Chem. 2009, 57, 3266–3272. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuwatsuka, S.; Shindo, H. Behavior of phenolic substances in the decaying process of plants: I. Identification and quantitative determination of phenolic acids in rice straw and its decayed product by gas chromatography. Soil Sci. Plant Nutr. 1973, 19, 219–227. [Google Scholar] [CrossRef]
- Malcolm, R.L.; MacCarthy, P. Limitations in the use of commercial humic acids in water and soil research. Environ. Sci. Technol. 1986, 20, 904–911. [Google Scholar] [CrossRef] [PubMed]
- Diatloff, E.; Harper, S.; Asher, C.; Smith, F. Effects of humic and fulvic acids on the rhizotoxicity of lanthanum and aluminium to corn. Soil Res. 1998, 36, 913–920. [Google Scholar] [CrossRef]
- Yang, Z.M.; Sivaguru, M.; Horst, W.J.; Matsumoto, H. Aluminium tolerance is achieved by exudation of citric acid from roots of soybean (Glycine max). Physiol. Plant. 2000, 110, 72–77. [Google Scholar] [CrossRef]
- Hue, N.; Craddock, G.; Adams, F. Effect of organic acids on aluminum toxicity in subsoils. Soil Sci. Soc. Am. J. 1986, 50, 28–34. [Google Scholar] [CrossRef]
- McColl, J.; Pohlman, A. Soluble organic acids and their chelating influence on Al and other metal dissolution from forest soils. In Acidic Precipitation; Springer: Berlin/Heidelberg, Germany, 1986. [Google Scholar]
- Guimarães, D.V.; Gonzaga, M.I.S.; da Silva, T.O.; da Silva, T.L.; da Silva Dias, N.; Matias, M.I.S. Soil organic matter pools and carbon fractions in soil under different land uses. Soil Tillage Res. 2013, 126, 177–182. [Google Scholar] [CrossRef] [Green Version]
- Vanlauwe, B.; Aihou, K.; Tossah, B.K.; Diels, J.; Sanginga, N.; Merckx, R. Senna siamea trees recycle Ca from a Ca-rich subsoil and increase the topsoil pH in agroforestry systems in the West African derived savanna zone. Plant Soil 2005, 269, 285–296. [Google Scholar] [CrossRef]
- Ahlrichs, J.L.; Karr, M.C.; Baligar, V.C.; Wright, R.J. Rapid bioassay of aluminum toxicity in soil. Plant Soil 1990, 122, 279–285. [Google Scholar] [CrossRef]
- Aitken, R.L.; Moody, P.W.; Compton, B.L. A simple bioassay for the diagnosis of aluminium toxicity in soils. Commun. Soil Sci. Plant Anal. 1990, 21, 511–529. [Google Scholar] [CrossRef]
- Kumar Sootahar, M.; Zeng, X.; Su, S.; Wang, Y.; Bai, L.; Zhang, Y.; Li, T.; Zhang, X. The Effect of Fulvic Acids Derived from Different Materials on Changing Properties of Albic Black Soil in the Northeast Plain of China. Molecules 2019, 24, 1535. [Google Scholar] [CrossRef] [Green Version]
- Linehan, D. Some effects of a fulvic acid component of soil organic matter on the growth of cultured excised tomato roots. Soil Biol. Biochem. 1976, 8, 511–517. [Google Scholar] [CrossRef]
- Rauthan, B.; Schnitzer, M. Effects of a soil fulvic acid on the growth and nutrient content of cucumber (Cucumis sativus) plants. Plant Soil 1981, 63, 491–495. [Google Scholar] [CrossRef]
- Schnitzer, M.; Poapst, P. Effects of a soil humic compound on root initiation. Nature 1967, 213, 598–599. [Google Scholar] [CrossRef]
- Suh, H.Y.; Yoo, K.S.; Suh, S.G. Effect of foliar application of fulvic acid on plant growth and fruit quality of tomato (Lycopersicon esculentum L.). Hortic. Environ. Biotechnol. 2014, 55, 455–461. [Google Scholar] [CrossRef]
- Brunner, I.; Luster, J.; Ochs, M.; Blaser, P. Phytotoxic effects of the high molecular weight fraction of an aqueous leaf litter extract on barley root development. Plant Soil 1996, 178, 83–93. [Google Scholar] [CrossRef]
- Dobbss, L.B.; Medici, L.O.; Peres, L.E.P.; Pino-Nunes, L.E.; Rumjanek, V.M.; Façanha, A.R.; Canellas, L.P. Changes in root development of Arabidopsis promoted by organic matter from oxisols. Ann. Appl. Biol. 2007, 151, 199–211. [Google Scholar] [CrossRef]
- Hiradate, S.; Yonezawa, T.; Takesako, H. Isolation and purification of hydrophilic fulvic acids by precipitation. Geoderma 2006, 132, 196–205. [Google Scholar] [CrossRef]
- Alebachew, M.; Amare, T.; Wendie, M. Investigation of the Effects of Eucalyptus camaldulensis on Performance of Neighbouring Crop Productivity in Western Amhara, Ethiopia. Open Access Libr. J. 2015, 2, 1–10. [Google Scholar] [CrossRef]
- Harper, S.; Kerven, G.; Edwards, D.; Ostatek-Boczynski, Z. Characterisation of fulvic and humic acids from leaves of Eucalyptus camaldulensis and from decomposed hay. Soil Biol. Biochem. 2000, 32, 1331–1336. [Google Scholar] [CrossRef]
- Kerven, G.; Ostatek-Boczynski, Z.; Edwards, D.; Asher, C.; Oweczkin, J. Chromatographic techniques for the separation of Al and associated organic ligands present in soil solution. In Plant-Soil Interactions at Low pH: Principles and Management; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Kerven, G.; Edwards, D.; Asher, C.; Hallman, P.; Kokot, S. Aluminum determination in soil solution. 2. Short-term colorimetric procedures for the measurement of inorganic monomeric aluminum in the presence of organic acid ligands. Soil Res. 1989, 27, 91–102. [Google Scholar] [CrossRef]
- Ernst, W.; Kraak, M.; Stoots, L. Growth and mineral nutrition of Scrophularia nodosa with various combinations of fulvic and humic acids. J. Plant Physiol. 1987, 127, 171–175. [Google Scholar] [CrossRef]
- Tadano, T.; Pantanahiran, W.; Nilnond, C. Inhibitory effect of canal water drained from a tropical deep peat soil on the elongation of rice roots. Soil Sci. Plant Nutr. 1992, 38, 149–157. [Google Scholar] [CrossRef] [Green Version]
- Kopittke, P.M.; Moore, K.L.; Lombi, E.; Gianoncelli, A.; Ferguson, B.J.; Blamey, F.P.; Menzies, N.W.; Nicholson, T.M.; McKenna, B.A.; Wang, P.; et al. Identification of the primary lesion of toxic aluminum in plant roots. Plant Physiol. 2015, 167, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Close, E.; Powell, H. Rapidly extracted (0.02 M CaCl2-soluble) reactive aluminum as a measure of aluminum toxicity in soils. Soil Res. 1989, 27, 663–672. [Google Scholar] [CrossRef]
- Menzies, N.; Edwards, D.; Bell, L. Effects of calcium and aluminum in the soil solution of acid, surface soils on root elongation of mungbean. Soil Res. 1994, 32, 721–737. [Google Scholar] [CrossRef]
- Wright, R.; Baligar, V.; Ahlrichs, J. The influence of extractable and soil solution aluminum on root growth of wheat seedlings. Soil Sci. 1989, 148, 293–302. [Google Scholar] [CrossRef]
- Adams, F.; Hathcock, P.J. Aluminum Toxicity and Calcium Deficiency in Acid Subsoil Horizons of Two Coastal Plains Soil Series. Soil Sci. Soc. Am. J. 1984, 48, 1305–1309. [Google Scholar] [CrossRef]
- Evans, C.E.; Kamprath, E. Lime response as related to percent Al saturation, solution Al, and organic matter content. Soil Sci. Soc. Am. J. 1970, 34, 893–896. [Google Scholar] [CrossRef]
- Zhao, W.-R.; Li, J.-Y.; Jiang, J.; Lu, H.-L.; Hong, Z.-N.; Qian, W.; Xu, R.-K.; Deng, K.-Y.; Guan, P. The mechanisms underlying the reduction in aluminum toxicity and improvements in the yield of sweet potato (Ipomoea batatas L.) After organic and inorganic amendment of an acidic ultisol. Agric. Ecosyst. Environ. 2020, 288, 106716. [Google Scholar] [CrossRef]
- Ayuso, M.; Hernández, T.; Garcia, C.; Pascual, J.A. Stimulation of barley growth and nutrient absorption by humic substances originating from various organic materials. Bioresour. Technol. 1996, 57, 251–257. [Google Scholar] [CrossRef]
- Saar, R.A.; Weber, J.H. Fulvic acid: Modifier of metal-ion chemistry. Environ. Sci. Technol. 1982, 16, 510A–517A. [Google Scholar] [CrossRef]
- dos Santos, J.V.; Fregolente, L.G.; Mounier, S.; Hajjoul, H.; Ferreira, O.P.; Moreira, A.B.; Bisinoti, M.C. Fulvic acids from Amazonian anthropogenic soils: Insight into the molecular composition and copper binding properties using fluorescence techniques. Ecotoxicol. Environ. Saf. 2020, 205, 111173. [Google Scholar] [CrossRef]
- Schnitzer, M.; Skinner, S. Organo-metallic interactions in soils: 1. Reactions between a number of metal ions and the organic matter of a podzol Bh horizon. Soil Sci. 1963, 96, 86–93. [Google Scholar] [CrossRef]
- Chirenje, T.; Rivero, C.; Ma, L.Q. Leachability of Cu and Ni in wood ash-amended soil as impacted by humic and fulvic acid. Geoderma 2002, 108, 31–47. [Google Scholar] [CrossRef]
Organic Acid Treatment | Treatment Al Concentration (µM) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 30 | 90 | 270 | ||||||
Mean and SE | Mean and SE | Mean and SE | Mean and SE | Mean and SE | ||||||
Nil-OA | 0.0 | ±0.0 | 8.4 | ±0.2 | 22.5 | ±2.3 | 47.4 | ±9.9 | 108.1 | ±11.5 |
E-FA40 | 0.0 | ±0.0 | 1.3 | ±0.1 | 6.5 | ±0.1 | 28.2 | ±1.0 | 57.4 | ±0.2 |
E-HA40 | 0.0 | ±0.0 | 1.4 | ±0.2 | 3.4 | ±0.1 | 11.9 | ±1.0 | 36.8 | ±4.5 |
E-FA40HA40 | 0.0 | ±0.0 | 1.6 | ±0.1 | 0.0 | ±0.0 | 23.1 | ±0.8 | 40.1 | ±4.7 |
H-FA40 | 0.0 | ±0.0 | 2.3 | ±0.1 | 9.7 | ±2.0 | 45.3 | ±1.2 | 30.5 | ±2.4 |
H-HA40 | 0.0 | ±0.0 | 0.2 | ±0.2 | 3.3 | ±0.3 | 18.8 | ±1.2 | 34.5 | ±2.2 |
H-FA40HA40 | 0.0 | ±0.0 | 0.0 | ±0.0 | 1.1 | ±0.6 | 31.9 | ±3.1 | 28.2 | ±1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Harper, S.; Menzies, N. Phytotoxic Effects of Al on Root Growth Are Confounded in the Presence of Fulvic and Humic Acids. Soil Syst. 2023, 7, 68. https://doi.org/10.3390/soilsystems7030068
Harper S, Menzies N. Phytotoxic Effects of Al on Root Growth Are Confounded in the Presence of Fulvic and Humic Acids. Soil Systems. 2023; 7(3):68. https://doi.org/10.3390/soilsystems7030068
Chicago/Turabian StyleHarper, Stephen, and Neal Menzies. 2023. "Phytotoxic Effects of Al on Root Growth Are Confounded in the Presence of Fulvic and Humic Acids" Soil Systems 7, no. 3: 68. https://doi.org/10.3390/soilsystems7030068
APA StyleHarper, S., & Menzies, N. (2023). Phytotoxic Effects of Al on Root Growth Are Confounded in the Presence of Fulvic and Humic Acids. Soil Systems, 7(3), 68. https://doi.org/10.3390/soilsystems7030068